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Abstract 

A theoretical vibrational analysis of the radial breathing mode (RBM) of double-walled 

carbon nanotubes (DWCNTs) subjected to pressure is presented based on an elastic 

continuum model. The results agree with reported experimental results obtained under 

different conditions. Frequencies of the RBM in DWCNTs subjected to increasing 

pressure depend strongly on circumferential wave numbers, but weakly on the aspect 

ratio and axial half-wave numbers. For the inner and outer tubes of DWCNTs, the 

frequency of the RBM increases obviously as the pressure increases under different 

conditions. The range of variation is smaller for the inner tube than the outer tube.  
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1. Introduction 

The study of vibration in carbon nanotubes (CNTs) is currently a major topic of 

interest [1-6] that increases understanding of their dynamic mechanical behavior. 

Raman spectroscopy has been widely recognized as a powerful nondestructive 

technique for characterizing the structural properties of CNTs because of better 

sensitivity and lower cost than other methods [7]. Raman spectra contain different 

features including the radial breathing mode (RBM), where all of the carbon atoms are 

subject to an in-phase radial displacement, the G-band, where neighboring atoms move 

in opposite directions along the surface of the tube as in 2D graphite, the dispersive 

disorder-induced D-band and its second order related harmonic G’-band. Of these, the 

RBM appears at the lowest frequency but is the strongest feature observed. In the RBM, 

all of the carbon atoms in a CNT move in a radial direction synchronously as if the tube 

is “breathing” [7, 8]. This mode is unique to CNTs, and is not observed in other carbon 

systems [9].  

Application of pressure to condensed matter systems is an ideal way to continuously 

modify the bonding properties of a solid, which affect virtually all of the properties of a 

material [10]. In the context of CNTs, pressure studies are motivated by the needs to 

investigate the mechanical stability, pressure–induced phase transitions like vibrational 
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characteristics, and the effects of intertube interactions. The vibrational properties of 

nanotubes in a high-pressure diamond anvil cell (DAC) can be readily investigated by 

Raman spectroscopy [11]. 

The frequency of the RBM of CNTs under pressure has mainly been probed using 

Raman spectroscopy [12-15]. Schlecht et al. [12] studied isolated single-walled carbon 

nanotubes (SWCNTs) under pressure experimentally and found that the frequency 

dependence of the optical mode in bundled and isolated SWCNTs was identical. Using 

generalized tight-binding molecular dynamics, Venkateswaran et al. [13, 14] showed 

that van der Waals (vdW) interactions make an important contribution to the frequency 

of the RBM of bundled and unbundled CNTs and impact its pressure dependence 

strongly. During consideration of the structure characteristics of CNTs, Lebedkin et al. 

[15] demonstrated that it is possible to study pressure effects on individual unbundled 

SWCNTs using a DAC and a sensitive Raman spectrometer. The position of the RBM 

has been reported to be sensitive to excitation wavelength [16, 17], external pressure [18, 

19], dopant type [20], and the size of the nanotube bundle [21]. Arvanitidis et al. [11] 

used detailed pressure Raman experiments to determine the strength of intra-tube 

interactions of bundled double-walled carbon nanotubes (DWCNTs). Gadagkar et al. 

[22] focused on the responses of the inner and outer tubes of DWCNTs, and 
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investigated the behavior of DWCNT bundles under pressure. Puech et al. [23, 24] 

examined the stability of DWCNTs under hydrostatic pressures, and compared Raman 

spectra obtained under different hydrostatic pressures using two different pressure 

media. 

Computational simulation has been regarded as a powerful tool for predicting the 

frequency of the RBM of CNTs under hydrostatic pressure, comparing with the 

difficulty of the experiment. Lawler and Kurti et al. [25, 26] presented first-principle 

calculations for the RBM of bundled SWCNTs. A study exploring the frequencies and 

mode shapes of the RBM of various CNTs using a modified molecular structural 

mechanics model was reported by Cheng et al. [9]. Based on a multiple-elastic shell 

model, Wang et al. [27] showed that the frequencies of the RBM of MWCNTs 

generally increase as the external pressure increases, and the effects of pressure are 

associated with RBMs of different frequency for MWCNTs with innermost tubes of 

different diameter. Recent reviews focusing on Raman spectroscopy on CNTs [7] and 

CNTs under pressure [8] summarized past achievements in the field and highlighted 

promising directions for future development, especially in experimental studies. 

In this letter, the frequency of the RBM of CNTs subjected to pressure, is studied 

using an elastic continuum mechanics model. DWCNTs can be considered a kind of 
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MWCNT where the interlayer interaction between the inner and outer nanotubes is 

generally turbostratic [7, 8]. The influences of the axial half-wave number m, 

circumference wave number n, nanotube radius, aspect ratio L/D of nanotubes on the 

frequency of the RBM of the inner and outer tubes in DWCNTs under varying pressure 

are considered. Compared to previous results obtained from experimental investigations, 

the continuum shell model can be used to predict the frequency of the RBM of CNTs 

under pressure reasonably. This investigation will be helpful in nanodevice technologies 

such as nanoprobes and nanosensors. 

 

2. Theoretical approach 

2.1 Governing equations of DWCNTs under pressure 

A continuum elastic shell model (Fig. 1) was used to analyze the characteristics of the 

RBM of CNTs subjected to pressure. The cylindrical shell is designated as a coordinate 

system (x, θ, z). The coordinates x, θ, and z refer to the axial, circumferential and radial 

directions, respectively. The displacements of CNTs are u, v and w corresponding to the 

x, θ, and z directions, respectively. The dimensions of the nanotubes are defined as the 

thickness h, radius R, length L and Poisson’s ratio . 

Based on our previous work [28, 29], the external forces N and moment M resultants 
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are respectively defined as 

, , , 1 , , 1 2⁄ , 1 2⁄                  1  

, , , , , 1 , 1                      2  

where E is Young’ modulus of CNTs. 
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We considered the vibration of CNTs in the radial direction according to Love’s first 

approximation shell theory. Therefore, the equilibrium equations of the three external 

forces and moments acting on CNTs are given by 

0                                                                                  6  

  0                                                                                         7  

  1    

                                                                                                         8  

where ph is the external pressure acting on the tube, which is shown in Fig. 2(a). ρ is the 

density of CNTs. According to theory [30], by substituting Eqs. (1)－(5) into Eqs. (6)－

(8), we obtain 
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where Φ = (1-v2)/Eh and β = h2/12R2. To simplify the calculation, Eqs. (9)－(11) can be 

rewritten as 
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where Lij are the differential operators given as  
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2.2 van der Waals interaction forces 

To study the vibrational behavior of DWCNTs, a double-elastic shell model was 

developed that assumes each of the nested tubes in a CNT is an individual elastic shell, 

and the adjacent tubes are coupled to each other by normal vdW interactions. The 

pressures from vdW forces exerted on the inner and outer nanotubes through vdW 

interaction forces (Fig. 2 (b)) are given as 

∆ ∆                                                                                                                 14  

∆ ∆                                                                                                      15  

Δwk (k=1, 2) are the radial displacements of the inner and outer nanotubes, and cij (i,j=1, 

2) is the vdW interaction coefficient between nanotubes, which can be estimated from 

the Lennard-Jones potential [31] 

3
1120
3 1001 ,                                                                             16  

where 

1 cos
            7,13                                           17  

and 

4
                                                                                                                        18  

where a is the carbon-carbon bond length (0.142 nm), Ri and Rj are the inner and outer 

radii of the DWCNTs, and σ and ε are the vdW radius and the well depth of the 
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Lennard-Jones potential, respectively. The vdW parameters in the Lennard-Jones 

potential are ε = 2.967 meV and σ = 0.34 nm as reported by Saito et al. [32]. 

Under pressure, the radial displacements of DWCNTs Δwk (k=1, 2) in Eqs. (14)－(15) 

are the function of the pressure exerted on the inner and outer tubes, given as 

∆ 1 2 ,                 1, 2                                                                           19   

where υk and Rk (k=1, 2) are Poisson’s ratio and the radii of the inner and outer tubes, 

respectively. 

Substituting Eq. (19) into Eqs. (14)－(15) yields 

∆ · 1 2                                                                                                          20  

∆ · 1 1 2                                                                                               21  

where 

∆ 1 1 2 1 2                                                                            22  

 

2.3 Frequency of the RBM of CNTs 

The general solution for the displacements u, v and w in the inner and outer tubes of a 

DWCNT can be given by 

                                                                                                 23  

                                                                                                 24  
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    1, 2                                                                            25  

where Ak, Bk and Ck are the longitudinal, circumferential and radial amplitudes of 

displacement in the inner tube (k=1) and the outer tube (k=2), respectively. ω is the 

circular frequency of RBM and t is time. The wave numbers m and n are the axial 

half-wave and circumferential numbers, respectively. 

 

3. Numerical results and discussion 

The influence of different nanotube parameters on the frequency of the RBM was 

investigated using the proposed method. An individual SWCNT is regarded to have the 

thickness of a graphene sheet, 0.34 nm. In the calculations, the elastic modulus of a 

CNT is 3.3 TPa, Poisson’s ratio is 0.27, and the mass density of CNTs is 2.3 g/cm3. 

DWCNTs were assumed to have an inner diameter of 2.2 nm and an outer diameter of 

3.0 nm [3].   

Using the present theoretical approach, the frequency of the RBM of isolated 

SWCNTs under no pressure as a function of radius was calculated and is shown in Fig. 

3. The frequency of the RBM decreases significantly as the radius of the SWCNT 

increased from 0.3 to 1.0 nm. Note that the commonly used unit for the frequency of the 

RBM f is in cm-1 for Raman spectroscopy experiments; the unit of Hertz (Hz) for ω has 
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been adopted for convenience in this study. The relation between these terms is ω = c×f, 

where c = 3.0×108 m/s and is the velocity of light in a vacuum. Some studies have used 

other approaches to research the frequency of the RBM of isolated SWCNTs. Kurti et al. 

[25] used first-principles calculations to show that the frequency of the RBM was 9.87

－4.50 THz for SWCNTs with radii of 0.35－0.78 nm. Jorio et al. [33] calculated that 

the frequency of the RBM ranged from 5.28 to 4.32 THz for SWCNTs with radii of 

0.715 to 0.86 nm considering structural determination. Finite element methods [9] have 

also been used to investigate the RBM of CNTs and Dresselhaus et al. [34] published a 

review on the frequency of the RBM of isolated SWCNTs. The calculated frequencies 

of the RBM of SWCNTs with varying radius under no pressure agree closely with the 

values reported in the literatures, which verifies that the continuum elastic shell model 

accurately describes the frequency of the RBM of CNTs. 

The frequencies of the RBM of the inner tube and outer tube of a DWCNT as a 

function of aspect ratio L/D are compared in Fig. 4. The changes in frequency for both 

inner and outer tubes show a sublinear logarithmic relationship with increasing aspect 

ratio. The frequencies of the RBM of the inner and outer tubes exhibit a concentrated 

distribution in the same region. Each tube exhibits the vibration frequency of CNTs 

over one terahertz, and the frequency of the inner tube is a little higher than that of the 



13 
 

outer tube, except for a circumferential wave of n = 1. The lowest frequency of 

DWCNTs is characterized by the circumferential wave n = 1, and exists in the 

DWCNTs with larger aspect ratio. Meanwhile, the frequency of the RBM decreases 

dramatically with increasing aspect ratio. When the circumferential wave n = 1, the 

cross sections of DWCNTs present away from the axial central axis, which makes the 

whole tubes to be unstable status. This phenomena is unique to DWCNTs with 

circumferential wave n = 1, and is not observed in other circumferential waves. The 

unsteady DWCNTs with circumferential wave n = 1 can be influenced by external 

factors more easily than with other circumferential waves. The frequency of the RBM of 

DWCNTs with an aspect ratio of L/D < 2 decreases slightly with increasing aspect ratio. 

At aspect ratios of L/D > 2, the frequency is almost independent of the aspect ratio 

when the circumferential wave n is 2 or greater.  

The frequencies of the RBM of DWCNTs with different circumferential wave 

numbers (n = 2, 3), axial half-wave numbers (m = 1, 3, 5) and aspect ratios (L/D = 5, 10, 

20) subjected to pressure were investigated and the results are shown in Figs. 5－7. The 

circumference wave number n plays a critical role as the pressure increases, while the 

frequency of the RBM is hardly affected by the axial half-wave number or the aspect 

ratio. The frequency of the RBM has a positive linear relationship with increasing 
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pressure in these figures, and this increase is more significant for the outer tube than the 

inner tube. Fig. 5 shows the frequencies of the RBM of inner and outer tubes with 

circumference numbers of n = 2 and n = 3 (m = 4, L/D = 20) with increasing pressure. 

The gradients for frequency/pressure of the inner tube with n = 2 and n = 3 are 6.5 and 

6.6 GHz/GPa, respectively, and 200.2 and 223.8 GHz/GPa for the outer tube, 

respectively. Frequencies of the RBM of the inner and outer tube with axial half-waves 

of m = 1, m = 3 and m = 5 (n = 2, L/D = 20) with increasing pressure are shown in Fig. 

6. The gradients of the inner tube with m = 1, m = 3 and m = 5 are 6.6, 6.5 and 6.4 

GHz/GPa, respectively, and 204.9, 202.7 and 196.7 GHz/GPa for the outer tube, 

respectively. Fig. 7 shows the frequencies of the RBM of inner and outer tubes with 

aspect ratios of L/D = 5, 10 and 20 (m = 1, n = 2) with increasing pressure. The 

gradients of the inner tube with L/D = 5, 10 and 20 are 6.5, 6.6 and 6.6 GHz/GPa, 

respectively, and 200.3, 204.2 and 204.9 GHz/GPa for the outer tube, respectively.  

Therefore, according to the variation in the curves of the frequencies of the RBM 

frequencies of inner and outer tubes are almost parallel lines, and the range of variation 

in the RBM frequency of inner tube is smaller than that of outer tube. Considering 

unbundled DWCNTs, the trends and range of frequencies of the RBM for both the inner 

and outer tubes with increasing pressure agree closely with the experimental results of 
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Arvanitidis and Christofilos [11], who revealed that the frequency of the RBM of the 

external tubes increased linearly with increasing pressure. Therefore, the theoretical 

results calculated in this study are consistent with experimental results. Moreover, due 

to vdW interaction forces and external pressure, the inner tube owns smaller variation of 

the RBM frequency than the outer tube. The inner tube is only reinforced by vdW 

interaction forces, and is slightly influenced by the external pressure, so the vdW 

interaction forces make a governing and positive role in the RBM frequency of the inner 

tube. Comparing with the inner tube, the outer tube suffers not only with vdW 

interaction forces, but also with external pressure which neutralizes the positive vdW 

interaction forces and makes a negative role at the same time. With the growing external 

pressure, the governing role of vdW interaction forces become less and less, which 

leads that the RBM frequency of the outer tube is more sensitive to the external pressure 

and has a bigger variation of the RBM frequency than that of the inner tube. 

 

4. Conclusions 

The RBM of DWCNTs subjected to pressures were investigated using an elastic 

continuum mechanics model. The analysis was based on a continuum mechanics model 

where each tube of a DWCNT was described as an individual elastic shell and 
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DWCNTs were considered to be two-layered nanotube shells coupled by vdW 

interactions. The axial half-wave number and the aspect ratio had little effect on the 

frequency of the RBM. In contrast, the circumference wave number affected the 

frequency of the RBM significantly. Compared with previous experimental and 

simulation investigations on the frequency of the RBM of isolated SWCNTs with 

increasing radius and DWCNTs with increasing pressure, the continuum shell model 

can be used to reasonably predict the frequency of the RBM of CNTs subjected to 

pressure. According to the variation of the frequency of the RBM of DWCNTs with 

increasing pressure, the inner tube is affected less than the outer tube. Based on this 

model and a theoretical approach, a numerical simulation investigating the RBM of 

multiwalled CNTs subjected to pressure can be developed. Theoretical analysis of the 

RBM of DWCNTs is useful for nanofabrication and nanodevice technologies. 
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Figure captions 

Figure 1 Schematic diagram showing the cylindrical coordinates of the CNT model 

used for analysis 

Figure 2 DWCNT model subjected to pressure for analysis 

Figure 3 Frequency of the RBM of SWCNTs not subjected to pressure as a function of 

radius 

Figure 4 Comparison of the frequencies of the RBM of inner and outer tubes in 

DWCNTs subjected pressure with different circumference wave numbers as a 

function of aspect ratio (m = 1) 

Figure 5 Comparison of the frequencies of the RBM between inner and outer tubes in 

DWCNTs with different circumference wave numbers as a function of 

pressure (m = 4, L/D = 20) 

Figure 6 Comparison of the frequencies of the RBM between inner and outer tubes in 

DWCNTs with different axial half-wave numbers as a function of pressure (n 

= 2, L/D = 20) 

Figure 7 Comparison of the frequencies of the RBM between inner and outer tubes in 

DWCNTs with different aspect ratios as a function of pressure (m = 1, n = 2) 
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