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On the Ricci tensor and the generalized
Tanaka-Webster connection of real hypersurfaces
in a complex space form

By MAYUKO KON

Abstract. We prove that the Ricci tensor S with respect to the gen-
eralized Tanaka-Webster connection of a real hypersurface with the almost
contact structure (1, ¢,£,g) in a complex space form of complex dimen-
sion n > 3 satisfies S(X, ¢Y) = \g(X, ¢Y) for any vector field X and Y,
A being a function, if and only if the real hypersurface is locally congruent
to some type (A) hypersurface.

1. Introduction

Tanaka-Webster connection is a unique affine connection on a
non-degenerate, pseudo-Hermitian C'R manifold which associated with
the almost contact structure ([12], [14]). Tanno [13] gave the gen-
eralized Tanaka-Webster connection (g-Tanaka-Webster connection)
for contact metric manifolds, which coincides with Tanaka-Webster
connection if the associated C R-structure is integrable. For a real
hypersurface in a Kéhlerian manifold with an almost contact metric
structure (1, ¢, &, g), in [3] and [4], Cho defined the g-Tanaka-Webster
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connection ?(’“) for a non-zero real number k. Then we can see that
VEp =0, VOE=0, V®g =0, V¥ ¢ = 0. Moreover, if the shape
operator A of a real hypersurface satisfies A+ A¢p = 2k¢, then the g-
Tanaka-Webster connection V® coincides with the Tanaka-Webster
connection.

For real hypersurfaces in a complex space form M"(c) of constant
holomorphic sectional curvature 4c # 0, one of the major problem
is to determine real hypersurfaces satisfying certain geometrical as-
sumptions. Cho [5] determined flat Hopf hypersurfaces in a non-flat
complex space form with respect to the g-Tanaka-Webster connec-
tion. Besides, he classified Hopf hypersurfaces in a non-flat complex
space form which admits a pseudo-Einstein C'R-structure for the g-
Tanaka-Webster connection.

The purpose of this paper is to study real hypersurfaces in a com-
plex space form whose Ricci tensor S with respect to the g-Tanaka-
Webster connection V*) satisfies S(X, ¢Y) = Ag(X, ¢Y) for any vec-
tor fields X and Y.

The author would like to express her sincere gratitude to Professor
P. F. Leung for his valuable advice. Also, the author would like to
thank the referee for valuable comments.

2. Preliminaries

Let M™(c) denote the complex space from of complex dimension
n (real dimension 2n) of constant holomorphic sectional curvature 4c.
For the sake of simplicity, if ¢ > 0, we only use ¢ = +1 and call it the
complex projective space CP", and if ¢ < 0, we just consider ¢ = —1,
so that we call it the complex hyperbolic space CH™. We denote by
J the almost complex structure of M"(c). The Hermitian metric of
M™(c) will be denoted by G.

Let M be a real (2n — 1)-dimensional hypersurface immersed in
M™(c). We denote by ¢ the Riemannian metric induced on M from
G. We take the unit normal vector field V' of M in M"(c). For any
vector field X tangent to M, we define ¢, n and £ by

JX = ¢X +n(X)V, JV = —=¢,
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where ¢X is the tangential part of JX, ¢ is a tensor field of type
(1,1), n is a 1-form, and & is the unit vector field on M. Then they
satisfy

X =-X+n(X)E, ¢£=0, n(¢X)=0,
n(X) =g9(X,8), 9(¢X,0Y) = g(X,Y)—n(X)nY).

Thus (¢, &, 7, g) defines an almost contact metric structure on M. Let
Hj denote the holomorphic distribution on M defined by Hy(x) =
{X € T.(M)[n(X) = 0}.

We denote by V the operator of covariant differentiation in M"(c),
and by V the one in M determined by the induced metric. Then the
Gauss and Weingarten formulas are given respectively by

VxY = VxY + g(AX,Y)V, ViV = —AX

for any vector fields X and Y tangent to M. We call A the shape
operator of M.
From the Gauss and Weingarten formulas, we have

Vx&=9AX, (Vx9)Y =n(Y)AX — g(AX,Y)S.

We denote by R the Riemannian curvature tensor field of M. Then
the equation of Gauss is given by

RX,Y)Z = {g(Y,2)X — g(X,2)Y + g(¢Y, Z)pX — g(¢ X, Z)pY
—29(¢X,Y)oZ} + g(AY, Z)AX — g(AX, Z)AY,

and the equation of Codazzi by
(VxA)Y — (Vv A)X = c{n(X)oY —n(Y)pX —29(¢X,Y)E}

If A& = X, X being a function, then M is called a Hopf hypersur-
face. There are many results for real hypersurfaces in complex space
forms under the assumption that they are Hopf hypersurfaces. By
the Codazzi equation, we have the following result (c.f. [8]).
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Proposition A. Let M be a Hopf hypersurface in M™(c), n > 2, If
X L& and AX = X, then a = g(AE, &) is constant and

(28 — @) ApX = (Ba + 2¢)pX.

We use the following results for the proof of the main theorem.

Theorem B ([7]). Let M be a Hopf hypersurface in CP™. Then M
has constant principal curvatures if and only if M s locally congruent
to one of the following:

(A1) a geodesic hypersphere of radius r, where 0 < r < /2,

(As) a tube over a totally geodesic CP' (1 <1< n—2), where 0 <r <
/2,

(B) a tube of radius v over a complezx quadric Q"' and RP™, where
0<r<m/4

(C) a tube of radius v over CP* x CP"%", where 0 < r < 7/4 and
n (>5) is odd,

(D) a tube of radius r over a complex Grassmann CGy 5, where 0 <
r<mw/4andn =29,

(E) atube of radius v over a Hermitian symmetric space SO(10)/U(5),
where 0 < r < /4 and n = 15.

Theorem C ([1]). Let M be a Hopf hypersurface in CH™. Then M
has constant principal curvatures if and only if M is locally congruent
to one of the following:

(Ao
(Ay
(A2
(B) a tube over a totally real hyperbolic space RH".

a horosphere,
a tube over a complex hyperbolic hyperplane CH* (k =0,n — 1),
a tube over a totally geodesic CH' (1 <1< n —2),

)
)
)
)
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Next we introduce the notion of Tanaka-Webster connection and
its generalization. Tanaka [12] defined the canonical affine connec-
tion on a non-degenerate, pseudo-Hermitian C'R manifold. As a gen-
eralization of Tanaka-Webster connection, Tanno [13] defined the g-
Tanaka-Webster connection for contact metric manifolds by

~

VxV = VxV + (Van)(Y)€ = n(Y)Vx§ = n(X)eY,

where (1,¢,&, g) is a contact metric structure. Using the naturally
extended affine connection of Tanno’s g-Tanaka-Webster connection,
the g-Tanaka-Webster connection V® for real hypersurfaces in Kahler
manifold is given by,

VRY = Vil + g(0AX Y)E —n(Y)6AX — kn(X)pY
for a non-zero real number k (see Cho [3], [4]). Then we see that
VFp =0, V®e =0, V®g=0, VF¢p=0.
In particular, if the shape operator of a real hypersurface satisfies
A + Ap = 2k¢, then the g-Tanaka-Webster connection coincides

with the Tanaka-Webster connection. Next we define the g-Tanaka-
Webster curvature tensor R with respect to V*) by

R(X,Y)Z =Vx(VyZ) = Vy(VxZ) = VixnZ

for all vector fields X,Y,Z in M. We denote by S the g-Tanaka
Webster Ricci tensor, which is defined by

S(Y, Z) = trace of {X — R(X,Y)Z}.

3. The Ricci tensor of real hypersurfaces in a complex
space form

To prove the theorem, we prepare the following lemma.
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Lemma 3.1. Let M be a real hypersurface in a complex space
form M"(c), n > 3, ¢ # 0. If there exists an orthonormal frame
{e1,- -+ ,ean_2,&} on a sufficiently small neighborhood N of x € M
such that the shape operator A can be represented as

aq 0 hl
: 0
A - . P
0 agp—2 | 0
hi 0 0

then we have

(a1 —a;j)g(Ve,er,e;) + (a; — ai)g(Ve €, €5) + a;hig(ge;, ;)

=0, (3.1)
(a; — a1)g(Ve.ej, €1) = (ai — a1)g(Ve, e, €1) + hala; + a;)g(de;, e5)

=0, (3.2)
{2¢ — 2a;a; + ala; + a;) Yg(gei, e;) — hig(Ve,ej,e1) + hig(Ve,ei, e1)

=0, (3.3)
(a1 — a;)g(Ve,e1,€;) — (era;) =0, (3.4)
hi(2a; + a1)g(de;, e1) + (a1 — a;)g(Ve €5, e1) + (e;a1) =0, (3.5)

(c+ a1 — ara; — hi)g(gey, e;) — (a1 — a;)g(Veen, e;)
+h19(Vee1,6;) =0 (3.6)
for any i,j > 2,1 # j.
ProOF. By the equation of Codazzi, we have
g(Ve,A)er — (Ve, A)ei,ej) =0,
where 7,7 = 2,--- ,2n — 2. On the other hand, we have
9((Ve,A)er — (Ve Aess €5)
=g(V,(Aey) — AV, e; — V., (Ae;) + AV, e, €))
= (a1 — a;)9(Ve,e1,€5) + (a5 — ai)g(Ve, €, €5) + aihig(gei, ;).

Thus we obtain (3.1). By the similar computation, we have our re-
sults. 0
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Theorem 3.2. Let M be a real hypersurface in a complex space
form M"(c), n > 3, ¢ # 0. We suppose that the Ricci tensor S of
the generalized Tanaka-Webster connection V¥ satisfies S(X, ¢Y) =
Ag(X, ¢Y) for any vector fields X and Y, A being a function.

(1) If ¢ > 0 and k? # 4c, then M is a Hopf hypersurface.
(2) If ¢ <0, then M is a Hopf hypersurface.

PRrROOF. By the definition of the g-Tanaka-Webster connection,
we have (see [5])

~

RX,Y)Z = R(X,Y)Z+g(6((VxA)Y — (VyA)X), Z)¢
+29(pAY, Z)AX — 29($AX, Z)pAY (3.7)
+9((Vxp)AY — (Vy9)AX, Z)¢

—0(Z) (#((TxA)Y = (Vy A)X) + (Vx9)AY — (Vyd)AX )
~k(g((6A+ A0)X,Y)6Z +n(Y)(Vx0)Z = n(X)(Vy6)Z)

+9(pAX, Fy 2)§ — n(Fy Z)pAX — kn(X)oFy Z
—g($AY, Fx Z)€ + n(Fx Z)0AY + kn(Y)oFx Z,

where F'is given by
FxY = g(pAX,Y)§ —n(Y)pAX — kn(X)oY.

By the definition of g-Tanaka-Webster Ricci tensor, equation of Gauss
and Codazzi, direct calculation shows that

S(Y,Z) = 2neg(Y, Z) + (trA — n(A€) + k)g(AY, Z)
—9(A%Y, Z) — g(pAPAY, Z) — kg(pAQY, Z) + n(AY)g(A€E, Z)
+n(Z)(—2nen(Y) — n(AY )trA + n(A*Y) — kn(AY)).

Now we use the following lemma of Ryan [10].

Lemma D. Let A be a symmetric tensor field of type (1,1) on a
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connected Riemannian manifold M™. Then there exists A\; > Ay >
- > A\, such that for each point z, {\;(x)}(i = 1,--- ,n) are the
eigenvalues of A,.

For the shape operator A of a real hypersurface M, we consider
the symmetric tensor field pA¢ of type (1,1). By the above lemma,
we can take an ortonormal frame {vy, ..., v9,_2,£} in a neighborhood
of a point x such that pApE = 0, pAPv, = —aqvy, -+ , QAPUY, o =

—Q9y_9Ua,—o. Then we have
Q(A¢Ui7 @h‘) = _9(¢A¢Uz',vi) = aj.

We take an orthonormal frame {e; = ¢uvy, ..., €9, 2 = Pv9, 2,£} in a
neighborhood A of a point z. Then, in the neighborhood, A is of the
form

a; - 0 hy

Al o 2
0 - agp—2 | hopo
hy -+ hon o ‘ «Q

where we have put h; = g(Ae;, &), i =1,--- ,2n—2, and a = g(AE, ).
The condition S(X, ¢Y) = A\g(X, ¢Y') for any vector fields X and

Y is equivalent to S(X,Y) = Ag(X,Y) for any vector field X and
any vector field Y orthogonal to £. By the direct computation using
the previous equation, we have

S(€,€) =0, S(e;, &) =0,

S e) = (trA — a+k — a;)h; — g(QAPAE e;) = 0, (3.8)
S’(ei, 61‘) .
= 2nc+ (trd)a; — a? — aa; + ka; + (a; + k)g(Ade;, pe;) = A,
S(eive;) = (a; + k)g(Ages, de;) =0 (i # ). (3.10)

In the following, we suppose that M is not a Hopf hypersurface.
Then there is a point x and hence an open neighborhood N of z
where A¢ # a& on N. Then h; # 0 for some i.
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If a; = —k for all ¢ at some x € N, then (3.9) and trA = —(2n —
2)k + « imply that

2nc + (2n — 4)k* = \.

By (3.8),
(trA — a+ 2k)h; + g(pAE, Age;) = 0.

Since g(pAE, Ade;) = —kh;, trA — a = —(2n — 2)k, we have
(2n — 3)kh; = 0.
for all 7. Thus we have £k = 0. This contradicts to our assump-
tion. Therefore, a; # —k for some i. From (3.10), if a; # —Fk, then
g(Age;, pe;) = 0 for all j # i. Thus we set
Age; = a;pe; + hi€,

where we have put @; = g(Age;, pe;) and h; = g(Adpe;, &). We also
have

S(pei, pe;) = 2ne + (trA)a; — a2 — aa; + ka; + (a; + k)a; = A (3.11)
Using (3.9) and (3.11), we obtain
(a; —a;)(trA —a —a; —a;) = 0.
When a; = a;, (3.9) implies
2nc — A = a;(a — 2k — trA).
Otherwise, if a; # a;, then trA — a = a; + G;. Using (3.9), we obtain
2a7 — 2(trA — a)a; — k(trA — a) — 2nc + X = 0,

from which
(a; —a;)(trA—a —a; —a;) =0
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for a; that satisfies a; # k and a; # a;. If a; # a;, then trA —a =
a; +a; = a; + a;. Hence we have a; = a;. We put b = a; and b = a;.
They satisfy

b+b=trA —aq, (3.12)
- k
bb = —E(trA—a)—nc—i——. (3.13)

We remark that b # —k or b # —k.
From these, in A/, we have

b hq
b
b
b
A= d
d
—k
—k h2n—2
hl ce hgn,Q o
where
d= g(Ae.97 es) = g(Ad)esa ¢es) 7& —k,
2nc — A =d(a — 2k — trA). (3.14)
In the following, we use integers y, z,--- for Ae, = be, + hy,¢&, s---

for Aey = des + hs§ and v--- for Ae, = —ke,. We denote by H;(x),
Hy(x), Hs(x) and Hy(x) the subspaces of a tangential space at z
spanned by {e,}, {¢e,}, {es} and {e,}, respectively.
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We suppose that dim Hz(z) # 0 and dim Hy(x) # 0 at some
xr € N. Taking e, € H3(x) and e, € Hy(x), (3.9) implies

S(ey, e,) = 2ne — k(trA) — 2k* + ak = \.
From this and (3.14), we have
(d+k)(a — 2k —trA) = 0.

Since d # —k, then we have trA — a = —2k and 2nc — A = 0.

Moreover, if dim Hy(z) = dim Hy(z) # 0, taking e, € H;(z),
(3.12), (3.13) and (3.14) imply a, = b = —k and G, = b = —k. This
case cannot be occured. Hence we have dim H;(z) = dim Hy(x) = 0.
Then, by ¢es € Hs(z) and ¢e, € Hy(z), we have a; = a; for any
i€ {l---,2n—2}. Thus, by (3.8) and trA — o = =2k,

for all 4. This implies £ = 0. This contradicts to our assumption.
So, we see that dim H3(z) = 0 or dim Hy(z) = 0 at any point
x € N, that is,

b hy
b
b
A= _ )
b
f
f h2n—2
hy T hon—2 «

When dim Hy; = 0, f denotes as = d. We remark that f = d satisfies
(3.14). Otherwise, when dim H; = 0, f denotes a, = —k. In this
case, we see that d, = —k by the definition of b and b. Thus, using
(3.9), f = —k also satisfies

2nc — A = —k(a — 2k — trA).
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Hence, f = f and f satisfies

2nc — A = f(a— 2k —trA) (3.15)
in both cases.

In the following, we use integers s--- for Ae; = fes + hs& and
redefine H3(z) as the subspaces of a tangential space at x spanned
by {es}.

By a direct computation using (3.8),

(trA—a+k—b+bh, =0, (3.16)
(trA—a+k+b—bh, =0, (3.17)
(trA— o+ k)hs = 0. (3.18)

Lemma 3.3. We have hy, =0 for all e, € Hs.

PROOF. If there exists e, € Hs that satisfies hy, # 0 at some =,
and hence on some neighborhood N/ C N, then

trA—a+k=0.
From (3.16) and (3.17), we have
(=b+b)h, =0, (b—0b)h, =0.

Since b # b, we have h, = 0 and h, = 0 for all y. The direct
computation shows that

tE — Al = (t = bP(t = b)"(t = )" {(t = /)t —a) = Y B},

where p and ¢ are the multiplicities of b and f, respectively. We
remark that 2p + ¢ = 2n — 2.

Suppose Ae’ = fe is satisfied by ¢/ = X + ¢, where X € Hj.
Since AX = fX + h¢ for some h, we obtain

Ae' = fX +hE+ B hae, + af).
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On the other hand, we have
Ae = f(X +BE) = fX + fBE.
From these equations, we obtain
B hae, + (h+af — [B)E = 0.

Since hg # 0 for some e,, we have 5 = 0, that is, g(¢/,£) = 0. Thus, in
N, we can represent the shape operator A by a following matrix with

respect to a local orthonormal frame {eq,--- ,e,, peq, -+, dep, €apt1,
© 5, Can—2, 5}
b 0
b —
b
A= _
b
f
0
f hf2n—2
0 ce 0 hgn_g (0}

From (3.15) and (3.18) we obtain
2nc — A = —fk, trA —a = —k.
We now suppose that there is a point x in N’ where p # 0. Then
(3.12) implies
—(p—Dk+qf=0.

By (3.13), we also have

-1

w:5“9+fm.
Using b+ b =trA — a = —k, we see

ko, 1
®+§Y+Z%+2ﬁk:0
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Since (p — 1)k = qf, we see fk > 0. This implies that &+ 2f = 0
and hence (2p — 2 + ¢)k = 0. Thus we have k& = 0. This contradicts
to our assumption.

Let us suppose that p = 0 on N’ of z. Then trA—a = (2n—2)f =
—k shows that f is non-zero constant on N of z. By (3.5), we see that
hon_of = 0. This is also a contradiction. This proves our lemma. [

If there exist e, € Hy and ¢e, € H, that satisfy h, # 0 and
h. # 0, (3.16) and (3.17) implies b = b. This case cannot be occured.
So it is sufficient to consider the case that h, = 0 for any ¢e, € Hy.
Using (3.12) and (3.16), we have

ko - k
b=trA — - b=—=. 3.19
r o+ 5% 5 ( )
By the similar calculation as Lemma 3.3, in A/, we can represent the

shape operator A by a following matrix with respect to an orthonor-

mal frame {617 ct L Epy ¢€17 T 7¢6p7 €2p+15 5 €2n—2, 5}
b hy
' 0
b —
b
A= ~
b
f
f10
hl 0 0]

Then we have ~
trA=pb+0b)+qf +a.

Using (3.12), )
(p—1)(b+0b)+qf =0. (3.20)

First, we suppose that trA — a = b+ b # 0 at a point  and hence
an open neighborhood N/ C N of z. Then (3.20) implies that ¢ # 0
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on N”. Because, if ¢ = 0 at some point x € N, then p — 1 = 0 and
hence n = 2. This contradicts to n > 3. From (3.13) and (3.19), we
have )

—kz = —nc+ %, (3.21)
from which we see that —nc + (A/2) # 0 and A is constant on N”.
Thus, by (3.15) and (3.20), we obtain f # 0 and p # 1. So we have
p > 2. Using (3.15) and (3.19),

onc— A= fla— 2k — trA) = f(—b - ;k) (3.22)

From (3.19), (3.20), (3.22) and 2p + ¢ = 2n — 2, we obtain

b2+kb—§k2— (2nc — A)(2n —2p — 2)

=0.
4 p—1

Since b is continuous and p is positive integer, we see that b is constant.
So (3.22) implies that f is also constant on N

We put AU = bU + hié and AZ = fZ. By the equation of
Codazzi, computing g((VzA)U — (VyA)Z, ¢Z), we have

(b= 1)g(VzU, ¢Z) + fh1 =0
on . Similarly, computing g((VzA)oU — (Ve A)Z, Z),

(b— f)g(VzoU, Z) = 0.

If b = f, then (3.21) and (3.22) imply that b = b = —k/2. This case
cannot be occured. So we have g(Vz¢U, Z) = 0. On the other hand,
we obtain

9(VzU,¢Z) = —g(U,(V29)Z) — g(U,$V 2 Z)
From these we have fh; = 0. This contradicts to f # 0.
Finally, we consider the case trA —a =b+b =0 on N”. Then

(3.20) implies that ¢f = 0. If f = 0, then (3.15) gives 2nc — A =0
and hence, by (3.13), we see

b= —
4 0,
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which contradicts to k # 0. So we have ¢ = 0 on N”.
From (3.13), (3.19) and (3.20),

-k _ A
b= b= bbh=—nc+ 2.
2’ nety
We can choose an orthonormal frame {e1,ea, -+ , €, 1,65, , €2, 9,&}

on M which satisfies Ae; = bey + hi§, Ae, = be, fory =2,--- n—1
and Age, = boe, for y = 1,--- ,n — 1. Then, in N, the shape
operator A is represented by the following

b hy
’ 0
b
A= b
bl 0
hiy 0 .- 0| «

Using Lemma 3.1, we have

Lemma 3.4. Let ¢e, € Hy be perpendicular to ¢e;. Then,

h
Ve = e, (3.23)

2¢ 4+ 2nc — A\

o (3.24)

V¢ey61 =

PRrOOF. Using (3.5), we have g(V,, de,,e1) = —g(Ve, €1, pe,) =
0. On the other hand, putting e; = ¢e; in (3.5),

h1<26 + b)g<¢2€17 61) + (b - B)g(v61¢617 61) = 07

from which we obtain

h
Q(Ve1€1,¢€1) = 31

By (3.6), we see that ¢(V.e1,e,) = 0 for any e, € H;. Since
g(Vee1,8) = —g(er, pAer) = 0, we have (3.23).
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Next, putting e; = ¢e, and e; = ¢e. in (3.1), we have g(V g, e1, ge-)
0 for any ¢e,, pe. € Hy, y # z. Moreover, we have g(V 4. €1, de,) = 0
by (3.4). On the other hand, using (3.2), we see that

g(v6z¢6y’ 61) =0 (325)

for any e, € Hy. Thus, putting e; = e, and e; = ¢e, in (3.3), direct
calculation shows that

2c+ 2nc — A
S (e e,

Since g(Vge,€1,€) = 0 and g(Vge,e1,e1) = 0, we have (3.24).

g(v¢ey€17 ez) =

O

Using this lemma, we compute the sectional curvature spanned
by e; and ¢e, L ¢e;. From (3.23), we have

h
g(vqbeyvq €1, (bey) = _?lg(gbela vqﬁey(bey)'
Since g(¢e1, pe,) = 0, we have

g(e1, Ve, 0ey) = —9(Vge, de1, 0ey) = —g(dVge, €1, dey)
—2c —2nc+ \
h1 ’

= _g(v¢ey€1> ey) =
Thus we obtain

A
g<v¢eyve1€1a ¢€y) =c+nc— 5

On the other hand, by (3.24),

g(VGI v¢€yel’ ¢€y) = velg(v¢ey€1’ ¢€y) - g(v¢6y€1’ V61 (bey)
—2c —2nc+ A
= h gley, Ve, dey).
1
Putting e; = ¢e, and e; = ¢, in (3.1), we have g(V., ¢e,, e,) = —hy/2.
From these equations, we obtain

A
9(Ve, Ve, e1,0ey) = c+nc — 5
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Next, we see that

g(v[tﬁey:el]el? d)ey)
= g(vfelv ¢ey)g(§, [¢€y7 61]) + g(vmela ¢€y)g(€1, [¢eya 61])
+ Z g(vezeh ¢ey)g(ezv [¢ey7 61]) + Z Q(V¢eze1, ¢ey)g(¢€za [¢6y7 61])

2>2 z>1

=0.

Here we note that we have g(Vg._ ¢e,, e1) = 0 for z # y from (3.1)
and g(Vge,dey,e1) = 0 from (3.4).
From these equations, we see that

g(R(dey, e1)er, pey)
= g(v¢eyV61€1, gbey) - g(vquﬁeyel? qbey) - g(v[qbey,eﬂel? ¢ey)
=0.

On the other hand, the equation of Gauss implies that
. A
g(R(pey, e1)er, pey) = c+bb=c—nc+ 5

So we have nc — \/2 = ¢. Since bb = —c and b = —b = k/2, we see
that ¢ > 0, b> = ¢ and k? = 4c. This contradicts to our assumption
k% # 4c.

From these considerations we see that M has no point = where
A¢ # a&, and hence M is a Hopf hypersurface. This proves our
theorem. U

Using Theorem 3.2 and Theorem B-C, we have our main result.

Theorem 3.5. Let M be a real hypersurface in a complex space
form M"(c), n > 3, ¢ # 0. We suppose that the Ricci tensor S of
the generalized Tanaka-Webster connection V¥ satisfies S (X,9Y) =
Ag(X, ¢Y) for any vector fields X and Y, A being a function.

(1) If M is a real hypersurface in CP™ and k* # 4, then M is locally
congruent to one of the following:

(a) a geodesic hypersphere with k* > (2n — 2)(2n — \),

(b) a tube over a totally geodesic CP' (1 <1 <mn —2) with A = 2n.
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(2) If M is a real hypersurface in CH"™, then M is locally congruent

to one of the following:

(a) a geodesic hypersphere with k* > (—2n — 2)(2n — \),

(b) a tube over a complex hyperbolic hyperplane with k* > (—2n —
2)(2n — A,

(¢) a horosphere with \ = 2k — 2,

(d) a tube over a totally geodesic CH' (1 <1 <n—2) with A\ = —2n.

PRrROOF. From Theorem 3.2, M is a Hopf hypersurface of M"(c).
Then Proposition A shows

(26 — a)AdX = (Ba + 2c)¢X,

where AX = X, g(X,£) =0 and a = g(AE, ). We notice that « is
constant. If 28—a = 0, then Sa+2¢ = 0, and hence o> +4c = 0. Thus
we have ¢ < 0 and M has two distinct constant principal curvatures
a and b with multiplicities 1 and 2n — 2 respectively. Moreover b is
constant and M is a horosphere of principal curvatures 2 and 1 with
multiplicities 1 and 2n — 2, respectively (see Berndt [1]). By (3.9) and
c= —1, we have A = 2k — 2.
In the following, we assume that 25 — a # 0. Then

Ba + 2¢
20—«

ApX = bX.

We put 3 = (Ba +2¢)/(28 — a). Then, by the assumption on S, we
obtain
A =2nc+ (trA —a+ k)3 — B+ BB + kB,

o (3.26)
A=2nc+ (trA—a+ k)5 — 3+ 668+ k5.

These imply B B
0=(8—-pB)(trA—a—p5—p).
Suppose 3 # 3. Then trA—a—pF—j3 = 0. Substituting 8 = trA—a—/3

into the equation above, we obtain

2% — 2(trA — ) — k(trA — ) — 2nc + X = 0. (3.27)
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Therefore, § satisfies the quadratic equation
2t — 2(trA — a)t — k(trA — a) — 2nc+ A = 0.

From this we see that at most two distinct [ satisfies the above equa-
tion. But 3 also satisfies the above quadratic equation, and M has two
principal curvatures b and b with multiplicities p and p, 0 < p < n—1,
that satisfies b # b.

We next suppose that 8 = 3. Then 82 — a8 — ¢ = 0. Therefore,
M has at most two non-zero distinct constant principal curvatures d
and f such that d = d, f = f with multiplicities ¢ and r, respectively,
where 2p + ¢ + 7 = 2n — 2. On the other hand, from (3.26), we have

2nc — A+ (trA — a + 2k)d = 0,

2
2ne — A+ (trA —a+ 2k)f = 0. (3:28)

If M has 5 distinct principal curvatures b # b, d, f and o, then
the above equations show that trA —a+2k = 0 and 2nc— X\ = 0 since
d # f. Moreover, from (3.27), we have 20* +4kb+2k* = 2(b+k)* = 0
and (b+ k)? = 0. Hence we obtain b = b = —k. This contradicts to
the assumption b # b.

We now suppose that M has 4 distinct principal curvatures b #
b, d, . Then we have

trA—a=0b+b=pb+b)+qd.
From this and 2p 4+ g = 2n — 2,
(p—1)(b+0b) + (2n — 2p — 2)d = 0.

We notice that b and b is continuous. Since p is positive integer and
d is non-zero constant, we see that p # 1 and b + b is constant.
Moreover, trA — « is constant. So (3.28) shows that A is constant.
Hence, from (3.27), b and b are also constant. But there is no Hopf
hypersurface with constant four principal curvatures.

If M has two constant principal curvatures d and «, then trA —
a = (2n — 2)d. From (3.26),

(2n — 2)d* + 2kd + 2nc — A = 0.
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This gives a root when
k* — (2n — 2)(2nc — \) > 0.
Next, if M has three distinct principal curvatures b, b and «, then
trA—a=b+b=(n—1)(b+b).

Hence we have b +b = trA — a = 0. On the other hand, b and b
satisfy
202+ 2c
b+b=——=
+ 2b — «
Thus we have ¢ < 0. But the condition ¢ < 0 implies that the
principal curvatures b and b are positive. This contradicts to b+b = 0.
Finally we consider the case that M has three constant principal

curvatures d, f,«a, where d = d, f = f. Since d # f, we have

0.

trA—a= -2k, 2nc— \=0.

From these considerations and Thereoms B, C we have our assertion.
O
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