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1 Introduction

Let M and B be two Riemannian manifolds of class C∞. A Riemannian submersion
π : M → B is a mapping of M onto B such that π has maximal rank and π∗
preserves lengths of horizontal vectors ([5], [6], [11], [17]). If π : M → B is a
Riemannian submersion such that M is a Sasakian manifold with almost contact
structure (ϕ, ξ, η), each fiber is a ϕ-invariant submanifold of M and tangent to the
vector ξ, then π is said to be a Sasakian submersion ([7], [8], [13], [16]). If π is a
Sasakian submersion, thenB is Kählerian and each fiber is Sasakian. B. H. Kim ([8])
and the author ([13]) investigated a Sasakian submersion with vanishing contact
Bochner curvature tensor. It is known that ([7], [13])

Theorem A. Let π : M → B be a Sasakian submersion. If M is a space of constant
ϕ-holomorphic sectional curvature c, then B is of constant holomorphic sectional
curvature c+ 3 (≤ 0).

Next, let M and B be two semi-Riemannian manifolds. A semi-Riemannian sub-
mersion π : M → B is a submersion such that all fibers are semi-Riemannian
submanifolds of M , and π∗ preserves lengths of horizontal vectors ([12]). Recently,
N. Abe and K. Hasegawa ([1]) studied an affine submersion with horizontal dis-
tribution. They investigated when the total space is the statistical manifold. Also,
the author ([14]) studied statistical manifolds with almost complex structure and
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its statistical submersions.

Let M be a manifold with a non-degenerate metric g and a torsion-free affine
connection ∇. If ∇g is symmetric, then (M,∇, g) is called a statistical manifold.
In [9], M. Noguchi studied statistical manifolds. On the statistical manifold, we
define another connection, called the conjugate (or dual) connection ([3], [10]).
This concept was widely studied in information geometry ([2], [3]). The statistical
models in information geometry have a Fisher metric as Riemannian metric, and
admit an affine connection which is constructed from the mean of the probability
distribution. This affine connection is called α-connection, and conjugate relative
to the Fisher metric is the so called (−α)-connection, where α is a real number. The
0-connection is the Levi-Civita connection with respect to the Fisher metric. Also,
O. E. Barndorff-Nielsen and P. E. Jupp ([4]) studied a Riemannian submersion
from the viewpoint of statistics. In [15], we studied the statistical submersion of
the space of the multivariate normal distribution.

In this paper, we study a statistical submersion. In §2, we introduce statistical
manifolds with almost complex structure (resp. almost contact metric manifold),
and define a Kähler-like (resp. Sasaki-like) statistical manifold. In §3, we describe
a semi-Riemannian submersion with affine connection and define a statistical sub-
mersion. We consider a Sasaki-like statistical submersion in §4. In §5, we discuss
Sasaki-like statistical submersions such that the curvature tensor of the total space
satisfies the type (2.12) with c and show results similar to Theorem A.

It is a great pleasure to thank the Department of Mathematics, Technische Univer-
sität Berlin, for the hospitality during a visit in June 2003, and Professor U. Simon
for comments and suggestions.

2 Statistical manifolds with certain structures

An n-dimensional semi-Riemannian manifold is a smooth manifold Mn equipped
with a metric tensor g, where g is a symmetric nondegenerate tensor field on M
of constant index. The common value ν of index g on M is called the index of
M (0 ≤ ν ≤ n) and we denote a semi-Riemannian manifold by Mn

ν . If ν = 0,
then M is a Riemannian manifold. For each p ∈ M , a tangent vector E in M is
spacelike (resp. null, timelike) if g(E,E) > 0 or E = 0, (resp. g(E,E) = 0 and
E ̸= 0, g(E,E) < 0). Let Rn

ν be an n-dimensional real vector space with an inner
product of signature (ν, n− ν) given by

⟨x, x⟩ = −
ν∑

i=1

x2
i +

n∑
i=ν+1

x2
i ,

where x = (x1, . . . , xn) is the natural coordinate ofR
n
ν .R

n
ν is called an n-dimensional

semi-Euclidean space.
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Let M be a semi-Riemannian manifold. Denote a torsion-free affine connection by
∇. The triple (M,∇, g) is called a statistical manifold if ∇g is symmetric. For the
statistical manifold (M,∇, g), we define another affine connection ∇∗ by

Eg(F,G) = g(∇EF,G) + g(F,∇∗
EG)(2.1)

for vector fields E,F and G on M . The affine connection ∇∗ is called conjugate
(or dual) to ∇ with respect to g. The affine connection ∇∗ is torsion-free, ∇∗g
is symmetric and satisfies (∇∗)∗ = ∇. Clearly, the triple (M,∇∗, g) is statistical.
We denote by R and R∗ the curvature tensors on M with respect to the affine
connection ∇ and its conjugate ∇∗, respectively. Then we find

g(R(E,F )G,H) = −g(G,R∗(E,F )H)

for vector fields E,F,G and H on M , where R(E,F )G = [∇E ,∇F ]G−∇[E,F ]G.

An almost complex structure on a manifold M is a tensor field ϕ of type (1,1)
such that ϕ2 = −I, where I stands for the identity transformation. An almost
complex manifold is such a manifold with a fixed almost complex structure. An
almost complex manifold is necessarily orientable and must have even dimension.
We consider the semi-Riemannian manifold on the almost complex manifold M . If
ϕ preserves the metric g, that is,

g(ϕE, ϕF ) = g(E,F )(2.2)

for vector fields E and F on M , then (M, g, ϕ) is an almost Hermitian manifold.
Now, we consider the semi-Riemannian manifold (M, g) with the almost complex
structure ϕ which has another tensor field ϕ∗ of type (1,1) satisfying

g(ϕE,F ) + g(E, ϕ∗F ) = 0(2.3)

for vector fields E and F . Then (M, g, ϕ) is called an almost Hermite-like manifold.
We see that (ϕ∗)∗ = ϕ, (ϕ∗)2 = −I and g(ϕE, ϕ∗F ) = g(E,F ). According to
ϕ2 = −I, the tensor field ϕ is not symmetric relative to g. Thus ϕ + ϕ∗ does
not vanish everywhere. The tensor field ϕ − ϕ∗ is symmetric and ϕ + ϕ∗ is skew
symmetric with respect to g. We consider the statistical manifold on the almost
Hermite-like manifold. If ϕ is parallel with respect to ∇, then (M,∇, g, ϕ) is called
a Kähler-like statistical manifold. Also, we find R(E,F )ϕ = ϕR(E,F ). By virtue
of (2.3), we get

g((∇Gϕ)E,F ) + g(E, (∇∗
Gϕ

∗)F ) = 0(2.4)

for vector fields E,F and G on M . Hence (M,∇, g, ϕ) is a Kähler-like statistical
manifold if and only if so is (M,∇∗, g, ϕ∗).
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For vector fields E,F and G on the Kähler-like statistical manifold, we consider
the curvature tensor R with respect to ∇ such that

R(E,F )G =
c

4
[g(F,G)E − g(E,G)F − g(F, ϕG)ϕE + g(E, ϕG)ϕF(2.5)

+{g(E, ϕF )− g(ϕE,F )}ϕG],

where c is a constant. Changing ϕ for ϕ∗ in (2.5), we get the curvature tensor R∗.

Remark 2.1. If M is a Kählerian manifold, then M , satisfying (2.5), is a space of
constant holomorphic sectional curvature c.

Example 2.1. Let R2n
n be a 2n-dimensional semi-Euclidean space with a local co-

ordinate system (x1, . . . , xn, y1, . . . , yn) which admits the following almost complex
structure ϕ, the metric g

ϕ =

(
0 δij

−δij 0

)
, g =

(
2δij 0
0 −δij

)
and the flat affine connection ∇. It is easy to see that (R2n

n ,∇, g, ϕ) is a Kähler-like
statistical manifold. The conjugate is flat and

ϕ∗ =
1

2

(
0 −δij

4δij 0

)
.

Next, let M be an odd dimensional manifold and ϕ, ξ, η be a tensor field of type
(1,1), a vector field, a 1-form on M respectively. If ϕ, ξ and η satisfy the following
conditions

η(ξ) = 1, ϕ2E = −E + η(E)ξ(2.6)

for arbitrary vector field E onM , thenM is said to have an almost contact structure
(ϕ, ξ, η) and is called an almost contact manifold.

The semi-Riemannian manifold (M, g) is called an almost contact metric manifold
if

g(ϕE, ϕF ) = g(E,F )− η(E)η(F )(2.7)

for vector fields E and F on M . We consider the semi-Riemannian manifold (M, g)
with the almost contact structure (ϕ, ξ, η) which has an another tensor field ϕ∗ of
type (1,1) satisfying

g(ϕE,F ) + g(E, ϕ∗F ) = 0(2.8)

for vector fields E and F . Then (M, g, ϕ, ξ, η) is called an almost contact metric
manifold of certain kind. Obviously, we find (ϕ∗)2E = −E + η(E)ξ and

g(ϕE, ϕ∗F ) = g(E,F )− η(E)η(F ).(2.9)
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Because of (2.6), the tensor field ϕ is not symmetric with respect to g. This means
that ϕ+ ϕ∗ does not vanish everywhere. Equations ϕξ = 0 and η(ϕE) = 0 hold on
the almost contact manifold. We obtain ϕ∗ξ = 0 and η(ϕ∗E) = 0 on the almost
contact metric manifold of certain kind.

Now, we consider the statistical manifold on the almost contact metric manifold of
certain kind. If

∇Eξ = −ϕE, (∇Eϕ)F = g(E,F )ξ − η(F )E,(2.10)

then (M,∇, g, ϕ, ξ, η) is called a Sasaki-like statistical manifold. From η(ξ) = 1,
we find η(∇∗

Eξ) = 0. Operating ∇E to η(ϕF ) = 0, we get g(E,F ) − η(E)η(F ) +
g(ϕF,∇∗

Eξ) = 0. Moreover, changing F to ϕF , we see ∇∗
Eξ = −ϕ∗E. Hence we

have

Lemma 2.1. The pair (M, g, ϕ, ξ, η) is an almost contact metric manifold of certain
kind if and only if so is (M, g, ϕ∗, ξ, η). Moreover, (M,∇, g, ϕ, ξ, η) is a Sasaki-like
statistical manifold if and only if so is (M,∇∗, g, ϕ∗, ξ, η).

On the Sasaki-like statistical manifold, we get

R(E,F )ϕG− ϕR(E,F )G(2.11)

= −g(F,G)ϕE + g(E,G)ϕF + g(F, ϕG)E − g(E, ϕG)F

for vector fields E,F,G. We consider the curvature tensor R with respect to ∇ such
that

R(E,F )G =
1

4
(c+ 3){g(F,G)E − g(E,G)F}(2.12)

+
1

4
(c− 1)[η(E)η(G)F − η(F )η(G)E + g(E,G)η(F )ξ

−g(F,G)η(E)ξ − g(F, ϕG)ϕE + g(E, ϕG)ϕF

+{g(E, ϕF )− g(ϕE,F )}ϕG],

where c is a constant. Changing ϕ for ϕ∗ in (2.12), we get the curvature tensor R∗.

Remark 2.2. If M is a Sasakian manifold, then M satisfying (2.12) is a space of
constant ϕ-holomorphic sectional curvature c.

A Killing vector field on a statistical manifold is a vector field E for which the
Lie derivative of the metric tensor vanishes, that is, LEg = 0, where L is the Lie
derivative. Then we have

Proposition 2.1. Let (M,∇, g) be a statistical manifold. Then the following con-
ditions on a vector field E are equivalent:

(1) E is Killing, that is, LEg = 0,
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(2) Eg(F,G) = g([E,F ], G) + g(F, [E,G]) for vector fields F,G on M ,

(3) g(∇FE,G) + g(F,∇∗
GE) = 0 for vector fields F and G on M .

Hence, we have

Lemma 2.2. The structure vector field ξ is Killing on the Sasaki-like statistical
manifold.

Next, we give an example of a Sasaki-like statistical manifold such that the curva-
ture tensor with respect to the affine connection satisfies the equation (2.12).

Example 2.2. Let R2m+1
m be a (2m+1)-dimensional affine space with the standard

coordinate (x1, . . . , xm, y1, . . . , ym, z). We define a semi-Riemannian metric g on
R2m+1

m by

g =

 2δij + yiyj 0 −yi
0 −δij 0

−yj 0 1

 .

We define the affine connection ∇ by

∇∂xi
∂xj = −yj ∂yi − yi ∂yj ,

∇∂xi
∂yj = ∇∂yj

∂xi = yi ∂xj + (yiyj − 2δij)∂z,

∇∂xi
∂z = ∇∂z∂xi = ∂yi ,

∇∂yi
∂z = ∇∂z∂yi = −∂xi − yi ∂z,

∇∂yi
∂yj = ∇∂z∂z = 0,

where ∂xi = ∂/∂xi, ∂yi = ∂/∂yi and ∂z = ∂/∂z. Then its conjugate ∇∗ is given as
follows:

∇∗
∂xi

∂xj = 2yj ∂yi + 2yi ∂yj ,

∇∗
∂xi

∂yj = ∇∗
∂yj

∂xi = − yi
2

∂xj −
1

2
(yiyj − 2δij)∂z,

∇∗
∂xi

∂z = ∇∗
∂z
∂xi = −2 ∂yi ,

∇∗
∂yi

∂z = ∇∗
∂z
∂yi =

1

2
∂xi +

yi
2

∂z,

∇∗
∂yi

∂yj
= ∇∗

∂z
∂z = 0.

Now we define ϕ, ξ and η by

ϕ =

 0 δij 0
−δij 0 0
0 yj 0

 , ξ = ∂z =


0
...
0
1


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and η = (−y1, 0,−y2, 0, . . . ,−ym, 0, 1). Then we can verify that (R2m+1
m ,∇, g, ϕ, ξ, η)

is a Sasaki-like statistical manifold such that the curvature tensor ofR2m+1
m satisfies

the type (2.12) with c = −3. Also we find

ϕ∗ =
1

2

 0 −δij 0
4δij 0 0
0 −yj 0

 .

This manifold is not Sasakian with respect to the Levi-Civita connection.

3 Statistical submersions

Let π : M → B be a semi-Riemannian submersion. We put dimM = m and
dimB = n. For each point x ∈ B, the semi-Riemannian submanifold π−1(x) with
the induced metric g is called a fiber and denoted by Mx or M simply. We notice
that the dimension of each fiber is alwaysm−n(= s). A vector field on M is vertical
if it is always tangent to fibers, horizontal if always orthogonal to fibers. We denote
the vertical and horizontal subspace in the tangent space TpM of the total space
M by Vp(M) and Hp(M) for each point p ∈ M , and the vertical and horizontal
distributions in the tangent bundle TM of M by V(M) and H(M), respectively.
Then TM is the direct sum of V(M) and H(M). The projection mappings are
denoted V : TM → V(M) andH : TM → H(M), respectively. We call a vector field
X onM projectable if there exists a vector fieldX∗ on B such that π∗(Xp) = X∗π(p)
for each p ∈ M , and say that X and X∗ are π-related. Also, a vector field X on M
is called basic if it is projectable and horizontal. Then we have ([11], [12])

Lemma B. If X and Y are basic vector fields on M which are π-related to X∗ and
Y∗ on B, then

(1) g(X,Y ) = gB(X∗, Y∗) ◦ π, where g is the metric on M and gB the metric on
B,

(2) H[X,Y ] is basic and is π-related to [X∗, Y∗].

Let (M,∇, g) be a statistical manifold and π : M → B be a semi-Riemannian

submersion. We denote the affine connections of M by ∇ and ∇∗
. Notice that ∇UV

and ∇∗
UV are well-defined vertical vector fields on M for vertical vector fields U

and V on M , more precisely ∇UV = V∇UV and ∇∗
UV = V∇∗

UV . Moreover, ∇
and ∇∗

are torsion-free and conjugate to each other with respect to g. We put
S = ∇ − ∇∗. Then S is symmetric, that is, SEF = SFE for vector fields E and
F on M . Let ∇̂ be an affine connection on B. We call π : (M,∇, g) → (B, ∇̂, gB)

is a statistical submersion if π : M → B satisfies π∗(∇XY )p = (∇̂X∗Y∗)π(p) for
basic vector fileds X,Y and p ∈ M . The letters U, V,W will always denote vertical
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vector fields, and X,Y, Z horizontal vector fields. The tensor fields T and A of type
(1,2) defined by

TEF = H∇VEVF + V∇VEHF, AEF = H∇HEVF + V∇HEHF

for vector fields E and F onM . Changing∇ for∇∗ in the above equations, we define
T ∗ and A∗, respectively. Then we find T ∗∗ = T and A∗∗ = A. For vertical vector
fields, T and T ∗ have the symmetry property. For X,Y ∈ H(M) and U, V ∈ V(M),
we obtain

g(TUV,X) = −g(V, T ∗
UX), g(AXY,U) = −g(Y,A∗

XU).

Thus, T (resp. A) vanishes identically if and only if T ∗ (resp. A∗) vanishes identi-
cally. Since A is related to the integrability of H(M), A is symmetric for horizontal
vectors if and only if H(M) is integrable with respect to ∇. Moreover, if A and T
vanish identically, then the total space is a product space of the base space and the
fiber. It is known that ([1])

Theorem C. Let π : M → B be a semi-Riemannian submersion. Then (M,∇, g)
is a statistical manifold if and only if the following conditions hold:

(1) HSV X = AXV −A∗
XV for X ∈ H(M) and V ∈ V(M),

(2) VSXV = TV X − T ∗
V X for X ∈ H(M) and V ∈ V(M),

(3) (M,∇, g) is a statistical manifold for each x ∈ B,

(4) (B, ∇̂, gB) is a statistical manifold.

For the statistical submersion π : (M,∇, g) → (B, ∇̂, gB), we have the following
Lemmas ([14]).

Lemma D. If X and Y are horizontal vector fields, then AXY = −A∗
Y X.

Lemma E. For X,Y ∈ H(M) and U, V ∈ V(M) we have

∇UV = TUV +∇UV, ∇∗
UV = T ∗

UV +∇∗
UV,

∇UX = H∇UX + TUX, ∇∗
UX = H∇∗

UX + T ∗
UX,

∇XU = AXU + V∇XU, ∇∗
XU = A∗

XU + V∇∗
XU,

∇XY = H∇XY +AXY, ∇∗
XY = H∇∗

XY +A∗
XY.

Furthermore, if X is basic, then H∇UX = AXU and H∇∗
UX = A∗

XU .

We define the covariant derivatives ∇T and ∇A by

(∇ET )FV = ∇E(TFV )− T∇EFV − TF (∇EV ),

(∇EA)FY = ∇E(AFY )−A∇EFY −AF (∇EY )
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for E,F ∈ TM , Y ∈ H(M) and V ∈ V(M). We change ∇ to ∇∗, then the covariant
derivatives ∇∗T,∇∗A are defined similarly. We consider the curvature tensor on
the statistical submersion. Let R (resp. R

∗
) be the curvature tensor with respect to

the induced affine connection ∇ (resp. ∇∗
) of each fiber. Also, let R̂(X,Y )Z (resp.

R̂∗(X,Y )Z) be horizontal vector field such that π∗(R̂(X,Y )Z) = R̂(π∗X,π∗Y )π∗Z

(resp. π∗(R̂
∗(X,Y )Z) = R̂∗(π∗X,π∗Y )π∗Z) at each p ∈ M , where R̂ (resp. R̂∗)

is the curvature tensor on B of the affine connection ∇̂ (resp. ∇̂∗). Then we have
([14])

Theorem F. If π : (M,∇, g) → (B, ∇̂, gB) is a statistical submersion, then we
obtain for X,Y, Z, Z ′ ∈ H(M) and U, V,W,W ′ ∈ V(M)

g(R(U, V )W,W ′) = g(R(U, V )W,W ′) + g(TUW,T ∗
V W

′)− g(TV W,T ∗
UW

′),

g(R(U, V )W,X) = g((∇UT )V W,X)− g((∇V T )UW,X),

g(R(U, V )X,W ) = g((∇UT )V X,W )− g((∇V T )UX,W ),

g(R(U, V )X,Y ) = g((∇UA)XV, Y )− g((∇V A)XU, Y ) + g(TUX,T ∗
V Y )

−g(TV X,T ∗
UY )− g(AXU,A∗

Y V ) + g(AXV,A∗
Y U),

g(R(X,U)V,W ) = g([V∇X ,∇U ]V,W )− g(∇[X,U ]V,W )− g(TUV,A
∗
XW )

+g(T ∗
UW,AXV ),

g(R(X,U)V, Y ) = g((∇XT )UV, Y )− g((∇UA)XV, Y ) + g(AXU,A∗
Y V )

−g(TUX,T ∗
V Y ),

g(R(X,U)Y, V ) = g((∇XT )UY, V )− g((∇UA)XY, V ) + g(TUX,TV Y )

−g(AXU,AY V ),

g(R(X,U)Y, Z) = g((∇XA)Y U,Z)− g(TUX,A∗
Y Z)− g(TUY,A

∗
XZ)

+g(AXY, T ∗
UZ),

g(R(X,Y )U, V ) = g((∇XT )UY, V )− g((∇Y T )UX,V )− g((∇Uθ)XY, V )

+g(TUX,TV Y )− g(TV X,TUY )− g(AXU,AY V )

+g(AXV,AY U),

g(R(X,Y )U,Z) = g((∇XA)Y U,Z)− g((∇Y A)XU,Z) + g(T ∗
UZ, θXY ),

g(R(X,Y )Z,U) = g((∇XA)Y Z,U)− g((∇Y A)XZ,U)− g(TUZ, θXY ),

g(R(X,Y )Z,Z ′) = g(R̂(X,Y )Z,Z ′)− g(AY Z,A
∗
XZ ′) + g(AXZ,A∗

Y Z
′)

+g(θXY,A∗
ZZ

′),

where we put θX = AX +A∗
X .
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For each p ∈ M , we denote by {E1, . . . , Em}, {X1, . . . , Xn} and {U1, . . . , Us} local
orthonormal basis of TpM , Hp(M) and Vp(M), respectively such that Ei = Xi (i =
1, . . . , n) and En+α = Uα (α = 1, . . . , s). Denote respectively by ωb

a and ω∗
a
b the

connection forms in terms of local coordinates with respect to {E1, . . . , Em} of the
affine connection ∇ and its conjugate ∇∗, where a, b run over the range {1, . . . ,m}.
Set εa = g(Ea, Ea) = +1 or−1 according as Ea is spacelike or timelike, respectively.
Owing to equation (2.1), we have

ω∗
b
a = −εaεbω

b
a.(3.1)

We put

g(TX, TY ) =
s∑

α=1

εαg(TUαX,TUαY ),

g(TX, SE) =

s∑
α=1

εαg(TUαX,SUαE)

for X,Y ∈ H(M) and E ∈ TM . The mean curvature vector of the fiber with
respect to the affine connection ∇ is given by the horizontal vector field

N =
s∑

α=1

εαTUαUα.

Lemma 3.1. We have

s∑
α=1

εαg((∇ET )UαUα, X) = g(∇EN,X) + g(T ∗X,SE)

for X ∈ H(M) and E ∈ TM .

Proof. From (3.1), we get∑
εαg(∇EUα, T

∗
Uα

X) =
∑

εα ω β
α (E) g(Uβ , T

∗
Uα

X)

= −
∑

εβ ω
∗α
β (E) g(Uα, T

∗
Uβ

X)

= −
∑

εβg(∇∗
EUβ , T

∗
Uβ

X),

that is,

s∑
α=1

εαg(∇EUα, T
∗
Uα

X) = −
s∑

α=1

εαg(∇∗
EUα, T

∗
Uα

X).(3.2)
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For U, V ∈ V(M), we find

(∇ET )UV = ∇E(TUV )− TV (V∇EU)− TU (V∇EV )− TU (H∇EV ).

Then we have from (3.2)∑
εαg((∇ET )UαUα, X)

=
∑

εαg(∇E(TUαUα), X)− 2
∑

εαg(TUα(V∇EUα), X)

= g(∇EN,X) + 2
∑

εαg(∇EUα, T
∗
Uα

X)

= g(∇EN,X) +
∑

εαg(∇EUα, T
∗
Uα

X)−
∑

εαg(∇∗
EUα, T

∗
Uα

X)

= g(∇EN,X) +
∑

εαg(T
∗
Uα

X,SEUα)

= g(∇EN,X) + g(T ∗X,SE).

4 Sasaki-like statistical submersions

If π : M → B is a semi-Riemannian submersion such that (M, g, ϕ, ξ, η) is an almost
contact metric manifold of certain kind, each fiber is a ϕ-invariant semi-Riemannian
submanifold ofM and tangent to the vector ξ, then π is said to be an almost contact
metric submersion of certain kind. The horizontal and vertical distributions are ϕ-
invariant if and only if are ϕ∗-invariant. If X is basic on M which is π-related to X∗
on B, then ϕX (resp. ϕ∗X) is basic and π-related to ϕ̂X∗ (resp. ϕ̂∗X∗), where ϕ̂ and

ϕ̂∗ are tensor fields of type (1,1) such that gB(ϕ̂X∗, Y∗) + gB(X∗, ϕ̂
∗Y∗) = 0 with

respect to the metric gB on B. We say that a statistical submersion π : (M,∇, g) →
(B, ∇̂, gB) is a Sasaki-like statistical submersion if (M,∇, g, ϕ, ξ, η) is a Sasaki-like
statistical manifold, each fiber is a ϕ-invariant semi-Riemannian submanifold of M
and tangent to the vector ξ. Then we have

Theorem 4.1. Let π : M → B be an almost contact metric submersion of certain
kind. Then the base space is an almost Hermite-like manifold and each fiber is an
almost contact metric manifold of certain kind.

Also, it is clear from (2.10) that the following Lemmas hold.

Lemma 4.1. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical submersion.
Then we have for X ∈ H(M) and U ∈ V(M)

AXξ = −ϕX,

V∇Xξ = 0,

TUξ = 0,

∇Uξ = −ϕU.
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Lemma 4.2. If π : (M,∇, g) → (B, ∇̂, gB) is a Sasaki-like statistical submersion,
then we have for X,Y ∈ H(M) and U, V ∈ V(M)

(H∇Xϕ)Y = 0,

AX(ϕY )− ϕ(AXY ) = g(X,Y )ξ,

AX(ϕU)− ϕ(AXU) = −η(U)X,

(V∇Xϕ)U = 0,

AϕXU = ϕ(AXU),

TU (ϕX) = ϕ(TUX),

TU (ϕV ) = ϕ(TUV ),

(∇Uϕ)V = g(U, V )ξ − η(V )U.

Lemma 4.3. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical submersion.
If dimM = 1, then we have AXY = −g(X,ϕY )ξ.

Moreover, we have

Theorem 4.2. If π : (M,∇, g) → (B, ∇̂, gB) is a Sasaki-like statistical submersion,

then the base space (B, ∇̂, gB , ϕ̂) is a Kähler-like statistical manifold and each fiber
(M,∇, g, ϕ, ξ, η) is a Sasaki-like statistical manifold.

By virtue of Lemmas E and 4.2, we get

(ϕ+ ϕ
∗
)AXY = 0

for X,Y ∈ H(M). Thus we have

Theorem 4.3. Let π : (M,∇, g) → (B, ∇̂, gB) is a Sasaki-like statistical sub-

mersion. If rank (ϕ + ϕ
∗
) = dimM − 1, then we have AXY = −g(X,ϕY )ξ for

X,Y ∈ H(M).

Corollary 4.1. Let π : (M,∇, g) → (B, ∇̂, gB) is a Sasaki-like statistical sub-

mersion. If ϕ = ϕ
∗
, then we have AXY = −g(X,ϕY )ξ for X,Y ∈ H(M).

Remark. If π : M → B is a Sasakian submersion, then AXY = −g(X,ϕY )ξ holds
([7], [8]).

5 Sasaki-like statistical submersions satisfying the
certain condition

Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical submersion. We assume
that the curvature tensor of (M,∇, g, ϕ, ξ, η) satisfies the type (2.12) with c, that
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is, for E,F,G,G′ ∈ TM

g(R(E,F )G,G′)

=
1

4
(c+ 3){g(F,G)g(E,G′)− g(E,G)g(F,G′)}

+
1

4
(c− 1)[η(E)η(G)g(F,G′)− η(F )η(G)g(E,G′) + g(E,G)η(F )η(G′)

−g(F,G)η(E)η(G′)− g(F, ϕG)g(ϕE,G′) + g(E, ϕG)g(ϕF,G′)

+{g(E, ϕF )− g(ϕE,F )}g(ϕG,G′)],

where c is a constant. Then we see from Theorem F

g(R(U, V )W,W ′) + g(TUW,T ∗
V W

′)− g(TV W,T ∗
UW

′)(5.1)

=
1

4
(c+ 3){g(V,W )g(U,W ′)− g(U,W )g(V,W ′)}

+
1

4
(c− 1)[η(U)η(W )g(V,W ′)− η(V )η(W )g(U,W ′)

+g(U,W )η(V )η(W ′)− g(V,W )η(U)η(W ′)

−g(V, ϕW )g(ϕU,W ′) + g(U, ϕW )g(ϕV,W ′)

+{g(U, ϕV )− g(ϕU, V )}g(ϕW,W ′)],

g((∇UT )V W,X)− g((∇V T )UW,X) = 0,(5.2)

g((∇UT )V X,W )− g((∇V T )UX,W ) = 0,(5.3)

g((∇UA)XV, Y )− g((∇V A)XU, Y ) + g(TUX,T ∗
V Y )(5.4)

−g(TV X,T ∗
UY )− g(AXU,A∗

Y V ) + g(AXV,A∗
Y U)

=
1

4
(c− 1){g(U, ϕV )− g(ϕU, V )}g(ϕX, Y ),

g([V∇X ,∇U ]V,W )− g(∇[X,U ]V,W )− g(TUV,A
∗
XW )(5.5)

+g(T ∗
UW,AXV ) = 0,

g((∇XT )UV, Y )− g((∇UA)XV, Y ) + g(AXU,A∗
Y V )− g(TUX,T ∗

V Y )(5.6)

=
1

4
(c+ 3)g(U, V )g(X,Y )

− 1

4
(c− 1){η(U)η(V )g(X,Y ) + g(U, ϕV )g(ϕX, Y )},

g((∇XT )UY, V )− g((∇UA)XY, V ) + g(TUX,TV Y )− g(AXU,AY V )(5.7)

= − 1

4
(c+ 3)g(X,Y )g(U, V )

+
1

4
(c− 1){g(X,Y )η(U)η(V ) + g(X,ϕY )g(ϕU, V )},
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g((∇XA)Y U,Z)− g(TUX,A∗
Y Z)− g(TUY,A

∗
XZ) + g(AXY, T ∗

UZ) = 0,(5.8)

g((∇XT )UY, V )− g((∇Y T )UX,V )− g((∇Uθ)XY, V ) + g(TUX,TV Y )(5.9)

−g(TV X,TUY )− g(AXU,AY V ) + g(AY U,AXV )

=
1

4
(c− 1){g(X,ϕY )− g(ϕX, Y )}g(ϕU, V ),

g((∇XA)Y U,Z)− g((∇Y A)XU,Z) + g(T ∗
UZ, θXY ) = 0,(5.10)

g((∇XA)Y Z,U)− g((∇Y A)XZ,U)− g(TUZ, θXY ) = 0,(5.11)

g(R̂(X,Y )Z,Z ′)− g(AY Z,A
∗
XZ ′) + g(AXZ,A∗

Y Z
′) + g(θXY,A∗

ZZ
′)(5.12)

=
1

4
(c+ 3){g(Y,Z)g(X,Z ′)− g(X,Z)g(Y,Z ′)}

+
1

4
(c− 1)[−g(Y, ϕZ)g(ϕX,Z ′) + g(X,ϕZ)g(ϕY,Z ′)

+{g(X,ϕY )− g(ϕX, Y )}g(ϕZ,Z ′)]

for U, V,W,W ′ ∈ V(M) and X,Y, Z, Z ′ ∈ H(M). We have from Lemma 4.3, Theo-
rem 4.3 and (5.12)

Theorem 5.1. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical submer-

sion. If rank (ϕ + ϕ
∗
) = dimM − 1 and the curvature tensor of the total space

satisfies the type (2.12) with c, then the curvature tensor of the base space satisfies
the type (2.5) with c+ 3.

Corollary 5.1. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical sub-
mersion. If dimM = 1 and the curvature tensor of the total space satisfies the type
(2.12) with c, then the curvature tensor of the base space satisfies the type (2.5)
with c+ 3.

By virtue of and Lemma 4.1 and Theorem 4.3, equation (5.6) can be rewritten as
follows:

g((∇XT )UV, Y )− g(TUX,T ∗
V Y )

=
1

4
(c+ 3)[g(X,Y ){g(U, V )− η(U)η(V )} − g(ϕX, Y )g(U, ϕV )]

which implies from Lemma 3.1 that

g(∇XN,Y )− g(T ∗X,T ∗Y ) =
1

4
(c+ 3){(s− 1)g(X,Y )− (trϕ)g(ϕX, Y )}.

If H∇XN = 0, then we obtain c+ 3 = 0 or trϕ = 0. Therefore we have

Theorem 5.2. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical submer-
sion such that the curvature tensor of the total space satisfies the type (2.12) with

c. We assume that rank (ϕ + ϕ
∗
) = dimM − 1 and H∇XN = 0 for X ∈ H(M).

Then
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(1) if c + 3 = 0, then the base space is flat and each fiber is a totally geodesic
submanifold of M such that the curvature tensor satisfies the type (2.12) with
−3,

(2) in the case of trϕ = 0 and s > 1,

(i) if g is positive definite, then c+ 3 ≤ 0,

(ii) c + 3 < 0 and X is spacelike (resp. timelike) or c + 3 > 0 and X is
timelike (resp. spacelike) if and only if T ∗X is spacelike (resp. timelike),

(iii) the horizontal vector X is null if and only if T ∗X is null.

Corollary 5.2. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical sub-
mersion such that the curvature tensor of the total space satisfies the type (2.12)

with c. If rank (ϕ + ϕ
∗
) = dimM − 1 and N is constant, then results similar to

Theorem 5.2 hold.

Also, it is easy to see from (5.7) that

g((∇∗
XT ∗)UV, Y )− g(T ∗

UX,TV Y )

=
1

4
(c+ 3)[g(X,Y ){g(U, V )− η(U)η(V )} − g(X,ϕY )g(ϕU, V )].

Thus by virtue of Lemma 3.1, we get

g(∇∗
XN∗, Y )− g(TX, TY ) =

1

4
(c+ 3){(s− 1)g(X,Y )− (trϕ)g(X,ϕY )}.

If H∇∗
XN∗ = 0, then we find c+ 3 = 0 or trϕ = 0. Hence we have

Theorem 5.3. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical submer-
sion such that the curvature tensor of the total space satisfies the type (2.12) with

c. We assume that rank (ϕ + ϕ
∗
) = dimM − 1 and H∇∗

XN∗ = 0 for X ∈ H(M).
Then

(1) if c + 3 = 0, then the base space is flat and each fiber is a totally geodesic
submanifold of M such that the curvature tensor satisfies the type (2.12) with
−3,

(2) in the case of trϕ = 0 and s > 1,

(i) if g is positive definite, then c+ 3 ≤ 0,

(ii) c + 3 < 0 and X is spacelike (resp. timelike) or c + 3 > 0 and X is
timelike (resp. spacelike) if and only if TX is spacelike (resp. timelike),

(iii) the horizontal vector X is null if and only if TX is null.



16 Kazuhiko Takano

Corollary 5.3. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical sub-
mersion that the curvature tensor of the total space satisfies the type (2.12) with c.

If rank (ϕ+ ϕ
∗
) = dimM − 1 and N∗ is constant, then results similar to Theorem

5.3 hold.

Next, we consider π as a statistical submersion with conformal fibers. For U and
V ∈ V(M) if TUV = 0 (resp. TUV = 1

s g(U, V )N) holds, then π is called a statistical
submersion with isometric fibers (resp. conformal fibers). Then we can get from
TUξ = 0 of Lemma 4.1

Lemma 5.1. If π : (M,∇, g) → (B, ∇̂, gB) is a Sasaki-like statistical submersion
with conformal fibers, then π has isometric fibers.

Theorem 5.4. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical submer-
sion with conformal fibers such that the curvature tensor of the total space satisfies
the type (2.12) with c. Then each fiber is a totally geodesic submanifold of M such
that the curvature tensor satisfies the type (2.12) with c.

Furthermore, we find from (5.6)

Theorem 5.5. Let π : (M,∇, g) → (B, ∇̂, gB) be a Sasaki-like statistical submer-
sion with conformal fibers such that the curvature tensor of the total space satisfies
the type (2.12) with c. If rank (ϕ+ ϕ

∗
) = dimM − 1, then

(1) the total space satisfies the type (2.12) with c = −3,

(2) the base space is flat,

(3) each fiber satisfies the type (2.12) with −3.

Finally, we give an example of a Sasaki-like statistical submersion such that the
curvature tensor satisfies the type (2.12).

Example. Let (R2n
n , ∇̂, ĝ, ϕ̂) and (R2m+1

m ,∇, g, ϕ, ξ, η) be a Kähler-like statistical
manifold in Example 2.1 and Sasaki-like statistical manifold in Example 2.2, re-
spectively. We define the statistical submersion π : (R2m+1

m ,∇, g) → (R2n
n , ∇̂, ĝ)

by

π(x1, . . . , xm, y1, . . . , ym, z) = (x1, . . . , xn, y1, . . . , yn) (n ≤ m).

Then π is a Sasaki-like statistical submersion such that the curvature tensor of
R2m+1

m satisfies the type (2.12) with c = −3. Each fiber is a totally geodesic sub-
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manifold of R2m+1
m . Because of ∂xi

+ yi∂z, ∂yi
∈ H(R2m+1

m ), we find

A∂xi
+yi∂z (∂xj + yj∂z) = −A∗

∂xj
+yj∂z

(∂xi + yi∂z) = 0,

A∂xi
+yi∂z∂yj = −A∗

∂yj
(∂xi + yi∂z) = −2δij ∂z,

A∂yj
(∂xi + yi∂z) = −A∗

∂xi
+yi∂z

∂yj = −δij ∂z,

A∂yi
∂yj = −A∗

∂yj
∂yi = 0

for i, j ∈ {1, . . . , n}. Hence we find AXY = −g(X,ϕY )ξ for X,Y ∈ H(R2m+1
m ).
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