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connection of the total space satisfies the condition (2.12).

KEY WORDS: affine connection, conjugate connection, statistical manifold, sta-
tistical submersion, semi-Riemannian manifold, semi-Riemannian submersion.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 53C25, 53C50, 53A15.

1 Introduction

Let M and B be two Riemannian manifolds of class C*°. A Riemannian submersion
m: M — B is a mapping of M onto B such that 7 has maximal rank and .,
preserves lengths of horizontal vectors ([5], [6], [11], [17]). If # : M — B is a
Riemannian submersion such that M is a Sasakian manifold with almost contact
structure (¢, £, 7n), each fiber is a ¢-invariant submanifold of M and tangent to the
vector &, then 7 is said to be a Sasakian submersion ([7], [8], [13], [16]). If 7 is a
Sasakian submersion, then B is K&hlerian and each fiber is Sasakian. B. H. Kim (([8])
and the author ([13]) investigated a Sasakian submersion with vanishing contact
Bochner curvature tensor. It is known that ([7], [13])

THEOREM A. Let m: M — B be a Sasakian submersion. If M is a space of constant
@-holomorphic sectional curvature ¢, then B is of constant holomorphic sectional
curvature ¢ + 3 (< 0).

Next, let M and B be two semi-Riemannian manifolds. A semi-Riemannian sub-
mersion 7 : M — B is a submersion such that all fibers are semi-Riemannian
submanifolds of M, and 7, preserves lengths of horizontal vectors ([12]). Recently,
N. Abe and K. Hasegawa ([1]) studied an affine submersion with horizontal dis-
tribution. They investigated when the total space is the statistical manifold. Also,
the author ([14]) studied statistical manifolds with almost complex structure and
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its statistical submersions.

Let M be a manifold with a non-degenerate metric g and a torsion-free affine
connection V. If Vg is symmetric, then (M,V,g) is called a statistical manifold.
In [9], M. Noguchi studied statistical manifolds. On the statistical manifold, we
define another connection, called the conjugate (or dual) connection ([3], [10]).
This concept was widely studied in information geometry ([2], [3]). The statistical
models in information geometry have a Fisher metric as Riemannian metric, and
admit an affine connection which is constructed from the mean of the probability
distribution. This affine connection is called a-connection, and conjugate relative
to the Fisher metric is the so called (—«)-connection, where « is a real number. The
0-connection is the Levi-Civita connection with respect to the Fisher metric. Also,
O. E. Barndorff-Nielsen and P. E. Jupp ([4]) studied a Riemannian submersion
from the viewpoint of statistics. In [15], we studied the statistical submersion of
the space of the multivariate normal distribution.

In this paper, we study a statistical submersion. In §2, we introduce statistical
manifolds with almost complex structure (resp. almost contact metric manifold),
and define a Kéhler-like (resp. Sasaki-like) statistical manifold. In §3, we describe
a semi-Riemannian submersion with affine connection and define a statistical sub-
mersion. We consider a Sasaki-like statistical submersion in §4. In §5, we discuss
Sasaki-like statistical submersions such that the curvature tensor of the total space
satisfies the type (2.12) with ¢ and show results similar to Theorem A.

It is a great pleasure to thank the Department of Mathematics, Technische Univer-
sitét Berlin, for the hospitality during a visit in June 2003, and Professor U. Simon
for comments and suggestions.

2 Statistical manifolds with certain structures

An n-dimensional semi-Riemannian manifold is a smooth manifold M"™ equipped
with a metric tensor g, where g is a symmetric nondegenerate tensor field on M
of constant index. The common value v of index g on M is called the index of
M (0 < v < n) and we denote a semi-Riemannian manifold by M. If v = 0,
then M is a Riemannian manifold. For each p € M, a tangent vector E in M is
spacelike (resp. null, timelike) if g(E,E) > 0 or E = 0, (resp. g(E,E) = 0 and
E #0, g(E,E) <0). Let R} be an n-dimensional real vector space with an inner
product of signature (v,n — v) given by

v n
2 2
(wa)==> o+ 3 o,
i=1 i=v+1

where x = (1, ..., 2,) is the natural coordinate of R?. R” is called an n-dimensional
semi-Euclidean space.
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Let M be a semi-Riemannian manifold. Denote a torsion-free affine connection by
V. The triple (M, V, g) is called a statistical manifold if Vg is symmetric. For the
statistical manifold (M, V, g), we define another affine connection V* by

(2.1) Eg(F,G)=g(VgF,G) + g(F,V3G)

for vector fields F, F and G on M. The affine connection V* is called conjugate
(or dual) to V with respect to g. The affine connection V* is torsion-free, V*g
is symmetric and satisfies (V*)* = V. Clearly, the triple (M, V*,g) is statistical.
We denote by R and R* the curvature tensors on M with respect to the affine
connection V and its conjugate V*, respectively. Then we find

for vector fields E, F,G and H on M, where R(E,F)G = [Vg, V]G — Vg pG.

An almost complex structure on a manifold M is a tensor field ¢ of type (1,1)
such that ¢ = —I, where I stands for the identity transformation. An almost
complex manifold is such a manifold with a fixed almost complex structure. An
almost complex manifold is necessarily orientable and must have even dimension.
We consider the semi-Riemannian manifold on the almost complex manifold M. If
¢ preserves the metric g, that is,

(2.2) 9(PE, ¢F) = g(E, F)

for vector fields F and F on M, then (M, g, ¢) is an almost Hermitian manifold.
Now, we consider the semi-Riemannian manifold (M, g) with the almost complex
structure ¢ which has another tensor field ¢* of type (1,1) satisfying

(2.3) 9(PE, F) +g(E,¢"F) =0

for vector fields F and F. Then (M, g, ¢) is called an almost Hermite-like manifold.
We see that (¢*)* = ¢, (¢*)? = —I and g(¢E,¢*F) = g(E, F). According to
¢? = —I, the tensor field ¢ is not symmetric relative to ¢g. Thus ¢ + ¢* does
not vanish everywhere. The tensor field ¢ — ¢* is symmetric and ¢ + ¢* is skew
symmetric with respect to g. We consider the statistical manifold on the almost
Hermite-like manifold. If ¢ is parallel with respect to V, then (M, V, g, @) is called
a Kéhler-like statistical manifold. Also, we find R(E, F)¢ = ¢R(E, F). By virtue
of (2.3), we get

(2.4) 9(Va@)E, F) +g(E, (Vo™ ) F) =0

for vector fields E, F and G on M. Hence (M,V, g, ¢) is a Kahler-like statistical
manifold if and only if so is (M, V*, g, ¢*).
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For vector fields F/, F' and G on the Kéahler-like statistical manifold, we consider
the curvature tensor R with respect to V such that

c
(25)  R(E,F)G = _[g(F,G)E —g(E,G)F - g(F,¢G)¢E + g(E, ¢G)oF
where ¢ is a constant. Changing ¢ for ¢* in (2.5), we get the curvature tensor R*.

REMARK 2.1. If M is a Kéhlerian manifold, then M, satisfying (2.5), is a space of
constant holomorphic sectional curvature c.

EXAMPLE 2.1. Let R2" be a 2n-dimensional semi-Euclidean space with a local co-
ordinate system (x1,...,%n, Y1, - .-, Yn) which admits the following almost complex
structure ¢, the metric ¢

— 0 6ij _ 251‘3' 0
¢_<5ij 0)’ g_< 0 5ij>

and the flat affine connection V. It is easy to see that (R2",V, g, ¢) is a Kihler-like
statistical manifold. The conjugate is flat and

*_1 0 _5ij
i _2(4% 0 )

Next, let M be an odd dimensional manifold and ¢,&,n be a tensor field of type
(1,1), a vector field, a 1-form on M respectively. If ¢, £ and 7 satisfy the following
conditions

(2.6) n(€) =1, ¢°E = —E + n(E)¢

for arbitrary vector field E on M, then M is said to have an almost contact structure
(¢,€,7m) and is called an almost contact manifold.

The semi-Riemannian manifold (M, g) is called an almost contact metric manifold
if
(2.7) 9(OE, oF) = g(E, F) — n(E)n(F)

for vector fields E and F' on M. We consider the semi-Riemannian manifold (M, g)
with the almost contact structure (¢, &,n) which has an another tensor field ¢* of
type (1,1) satisfying

(2.8) 9(PE, F) +g(E,¢"F) =0

for vector fields E and F. Then (M, g,,&,n) is called an almost contact metric
manifold of certain kind. Obviously, we find (¢*)?E = —FE + n(E)¢ and

(2.9) 9(PE, " F) = g(E, F) = n(E)n(F).
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Because of (2.6), the tensor field ¢ is not symmetric with respect to g. This means
that ¢ + ¢* does not vanish everywhere. Equations ¢§ = 0 and n(¢E) = 0 hold on
the almost contact manifold. We obtain ¢*¢ = 0 and 7(¢*E) = 0 on the almost
contact metric manifold of certain kind.

Now, we consider the statistical manifold on the almost contact metric manifold of
certain kind. If

(2.10) Vit = —¢E, (VE®)F = g(E,F)§ —n(F)E,

then (M,V,g,0,£,m) is called a Sasaki-like statistical manifold. From 7(§) = 1,
we find n(V%€) = 0. Operating Vg to n(¢F) = 0, we get g(E, F) — n(E)n(F) +
g(¢F,Vi,€) = 0. Moreover, changing F' to ¢F, we see Vi,{ = —¢*E. Hence we
have

LEMMA 2.1. The pair (M, g, $,&,n) is an almost contact metric manifold of certain
kind if and only if so is (M, g, ¢*,&,m). Moreover, (M,V,g,¢,&,1n) is a Sasaki-like
statistical manifold if and only if so is (M,V*,g,¢*,&,n).

On the Sasaki-like statistical manifold, we get

(2.11) R(E,F)¢G — ¢R(E, F)G
= —g(F,G)oE + g(E,G)pF + g(F,¢G)E — g(E, ¢G)F

for vector fields E, F, G. We consider the curvature tensor R with respect to V such
that

k)

(212) R(E,F)G = —(c+3){g(F,G)E — g(E,G)F}
1

4
+—(c = D)[n(E)n(G)F —n(F)n(G)E + g(E, G)n(F)§

—9(F,G)n(E)¢ — g(F, 6G)PE + g(E, ¢G)pF
+Ho(E, ¢F) — g(0F, F) 1G],

=~ |

where c is a constant. Changing ¢ for ¢* in (2.12), we get the curvature tensor R*.

REMARK 2.2. If M is a Sasakian manifold, then M satisfying (2.12) is a space of
constant ¢-holomorphic sectional curvature c.

A Killing vector field on a statistical manifold is a vector field E for which the
Lie derivative of the metric tensor vanishes, that is, Lgg = 0, where L is the Lie
derivative. Then we have

PROPOSITION 2.1. Let (M, V,g) be a statistical manifold. Then the following con-
ditions on a vector field E are equivalent:

(1) E is Killing, that is, Lpg = 0,
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(2) Eg(F,G)=g([E,F),G)+ g(F,[E,G]) for vector fields F,G on M,
(3) g(VFE,G) + g(F,VEE) =0 for vector fields F' and G on M.

Hence, we have

LEMMA 2.2. The structure vector field £ is Killing on the Sasaki-like statistical
manifold.

Next, we give an example of a Sasaki-like statistical manifold such that the curva-
ture tensor with respect to the affine connection satisfies the equation (2.12).

EXAMPLE 2.2. Let R2™*! be a (2m+1)-dimensional affine space with the standard

coordinate (T1,...,Tm,Y1,---,Ym,2). We define a semi-Riemannian metric g on
R2m+1 by
m
200 tyiy; 00—y
g = 0 *(5“ 0
—Yj 0 1

We define the affine connection V by
Vaz,i aacj = —Y;j Oy, — Yi 8yj7
Vo, 0y, = Vo, Ov, = yi Ou; + (yiy; — 20i5) 0z,
Vo, 0. =V 0y, = 0y,
Vayi 0, =V, 0y, = =0z, — ;i 0z,
Vayi 8@;,- =V, 9, =0,

where 0,, = 0/0x;, 0y, = 0/0y; and 9, = 0/0z. Then its conjugate V* is given as
follows:

V5, Oa, = 2y; 9y, + 2510,
* * Yi 1
Vaw,-ayj = Vayj 811 = —7 ({)%. — E(ylyj — 26ij)6z7
V5, 0. = V35 0y, = =20y,
1 i
V5, 0. = V.0 = = O, + % a.,
V3, 9, = V5.0, = 0.

Now we define ¢, £ and n by

0

0 6, 0 .

¢ = _51] 0 0 5 g = az - :
0 y O 0



Statistical manifolds with almost contact structures 7

and n = (—y1,0, —¥2,0, ..., —Ym, 0, 1). Then we can verify that (R2"+1 V g, ¢,&,n)
is a Sasaki-like statistical manifold such that the curvature tensor of R2™*1 satisfies
the type (2.12) with ¢ = —3. Also we find

) 0 —6; 0
o'=5 | 40 0 0
0 —Yj 0

This manifold is not Sasakian with respect to the Levi-Civita connection.

3 Statistical submersions

Let 7 : M — B be a semi-Riemannian submersion. We put dim M = m and
dim B = n. For each point z € B, the semi-Riemannian submanifold 7—!(x) with
the induced metric g is called a fiber and denoted by M, or M simply. We notice
that the dimension of each fiber is always m—n(= s). A vector field on M is vertical
if it is always tangent to fibers, horizontal if always orthogonal to fibers. We denote
the vertical and horizontal subspace in the tangent space T, M of the total space
M by V,(M) and H,(M) for each point p € M, and the vertical and horizontal
distributions in the tangent bundle TM of M by V(M) and H(M), respectively.
Then T'M is the direct sum of V(M) and H(M). The projection mappings are
denoted V : TM — V(M) and H : TM — H(M), respectively. We call a vector field
X on M projectable if there exists a vector field X, on B such that m,.(X,) = Xor(p)
for each p € M, and say that X and X, are w-related. Also, a vector field X on M
is called basic if it is projectable and horizontal. Then we have ([11], [12])

LEMMA B. If X and Y are basic vector fields on M which are w-related to X, and
Y, on B, then

(1) 9(X,Y) = gp(X.,Yy) om, where g is the metric on M and gp the metric on

B
(2) H[X,Y] is basic and is w-related to [X., Y]

Let (M,V,g) be a statistical manifold and 7 : M — B be a semi-Riemannian
submersion. We denote the affine connections of M by V and V" Notice that Vi,V
and V,V are well-defined vertical vector fields on M for vertical vector fields U
and V on M, more precisely ViV = VWiV and V,V = VV5V. Moreover, V
and V' are torsion-free and conjugate to each other with respect to g. We put
S =V — V*. Then S is symmetric, that is, SgF' = SpFE for vector fields E and
F on M. Let V be an affine connection on B. We call 7 : (M,V,g) — (B,@,gB)
is a statistical submersion if 7 : M — B satisfies 7, (VxY), = (Vx. Yi)r(p for
basic vector fileds X,Y and p € M. The letters U, V, W will always denote vertical
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vector fields, and X, Y, Z horizontal vector fields. The tensor fields 7" and A of type
(1,2) defined by

TeF =HVypVFE +VVyeHEF, ApF = HVygVF +VVyHF

for vector fields E and F on M. Changing V for V* in the above equations, we define
T* and A*, respectively. Then we find T** = T and A** = A. For vertical vector
fields, T and T* have the symmetry property. For X, Y € H(M) and U,V € V(M),
we obtain

9(TyV, X) = —g(V, T X), 9(AxY,U) = —g(Y, AxU).

Thus, T (resp. A) vanishes identically if and only if T* (resp. A*) vanishes identi-
cally. Since A is related to the integrability of H(M), A is symmetric for horizontal
vectors if and only if H(M) is integrable with respect to V. Moreover, if A and T
vanish identically, then the total space is a product space of the base space and the
fiber. It is known that ([1])

THEOREM C. Let w: M — B be a semi-Riemannian submersion. Then (M,V,g)
18 a statistical manifold if and only if the following conditions hold:

(1) HSy X = AxV — ALV for X e H(M) and V € V(M),

(2) VSxV =Ty X — T3 X for X e H(M) and V € V(M),

(3) (M,V,3) is a statistical manifold for each z € B,

(4) (B,V,gg) is a statistical manifold.

For the statistical submersion 7 : (M,V,g) — (B,V,gp), we have the following
Lemmas ([14]).

LEMMA D. If X and Y are horizontal vector fields, then AxY = —A} X.
LeMMA E. For X, Y e H(M) and U,V € V(M) we have

ViV =TyV + VoV, LV =THV + VYV,

VuX =HVyX + Ty X, Vi X = HVEX + T; X,
ViU = AxU + VVyU, ViU = A% U + VW4T,
VyY = HVyY + AxY, ViY = HVLY + A%Y.

Furthermore, if X is basic, then HVyX = AxU and HV; X = ALU.
We define the covariant derivatives V1" and VA by
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for E,F e TM,Y € H(M) and V € V(M). We change V to V*, then the covariant
derivatives V*T,V* A are defined similarly. We consider the curvature tensor on
the statistical submersion. Let R (resp. R ) be the curvature tensor with respect to
the induced affine connection V (resp. V' ) of each fiber. Also, let fi(X Y)Z (resp.
R*(X,Y)Z) be horizontal vector field such that m, (R(X,Y)Z) = R(ﬂ'*X 7T*Y)7T*Z
(resp. m (R*(X,Y)Z) = R*(m. X, m.Y)m.Z) at each p € M, where R (resp. R*)
is the curvature tensor on B of the affine connection V (resp. v* ). Then we have

([14))

THEOREM F. If 7 : (M,V,g) — (B,%,QB) is a statistical submersion, then we
obtain for XY, Z,. 7' € H(M) and U,V,W, W' € V(M)

9J(RU, V)W, W') = g(RU, V)W, W') + g(Tu W, Ty W') — g(Ty W, T;W'),
g(RU V)W, X) = g(VuT)v W, X) — g(VvT)u W, X),

gRU V)X, W) =g(VuT)v X, W) = g(VvT)u X, W)

gRUV)X,Y) =g((VuA)xV.Y) = g(Vv A)xU,Y) + g(Tu X, TVY)

—9(Tv X, T5Y) — 9g(Ax U, Ay V) + g(Ax V, A3 U),

IJR(X, U)V,W) = g([VVx,Vu]V,W) = g(Vix.0V, W) — g(Tu V, Ax W)
+g(TUW Axv)

JR(X, U)VY) =g(VxT)uV,Y) = g(VuA)xV,Y) + g(AxU, AyV)
79(TUX7 T;Y)7

JR(X,U)Y, V) =g(VxT)vY,V) —g(VuA)xY, V) + g(Tu X, TvY)
—9(AxU, AyV),

J(R(X,U)Y,Z) = g(Vx AU, 2Z) - g(Tu X, A3 Z) — g(TvY, Ax Z)
+g(AXYaT(jZ)a

J(RX,Y)U, V) =g(VxT)uY,V) —g((VyT)uX,V) — g((VuO)xY,V)
+9(Tv X, TvY) — g(Tv X, TyY) — g(AxU, AyV)
-l—g(AXV AyU)

g(R(X, YU, Z2) = g(VxA)yU, Z) — g((Vy A)xU, Z) + g(T;; 2, 0xY),

Q(R(X Y)Z,U) = g(Vx Ay Z,U) —g(VyA)x Z,U) — g(Tu Z,0xY),

9(R(X,Y)Z,2') = g(R(X,Y)Z,Z") — g(Ay Z, AX Z') + g(Ax Z, Ay Z')
+9(0xY, A3 Z'),

where we put Ox = Ax + A%.
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For each p € M, we denote by {E1,...,En}, {X1,...,X,} and {Uy,...,Us} local
orthonormal basis of T, M, H,(M) and V, (M), respectively such that E; = X; (i =
1,...,n) and E, o = U, (a = 1,...,s). Denote respectively by w® and w*® the
connection forms in terms of local coordinates with respect to {E1, ..., E;,} of the
affine connection V and its conjugate V*, where a, b run over the range {1,...,m}.
Set €4 = g(Fa, Es) = +1 or —1 according as F,, is spacelike or timelike, respectively.
Owing to equation (2.1), we have

(3.1) Wi = —gqepwl.

We put

g(TX,TY) = cag(Ty,X,Tu,Y),

a=1

9(TX,SE) = eag(Tu, X, Su, E)

a=1

for XY € H(M) and E € TM. The mean curvature vector of the fiber with
respect to the affine connection V is given by the horizontal vector field

N = i EQTUQUQ.
a=1

LEMMA 3.1. We have

> eag(VET)U,Ua, X) = g(VEN, X) + g(T*X, SE)

a=1

for X € H(M) and E € TM.
Proof. From (3.1), we get

> eag(Vela, Tj X) = > eawl(E)g(Us, Tp, X)
= =) epwi(E) g(Ua, Tp, X)
= =Y epg(ViUs, T, X),

that is,

(3.2) > eag(VeUa, T, X) = = > eag(ViUa, Tp;, X).

a=1 a=1
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For U,V € V(M), we find
(VET)yV =Ve(TyV) —Tyv(VVEU) —Ty(VVEV) =Ty (HVEV).
Then we have from (3.2)

> eag(VET)y,Us, X)

= eag(Ve(Tv,Ua), X) =2 eag(Ty, (VVEUa), X)
=g(VeN,X)+2> eag(Vela, Tj; X)

=g(VEN,X)+> eag(VEUa,Tj X) = > eag(ViUa, Tj, X)

=g(VeN,X)+> eag(Tj X, SpUs)
9(VeN, X) + g(T"X, SE).

4 Sasaki-like statistical submersions

If 7 : M — B is a semi-Riemannian submersion such that (M, g, ¢, £, ) is an almost
contact metric manifold of certain kind, each fiber is a ¢-invariant semi-Riemannian
submanifold of M and tangent to the vector £, then 7 is said to be an almost contact
metric submersion of certain kind. The horizontal and vertical distributions are ¢-
invariant if and only if are ¢*-invariant. If X is basic on M which is 7-related to X,
on B, then ¢ X (resp. ¢* X) is basic and 7-related to ¢ X, (resp. ¢*X.), where ¢ and
¢* are tensor fields of type (1,1) such that gp(6X,,Y,) + g5(X.,d*Y:) = 0 with
respect to the metric gg on B. We say that a statistical submersion 7 : (M, V, g) —
(B, %,gB) is a Sasaki-like statistical submersion if (M, V, g, ¢,&,n) is a Sasaki-like
statistical manifold, each fiber is a ¢-invariant semi-Riemannian submanifold of M
and tangent to the vector £&. Then we have

THEOREM 4.1. Let w : M — B be an almost contact metric submersion of certain
kind. Then the base space is an almost Hermite-like manifold and each fiber is an
almost contact metric manifold of certain kind.

Also, it is clear from (2.10) that the following Lemmas hold.

LEMMA 4.1. Let : (M,V,g) — (B,%,gB) be a Sasaki-like statistical submersion.
Then we have for X € H(M) and U € V(M)

AXg = _¢Xa
VVx€=0,
TU& = 07

Vi€ = —¢U.
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LEMMA 4.2. If 7 : (M,V,g) — (B,@,gB) 1s a Sasaki-like statistical submersion,
then we have for X, Y € H(M) and U,V € V(M)

(HVX¢)Y =
Ax(¢Y) — 5( Y)=g(X,Y)§,
Ax(pU) — ¢( U)=-nU)X,
(Vxo)U
ApxU = ¢(A )

LEMMA 4.3. Let w: (M, V,g) — (B, V.gB) be a Sasaki-like statistical submersion.
If dim M = 1, then we have AxY = —g(X, ¢pY)E.

Moreover, we have

THEOREM 4.2. If 7 : (M,V,g) — (B, @, gB) is a Sasaki-like statistical submersion,

then the base space (B,V, gg, ¢) is a Kihler-like statistical manifold and each fiber
(M,V,q,6,€,n) is a Sasaki-like statistical manifold.

By virtue of Lemmas E and 4.2, we get
(@+0)AxY =0
for X,Y € H(M). Thus we have

THEOREM 4.3. Let w : (M,V,g) — (B,V,gg) is a Sasaki-like statistical sub-
mersion. If rank ($+$*) = dim M — 1, then we have AxY = —g(X,¢Y)E for
X, Y e H(M).

COROLLARY 4.1. Let w : (M,V,g) — (B,V,gp) is a Sasaki-like statistical sub-
mersion. If =&, then we have AxY = —g(X,0Y)E for X, Y € H(M).

REMARK. If 7 : M — B is a Sasakian submersion, then AxY = —g(X, ¢Y )£ holds
([7], [8])-

5 Sasaki-like statistical submersions satisfying the
certain condition

Let 7: (M,V,q) — (B, %,gB) be a Sasaki-like statistical submersion. We assume
that the curvature tensor of (M,V, g, ®,&,n) satisfies the type (2.12) with ¢, that
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is, for E,F,G,G' € TM

o(R(E.F)C.C)
= e+ B){9(F.G)(B.C") ~ 9(B, C)g(F.C")

+%(c = Dn(E)n(G)g(F,G") —n(F)n(G)g(E,G") + g(E, G)n(F)n(G")
—g(F,G)n(E)n(G") — g(F, ¢G)g(¢E,G") + g(E, ¢G)g(pF, G")

+Ho(E, oF) — g(¢E, F)}g(oG, G'),

where c is a constant. Then we see from Theorem F

(51) (R VIWW) + g(Tu W, THW') — g(Ty W, T3 W)
= (e 3){g(V,W)g(U, W) — (U, W)g(V, W)}

(= DU )g(V, W) — (V) (W)g(U, W)
+g(U,W)n(V)n(W') — g(V, W)n(U)n(W')
—g(V,oW)g(oU, W') + g(U, oW )g(oV, W)
+{g(U, V) — g(oU, V) }g(¢W, W')],
g(VuT)y W, X) —g((VvT)uW, X) =0,
(53) g((vUT)VXv W) _g((VVT)UX, W) = 07
(Vo A)xV)Y) —g(VvA)xU,Y) + g(Tu X, Ty Y)
—g9(Tv X, 1Y) — g(AxU, Ay V) + g(AxV, A3 U)
= e~ D{g(U,3V) ~ 48U, V)}g(6X,Y),
(5.5) g((VVx,VulV,W) = g(Vix.)V, W) — g(Tu V, AX W)
Fg(TEW, AxV) =0,
= e+ 39U V)g(X.Y)

= DOMVIg(X,Y) + (U, 3V)g(6X, V).
6.7 g(VxT)uY, V) —g(VuA)xY, V) + g(Tv X, TvY) — g(AxU, AyV)

_ —%(c +3)9(X,Y)g(U, V)

(e~ D{g(X Y In@)n(V) + g(X, 6¥)g(5U, V),
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(5.8)  9(VxAWU,2) —g(Tu X, Ay Z) — g(TuY, Ax Z) + g(Ax Y, T;; Z) = 0,

(5.9)  g(VxT)uY,V) —g(VyT)u X, V) = g((Vu)xY, V) + g(Tu X, TvY)
—9(Tv X, TyY) — g(AxU, Ay V) + g(AyU, AxV)

= o= D{g(X,6Y) ~ (6 X, V)}g(6U, V).
(5.10) g(VxA)yU,Z) — g(Vy A)xU, Z) + g(T;: Z,6xY) = 0,
(5.11) g((VxA)yZ,U) —g((VyA)xZ,U) — g(Tu Z,0xY) = 0,
(5.12) g(R(X,Y)Z,Z') — g(Ay Z, A% Z') + g(Ax Z, Ay Z') + g(0x Y, A Z')

= L3V, 2)9(X, Z) ~ g(X, 2)g(¥, 2}

(o= Dg(Y, 62)9(6X, 2') + 9(X, 6Z)g(0Y, Z')
+Ho(X, 0Y) — g(6X,Y)}g(2, Z"))]

for U VW, W' e V(M) and X,Y, Z, Z' € H(M). We have from Lemma 4.3, Theo-
rem 4.3 and (5.12)

THEOREM 5.1. Let w: (M,V,g) — (B,@,gB) be a Sasaki-like statistical submer-
sion. If rank (¢ + 6*) = dim M — 1 and the curvature tensor of the total space

satisfies the type (2.12) with ¢, then the curvature tensor of the base space satisfies
the type (2.5) with ¢ + 3.

COROLLARY 5.1. Let 7 : (M,V,g) — (B,V,gp) be a Sasaki-like statistical sub-
mersion. If dim M = 1 and the curvature tensor of the total space satisfies the type
(2.12) with ¢, then the curvature tensor of the base space satisfies the type (2.5)
with ¢+ 3.

By virtue of and Lemma 4.1 and Theorem 4.3, equation (5.6) can be rewritten as
follows:

g(VxT)uV,Y) - g(Tu X, Ty Y)

= e+ B YW V)~ n(Un(V)} — g(6X, Y )g(U, 3V)]

which implies from Lemma 3.1 that

g(VxN,Y) —g(T*X,T"Y) = i(c +3){(s — Dg(X,Y) — (tr $)g(¢X,Y)}.

If HVx N = 0, then we obtain ¢+ 3 = 0 or tr ¢ = 0. Therefore we have

THEOREM 5.2. Let 7 : (M,V,g) — (B,V,gg) be a Sasaki-like statistical submer-
sion such that the curvature tensor of the total space satisfies the type (2.12) with
c. We assume that rank (¢ + ¢ ) = dim M — 1 and HVxN = 0 for X € H(M).
Then
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(1) 4f ¢+ 3 = 0, then the base space is flat and each fiber is a totally geodesic
submanifold of M such that the curvature tensor satisfies the type (2.12) with
-3,

(2) in the case of tr =0 and s > 1,

(i) if g is positive definite, then ¢+ 3 <0,
(ii) ¢+ 3 < 0 and X is spacelike (resp. timelike) or ¢+ 3 > 0 and X is
timelike (resp. spacelike) if and only if T* X is spacelike (resp. timelike),
(iii) the horizontal vector X is null if and only if T*X is null.

COROLLARY 5.2. Let m : (M,V,g) — (B,@,gB) be a Sasaki-like statistical sub-
mersion such that the curvature tensor of the total space satisfies the type (2.12)

with c. If rank (¢ + 5*) = dimM — 1 and N is constant, then results similar to
Theorem 5.2 hold.

Also, it is easy to see from (5.7) that
g(VxT" )V, Y) = g(T5 X, TvY)
= i(c +3)[g(X,Y){g(U, V) = n(U)n(V)} - g(X,¢Y)g(6U, V).

Thus by virtue of Lemma 3.1, we get

GVEN"¥) — g(TX,TY) = (e + 3){(s ~ Dg(X,¥) ~ (wd)g(X, 6V)}.

If HVN* =0, then we find ¢+ 3 = 0 or tr ¢ = 0. Hence we have

THEOREM 5.3. Let 7 : (M, V,g) — (B,V,g5) be a Sasaki-like statistical submer-
sion such that the curvature tensor of the total space satisfies the type (2.12) with
c. We assume that rank (¢ + ¢ ) = dim M — 1 and HVEN* =0 for X € H(M).
Then

(1) if ¢+ 3 = 0, then the base space is flat and each fiber is a totally geodesic
submanifold of M such that the curvature tensor satisfies the type (2.12) with
-3,

(2) in the case of tr¢ =0 and s > 1,

(i) if g is positive definite, then ¢+ 3 < 0,
(ii) ¢ +3 < 0 and X is spacelike (resp. timelike) or ¢ +3 > 0 and X is
timelike (resp. spacelike) if and only if TX is spacelike (resp. timelike),
(iii) the horizontal vector X is null if and only if TX is null.
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COROLLARY 5.3. Let 7 : (M,V,g) — (B,V,gp) be a Sasaki-like statistical sub-
mersion that the curvature tensor of the total space satisfies the type (2.12) with c.
If rank (¢ + 5*) =dim M — 1 and N* is constant, then results similar to Theorem
5.3 hold.

Next, we consider m as a statistical submersion with conformal fibers. For U and
V EV(M)if TyV =0 (resp. TyV = L g(U,V)N) holds, then 7 is called a statistical
submersion with isometric fibers (resp. conformal fibers). Then we can get from
Ty& =0 of Lemma 4.1

LEMMA 5.1. If 7 : (M,V,q) — (B,V,gg) is a Sasaki-like statistical submersion
with conformal fibers, then m has isometric fibers.

THEOREM 5.4. Let w: (M,V,g) — (B,V,g5) be a Sasaki-like statistical submer-
sion with conformal fibers such that the curvature tensor of the total space satisfies
the type (2.12) with ¢. Then each fiber is a totally geodesic submanifold of M such
that the curvature tensor satisfies the type (2.12) with c.

Furthermore, we find from (5.6)

THEOREM 5.5. Let w: (M,V,g) — (B,§7gB) be a Sasaki-like statistical submer-
ston with conformal fibers suchjharlihe curvature tensor of the total space satisfies
the type (2.12) with c. If rank (¢ + ¢ ) = dim M — 1, then

(1) the total space satisfies the type (2.12) with ¢ = —3,

(2) the base space is flat,

(3) each fiber satisfies the type (2.12) with —3.

Finally, we give an example of a Sasaki-like statistical submersion such that the
curvature tensor satisfies the type (2.12).

EXAMPLE. Let (R2", V3, ) and (R2+L V., g, 6,&, 1) be a Kihler-like statistical
manifold in Example 2.1 and Sasaki-like statistical manifold in Example 2.2, re-
spectively. We define the statistical submersion 7 : (R2"*! V¥V g) — (R2",V,3)
by

7T(xla'''7',1;’1’17/7:'417'"7y7na'z> = (xla'--;xn7y1,"'ayn) (ngm)

Then 7 is a Sasaki-like statistical submersion such that the curvature tensor of
R2m 1 gatisfies the type (2.12) with ¢ = —3. Each fiber is a totally geodesic sub-
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manifold of R2" 1. Because of 9,, + v;0., 0,, € H(RZ"!), we find

Ao, +yi0. (0z; +9502) = =45, 1y,0.(0n +4i0:) =0,
Ap, +y:6.0y; = *A};y], (Oz; +4i0.) = —20;5 0z,

Ao, (O, +4i0:2) = =Ap, 4y,0.0y; = =045 0=,

0,0y, = — 43,0, =0

for i,5 € {1,...,n}. Hence we find AxY = —g(X, Y )¢ for X, Y € H(RZmT1),
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