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Synopsis. This paper will give one method for attacking Airy’s stress-
function in two-dimensional problems of elasticity by means of integral equa-
tion, when any distribution of external forces are given on a specified
bounding curve. The example here given is very simple, but the method

will suggest how to find the proper form of stress-function for more
complicated boundary-value problems.

§ 1. General expression of boundary conditions
Stress-components in two-dimensional elasticity are given under no body

forces by
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where y is Airy’s stress-function which satisfies the equation
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We suppose that one of external forces, P say, is acting on the bounding
curve of the elastic body, whose components are denoted by Py and P, in direc-
tions of x and y respectively. Then the conditions of equilibrium on the
bounding curve are

P, =o0,cosa+ tysing, }
Py =ty cosa + oy sina.

Let s bedenoted by the length along the bounding curve, and z by the

direction of an outward normal, then we get
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Substituting (1) and (4) into (3), we obtain the equations
po—= Py Ty dx_d ((?.x ,
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When we integrate (5) from 0 to s, we have
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and also as we find
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on  dxdn ' dydn oxds oy ds
with (6), (7), and (8), we obtain

1y = S {Z;CS Py, ds_"fg P, ds}ds+ax+[y+ r,l
......... (9)
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When a distribution of loads on the bounding curve of the elastic body is given,
equations (9) afford the boundary value of the stress-function. Hence, the
problem is reduced to finding Airy’s stress-function y which satisfies the com-
patibility equation (2), and takes specified values y_ and (g%)s on the bounding

curve.

§ 2. General solution satisfying given boundary conditions
Now let y be composed of two parts, i.e.,
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of which the boundary values are 0, #, and ¢;
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Moreover, @, can be written
Wy = @ 5+ DCO). voeeervrmrerinninenin (12)

In this expression, ®’, is a biharmonic function and @(6) is a harmonic
function, which take on the bounding curve respectively
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@ =0, (%2) = =[ (00} ], (00} =0. (13)

Now, in order to find w,, let us refer to equation (2), which at once gives
Vo, =p(Fw)=0 po=U, pPPU=0 - (14)

In (14), U, is a harmonic function and can be expressed in terms of dis-
placement-components. When the boundary value of U, is definite, we can
find U, within the domain as solution for Dirichlet’s problem in Poten-
tial theory. The problem is to search the function that, as an inner point
tends to a point on the bounding curve, its value also tends to the boundary
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value, and is harmonic in the domain as well. In order to solve this problem,
let us use the equation for logarithmic potential of a double sheet, which is
written

a l ) T
Ui= Sz w($) 5 log 2ds, 7 =y/(x —E 4y =), oo (15)
1, (8) being a solution of the equation
p () = qﬁi — S " (s) log AS. ceereririiin (16)

U,, is the limiting value as U, tends to a point on the bounding curve. The
equation (16) is a Fredholm’s integral équation of 2nd kind, and we obtain
U, by substituting the solution () of (16) into (15).

Next, the solution of Poisson’s differential equation p*w, =U, is

w, = ——SjDG@’ 2%, ) UE,7) dedy + Cpo wovevveriennnens 17

In this equation (17), G(¢,%,x,y) is Green’s function, U, (¢, 1) is the solution
of (15) and C, is a constant of integration.
Similarly, we obtain

U, = S/z (s)~log -ds,

!
g— S A CSD loglds .................. (18)

o'y = =] 661,29 U6, ) dedy + C.

Lastly, @(0) may be solved as a Dirichlet’s problem in Potential theory;
that is

O0) = S 5 (8D gav-w]og-vlfds,

b 1o o g [ (19)
q
po @)= PDe — L{ () Liog Las.
The kernel, K(s,it) say, of these integral equations is
_1o.,1 _10—n&—(x—8&y
&G, T anlog 7 T (= =" Ve (20)

A= —1.
In general, Fredholm’s integral equation can be solved by means of the re-
ciprocal function of K(s,t), which is

D(s,8,2) _ 2K(s,t) + Z“dx(s, £ + 23d C5,0)
DO T d, - Edy Fe

where
d, (s, 1) = K(s,1),

1 |, duce o0,
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s, ) =KCs, D0 -+ |, KCs, a0, |

and p(t) is written

utty=Ui 4 [ DD Us g

The aggregation of w,, w’,, and ®(0) is the Airy’s stress-function .
§ 3. Example

For example, let us take a circle with unit thickness and uniform load on
the bounding curve. The equation of the circle is

& = qcos _‘S:, r/:asini, .............................. 23)
22 a

where @ denotes the radius of the circle and s the curve length along the
circle. The external force per unit area is denoted by P, and then its com-
ponents become respectively

P, = PCOSE, Py = Psinf—. ........................... (24)
a a
Let us express a point in the domain with x and y, i.e,
X = pCOSl-, y == psinzﬁ ................................. (25)
o 14

p being the distance from the center to the point, and f the curve length of
the circle with the radius p. Substituting expressions (23) and (24) into (9),
we obtain the boundary values of x andg_iiz in this case, which are

Ls =Pa3(1 — cos%—) -+ aacos%—— ﬁasinfd + 7,

AN = s s -
(5{4)5 = Pa( 1— cos 5-) +acos -+ fsin—-
The kernel K(s,¢) is

t_s
K(s,t) = 1 ‘- pcos( d a) e 27)
@t — Zapcos(—;— - %)

Consider (14); in the case of plane strain, we can put the term in the dis-
placement U, as constant without loss of generality, so that

620)1 azwl == (S & Y ) ereacsntssactsssa et st
e T e AGEDS 28)
U, s (&) is the boundary value of U, (§,7), that is
Uys (8, 7)) m= Ay, coveeeemeecieni (29)

Substituting (29) into (16), and considering the limit as an inner point has
tended to the bounding curve, we have

2na
1 (t) E= %‘Al—” l SU /Z(S) %ids' ........................... (30)

I
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From (21) the reciprocal function of K(s, 1) is

R 1 1
D(st, =1 _ _ 1 A=l KD =g di=—s | ey
D(-1) —  2(a+D=z’
(—1) (a+= A8, ) =0, dymoveoen =dy(8,1) =eeenn =0.
Hence (30) becomes
-1 e —1 1 1A
@ = ﬂA‘“‘“SO ICESOEE kel N (82)
Substituting (32) into (15), we have
s
» — pcos(fd — -
v = [ 11,4 0=2) ds= 20 AL i3y
catlmy +6° -—2apcos(0~—u6-l~)
Green’s function in (17) is in this case
G, 9,6,7) = L {log (& + 77) — log (5 + y2)}. oorvcee 80

From the expressions (33), (34), and (17), we obtain

o= =], 5008 &4 1) — log (x# +1y*3) 2% A, dsdy + C,

= 4 2 _ G e 35
a+1A1{log(x +¥)—loga®*+ 1} + C,. (35)

Similarly, the expression of , becomes
ou= 24T 4, (10g (8 4 3) — 1g@ + 1} + Cyo oo (36)

Now, the boundary value of D(8) is
= Pa*{ 1 — cos.S. : S in$. X
[2(6)]s = Pa (l cos-— ) + aacos ﬁasma +7
Hence, (19) is written

1 {27 1 1
p® = 2oy = [ Lo Loy, as

= ;1{ {Pa <1 — cosa> + aa cosm—— ,Basmw— + r}

— _1< I{CP‘F )T = QABY. e 37)

¢ aq +
Substituting (37) into (19), we have
2nq o .
D(H) = SO [% {Pa“ (1 - COSZS) + aacosg— — Ba smg + r}

a— pcos(O — -“;)

—t 1\ Pa e —2ap) ds

@+ p* — 2apcos (0 — 3)
:'}1‘{ [{(Pa — a)cos f— Bsing }{—25» sin 6 — ~32~(-§ -+ 5;) sin 30 — }

+{—(Pa —a)sin b + fcos 0}{%‘3 cos § — %—(—g - g) cos 3¢ ——}]
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L2 [ _ Jg ....................................... 38
+ o7 P = W Caat D, (38)
and accordingly
90O _ [992(0) _ 2" sindd -
(252, = [257), = aPa = (g sin20 o Jgoinat +--)
_4p1 2 S 29
%—<1300520+35cos40+5.7c056(}+ ) 39)
Considering the boundary values of respective functions, we obtain
o, = a{Pa(l — cos 0) + asinf + fcos 0}log ) (40)
2°
Wy = a[ (Pa ~—a)( sin 20 + 3. 55m4(} e >
_4p < i3 0820 -+ 325 cos 4l + - )] log c(‘z}‘ L e 1)
Hence it follows that
=, + o+ Do)
= q{Pa (1l —cos0) + acosl + Bsind}log {?,
{ (Pa — cz)( . sin20 + 3\5— sindd +-- )
4ﬂ (1 4 C0820 + o 5(:0540 - )}log Z
— _ 2p 200 40 e
ﬂ{{(Pa a)cos § — Ssin 0}{ sin 6 — 3 ( p -+ ) sin 30 }
+{—(Pa — a) sin 6 + ﬁcos&}{wﬁcos& 2 (f— — pi)cos30 — }J
_2 _(zcpPa _ 413 .............................................
+ L {7 (P (3a + 1D}, (42)

The boundary value of y is

Ypma = %—[(Pa —a) {cos 0 (— sin § — _2§ sin30 — —%— sin 56 —)}

4 288in0 4 - ﬁ,,;%.;‘I{nz(Paﬂ 4+ 7) — #_@ (3a + 1)}] ............... 43)
On the other hand, it is
tp=ag = Pa*(1—cosl) + aacosld — Pasinf + 7.
The two expressions above should be identical regardless of the wvariable 8,

and hence we find
a=PFPa, B=10, y=—Pd.

I inaHy, we have
= Pﬂz ()g ._‘9_ .
l a

Thus we have arrived at the well-known Airy’s stress-function for the
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present boundary-value problem, which a priori has been assumed rather
by intuition.

Conclusion. The above work presents a new method for finding Airy’s
stress-function, when the configuration of the elastic system is given.
Though the example treated, which is the circular disk under uniform
external force, is simple, the method presented suggests the way to find
the stress-function compatible with given boundary-value problems of
higher complication.

Analytical solution frequently fails in the problem of elasticity; in such a
case the present work would bhe developed further by means of numerical
method of integration. Further study on this line is now in progress.
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