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Synopsis. In this article, we propose the existence of some dispersive Rayleigh-waves
propagated within the superficial layer of two-dimensional layered media. They are not
only M-waves and M,-waves taken as the unique solutions whenever some physical
constants are given, but also the other elastic waves propagated with some slide at the
junction. If we regard M-waves and M,~waves with no slide whatever at the junction as
the upper limit, we may regard some elastic waves with such slide that makes the strain—
energy of the whole elastic system minimum as the lower limit. In this article, we shall
find the lower limit and illustrate the solutions of such elastic waves are not unique but

exist in certain ranges.

1. Introduction

In the historical studies of elastic waves, we can find the studies that
Raviecn gave in 1887 the elastic waves propagated over the surface of semi-
infinite medium without any layer with a velocity and the waves of this kind
are called “Rayleigh-waves,” and that Love published in 1911 the waves prop-
agated within the superficial layer of semi-infinite layered medium whose
particle each was horizontally moved in normal to the progressed direction,
and he illustrated the dispersion, that is, the wave-velocity increased as the
wave-length increased. The waves of this kind are called “Love-waves.” In
1924, Sronerey researched any kind of waves which were called “Stoneley-waves”
and propagated along the bottom of the ocean. In 1927, Sezawa showed the
plane waves of Rayleigh-wave type propagated within the layer of semi-infinite
layered medium, and he called them the dispersive M-waves. In 1935, Sezawa
and Kaw~ar published Mywaves which were not the higher order of M-waves
but the other waves, and then full paticulars were also given to these

natures.
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Thus we have been able to give many elastic waves investigated in the past,
but all these have been solved under the continuous conditions, that is, at the
junction the superficial layer and the lower semi-infinite medium are not
strictly separated and no slide is allowed to either of them. Tanmoro has
maintained the other idea with respect to the continuous conditions of such
contact problems, namely, though any separation in the vertical direction at
the junction is not caused tentatively, we can not affirm that any discrepancy
in the tangential direction which takes place so that the strain-energy of the
whole system may be minimum is not always caused. If we apply this idea to
the problems of elastic waves, we shall not have M-waves and M,-waves as
the solutions, but we shall have the other elastic waves propagated causing
some slide and allowing some discrepancy of tangential displacements. This
idea has by far more universality as one of the continuous conditions.

Thus we shall appoint the new lower limit called M.~waves and M.,~waves
if we assume M-waves and M,-waves as upper limit. As these waves are
treated as the two-dimensional problems, we can not criticize three-di men-
sional seismic waves, but basing on the idea, if we apply it to the analysis of
seismic waves, we hope that we may explain the observed values that have
not yet been plotted on the analytical curves. We shall make any slide cause
at the junction so that the whole strain-energy may be minimum and research
analytically the limit waves, but we suppose that in actual seismic phenomena,
the superficial layer has not slided perfectly till the strain-energy is minimum,
but many phenomena caused the slide on the way and in the higher states of
strain-energy have been observed.

In this article, we shall illustrate theoretically the two-dimensional limit
waves as one step to reach the analysis of three-dimensional seismic waves
and show some numerical calculations. And we shall propose that the solutions
of elastic waves propagated within the superficial layer of two-dimensional
layered medium have not the uniqueness but rather an extensive range. Let
these matters cover with a fragment of some elastic waves existing under
suitable conditions as Love expressed in “Some Problems of Geodynamics.”

2. Equations of Motion

In the case of the plane waves propagated along the surface as given in
Fig. 1, where the semi-infinite medium with the density p and the elastic
constants 2 and x is covered by the superficial layer which has the uniform
thickness H,, the density p’ and the elastic constants 2’ and ¢/, the equations
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of motion of semi-infinite medium may be expressed in the forms
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in which U and V denote the components of displacement in the directions
of x- and y-axis, respectively. If we entirely neglect the effect of gravity and
apply only the harmonic waves propagated within the media, we take as the
solutions of equations (1)

4 = Aewv‘—i(m—fﬁ)’ (2)
20 = Besu+i(pt—fx)’ (3)
in which
2 2
R N N - (@
A 2p 2
.. . . 27 .
then A and B denote the determining coefficients, respectively, and L = —f~ is

2
the wave-length and 7 = —;—[ is the period. These equations (2) and (3) show

that two kinds of waves are propagated. If U; and V, denote the components
of displacement that satisfy the equation (2), we take

L f

1 :
U, = hZAeru+z<pt~fx),

r .
Vi= — ;L,?Aeryﬂ(rt—fx)'

if U, and V, denote the components of displacement that satisfy the equation
(3), we take

S
o = —. Bgsv+ipt—fz)
U. 7 2Be , 7

_ ©)
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the former are the equations of motion due to the longitudinal waves and the
latter the equations of motion due to the transverse waves.

The equations of motion of the superficial layer, which has the uniform
thickness and the physical properties to differ from the semi-infinite medium,
may be expressed in the forms

/62./1' - (21 + 2 ,)(azdl + 82A/>
O = AP oy /)
(7
PO R
Io ~ro - ‘Ll < —2- 2 )’
ot 0x 0y

where

1

oy av? V' U
A + N ZQ =T TR,
aox oy 0x oy

A

then U and V' denote the components of displacement in the directions of
x—- and y-axis. Hence the solutions of equations (7), if we neglect the effect of
gravity, are expressed by the equations
4" = (Ccosh#'y + Dsinh#'y)eitv—», }
20" = (Ecosh s’y + Fsinh s'y)gi?t=/,

in which

P2 f2 o B2 §1T e 2 B2 P2 o'p’ k2 :p,pz.

1l ,) ’ 3 (9)
A4 2p Iz

thene C, D, E and F denote the determining coefficients, respectively. In the
solutions of equations (8), the components of displacement due to the longitudi-
nal waves are lexpressed in the forms

! —ZZ(C cosh#'y 4 Dsinh#' y)eit—r=,

U/ = 2

(10)
V) = —-]:—,2(C sinh #'y + D cosh ¥’ y)girt=f=,

and the components of displacement due to the transverse waves are expressed
in the forms -

'
Uy = lgfé(Esinh §'y + Fcoshs' y)egitri=ra),
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if . o (11)
V' = k;(_;(Ecoshs’y + Fsinh s’ y)ei®t—7=,

As these components of displacement caused due to the longitudinal and trans-
verse waves have been superposed actually, we should treat the total dis-
placements, which are respectively given by the equations, for the semi-infinite
medium:

U=U, + U, V=V +V,, (12)
and for the superficial layer:
U =U'+Uy, V=V, + V. (13)

And the stress-components in the elastic systems may be expressed in the
forms, for the semi-infinite medium:

~ alU o~ av —~ U oV
= ad + 24—, =24 4 2p—, == + =), 1
xx = 4 1 yy =24 + Zxay Xy = ((?y al) (14)
and for the superficial leyer:
—~ aU"  —~ vt~ ou oV’
r o ‘/’ 1 _1_ 2VI R r o ZIAI 2”{[ , ! p— 'J.l( ) 1
xx' = A4 o Y + 2 i xy' =y o T (15)

Now, if the harmonic vibration of Pe’»t~/= is uniformlly applied over the
surface of these elastic systems, we have at the surface (y = H,) as the boundary
conditions:

Yy = Pewi-in,  xy =0, (16)

at the junction (y = 0) as the continuous conditions:

—~

U=U+Us, V=V, yy=3y, xy=xy. (17)

We obtain six equations for determining coefficients A, B, C, D, E and F
from the equations (5), (6), (10), (11), (12), (13), (14), (15), (16) and (17), and
when we solve these, we shall get six determining coefficients which consist
of both parts of the discrepancy of tangential displacements Uz and the
harmonic motion Pe'?—/2,
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where

X, = coshr'H,, Y,=sinhvH, X,=coshs'H, Y,=sinhs'H,.

Now, the velocities of longitudinal and transverse waves are expressed in
the forms, for the semi-infinite medium :

1+ 2p 1
cP - /‘"“W B Cx = / ] (19
A Vo )
and for the superficial layer:
A2y o
C = / = c :\/@, (20)
V oo o
where if we assume
A= A=, m = &, n = {j—,
o /‘
we have
3m m ~
Cp - Cs,\/“n@, Cx :Csl\/"n ) C[)' = Cs”\/ 3 <21)

and the equations (4) and (9) may be expressed in the forms
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E F = const.
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- e 0 0 (18)
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in which
P e
Uo—f/Cs,

then p/f is the velocity of propagation of waves in the direction of x-axis.
In the case of solving the equations (18), when we put P =0, we can
take six determining coefficients with respect to Uz in the forms

FUag—i<rt=52> SUag =12

Au = ® ¢'a, Bu - '—5”" (!Jb, Cu IR rm—— QV’* ll./)c,
(23)
FUag=itot=5 SfUag—itrt=1o fUaemirt—s
Du = @ (/)d, Eu = "*’@” "g[}e, Fu = T(/}f,

if we put Us = 0, we can take them with respect to P in the forms
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P P P
Ap = /;@(Aﬁa, Bp = };@lpb, Cp . D@c,
(24)
P P P
Dyp = ;@Sﬁ’d’ Ep= ;@‘Pe, Fp= /?5 ©f.

Hence, the determining coefficients A, B, C, D, E and F are expressed by
superposing respectively equations (23) and (24) in the forms

1 {gﬁaf' -+ gbande"(”‘ S
)7

=[N

o A+ Qo f Une e =1

(9»-4

[

L—B»—-A
=y

(25)

v

}
+ gef Use-iiol,
b

eV

Pe- -+ g[}erde ipt—~ fx)}

@»-a

s

=5l
=5l
{@d + af Ude=iv=2
=7,
-1

or— + grf Uae™i =1 “)}

R

in which

D = 4n(2 — vy? ){<"~ o — vo‘-’>(2 — 21 + nugt ~— —7—2—2202>
m

— 2L — n){2 — 2n + m}oﬂ)\/l — —1002\/1 — " } /l — hx/l — v
3m m |\

+- n[ — (2 - 002)2<2 —2n — 7772—1102); — 4(2 — 21 + nold — Ziuﬁ)' + 4{(1—n)X2 —v,%)*
m

+ (2 — 2n 4 ny?)?} /l—;?z--v(,2\/l— ?fl }\/1—*«/1—1)0 cosh ' H,cosh s'H,
! 3m m
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ns

n o2
+ v}l — v?), [ 1 — —v> — (2 — v02)2\/1 — ﬁv& 1 — > cosh#' H,sinhs' H,
m 3m m 3
+- Zvo"L 4(1 — 1;_(,) 1— —w2—(2— v02)2\/1 — —v2i1 — v 2sinh 7' Hycoshs'H,
m 3 m 3m

P 2
4 7@[(2 — 1)02)2(2 —2n + nvd — ﬁvoz) + 4(1 — voz)(l — Z-)-°->(2 — 21— ﬁv&)
m 3 m

— {160 —m (1 = )1 = ) + 2 — oz — 2+ o)

1 n
X \/1 - 7—002\/1 — U2
3m m
3

o = iivo‘z[Z(Z - 002){(2 — o gt — ﬁv(,?) +(2— 1}02)<2 — o — 331)02)}
3m m m

sinh 7’ H,sinh s’ H,, (26)

% (1 — cosh #'H coshs' Hy)

o, Vo _
+ 200%(2 — 002)2\/1 - ;/L‘Uoz\/l — ~§~ cosh7' Hysinhs'H,

2
— 8v02<1 - %)Jl - %vozx/l — y,? sinh#'Hycoshs' H,
_p2fo ¢ 2 _ 1 2) 2 _3?2
T {(2 ) (2 20 + gt = oit) + 8L = vy )(1 )

3

X <2 — 2n — ﬁv&)} sinh #' Hysinh s'Ho], 27
m

oy = ZZvO?P(Z — M (1 —n)2 —v?) + (2 — 21+ nuog)}\/l - 71)02\/1 _w

N

X4/1 — v,2(1 — cosh7' Hycoshs' Hy)

<

‘‘‘‘‘ — |
+ 02 — 002)2(2 - ﬁvoz>\/ 1— % cosh7' Hysinh s'H,
m

2
- 4”02(1 - %)(Z — 11—1/&)«/1 — y2sinh?’ Hycosh s’ Hy
m
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n {16(1 — )1 — 009)(1 ~ %) — (2 — 02 — 2m + 121}02)}

X sinh 7' H, sinh s’Ho], (28)

m

i . 2
— 41— n) 1—~7—vo2 1—1?%2 1—1)1\/1_1,2
3m m 3 o

n
-+ 411{~ (2 - f——»vo2><2 — 21 + nv¥ — ﬁv(&)
m m

ge = Z{jg{?ﬁl(Z — 002){(2 — ﬁvoﬁxz —om 7)02)
m

7n 7 7
+ 22— 21+ nw?), |1 — v |1 — —v2t, |1 — -24/1 — p,2coshr' Hycoshs'H,
3m m 3

n . n o, R .
4= 8 - 0pH(1 — 1%, |1 — =%, |1 — —-cosh#' Hysinh s'H,
m 3m 3

71° n ———
— 202 — v(,z)?Jl — e pgta/ T = v2 sinh 7' Hycoshs'H,
m 3m

n n
+ 1(2 — v02)9{<2 — ——voz><2 — 21 + 1wk — »—7—1102> — 2(2— 2n + nv?)
m m

n n | . R
X \/1 — 3);4;%2\/1 - ;nv()“}smhr Hysinhs'H, |, (29)

Vg n o, R n —
Pa = l; [— 2%1)0‘(2 — U, 1 — -3—7;002«/1 — vl — cosh#'Hycoshs' Hy)

+ (2 — Uog)z{* (2 — Zl*%z)(.? — 2+t — —ﬂ-voz> + 2(2 — 21 + nw?)
m m
X \/ 1— -—»~—v(,2\/ 1— -—»voz} cosh#'Hysinh s’ H,
3Im m

+4n <2 - --1-?»003)(2 — 211 4 92wp* — -’ivoz) — 22 —n-+ nuoz)\/l — —n*v(,? /1 - ﬁvo2
m m 3m o\ m

/ 2
X \/1 - Zi;;‘\/l — vz sinh#'Hycoshs'Hy




No. 12 Elastic Waves with the Discrepancy of Displacements 11

— 8021 — v 1 — 2o /1 — " sinh#’ Hysinhs'H, |, (30)
m 3m 3

2 n vy
e = 110y% [4%002(2 - voz)\/ 1— éﬁvoz\/ 1-— ;—«/ 1 — v%(1 — cosh#' Hycoshs' Hy)
L .

L@ uOZ)E{— (2 — «-’31;02)(2 — o —ﬁvo‘z) + 41— 72)\/ 1— ll—vo?-\/ 1" uoz}
m m 3m m

ve? n n n n
4(1-—”) (2—77 v2><2——2n—-~—v2)—41~n\/1—*7)2 /1—--_02
+ 3{ m’ m " ( ) 3m "\ m

2 1 . .
+ -?‘£v02(2 — 23, /1 — 7—002 sinh 7' H,sinh s’HOJ , (31)
m 3m

1
¢F = 1’ [2(2 — voz){~— (2 — r:;vo?)(z — 21 -+ 720,? _771¢UOZ> + 2(2 — 21 + nvy?)

n 7n vy?
><\/1——v02\/1—~—002 1— >
3m m 3
7 n n
+ (2 — 002)2{(2 — ;ZLv&)(Z — 21 — %voz>—~ 4(1 — n)\/l — %voz\/l — EUOQ}

D2
X, 11— 30- cosh 7' H,cosh s’ H,

2 Vo? .
+ 4 -7-?«009(2 — vf), 1 — »-Zz»ﬁvoz 1 — = +/1 — p,2cosh#' Hysinh s’ H,
m 3m 3

n . n .
— 02 — v?)?, | 1 — —vy?sinh ¥ Hycoshs' H,
m 3m

2 7
+ 4(1 - U;){* (2 - :;voﬂ><2 — o — }ZU°2)+ 41— n)\/l ~ g’;ﬁvoz\/l ~ :;vg}

X 4/1 — v,2 sinh#’ Hysinh s’HO} , (32)
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2

_n
e Im

17—
\/1 — ~§-V1 — p,2cosh 7' H,

004{2<2 — 21 + et — ;}-Z-UOQ)

)\/1 — ;1002«/1 — y2sinhr' H,

v,?

—4(1-—n)(1— :

v
- (2 — v02)<2 —2n — ;;v(,?)\/l - %—f\/l — ptcoshs H,

+ (2 — )2 —2n + nvoz)\/l — ;;voz

2
\/ 1— %—sinhs’Ho}, (33)

2

R ”n L —
=10y —2(2 — 2 Ve2)a 1 — =%, [1 — — — p2coshv H,
©b lmo{ ( n+no)\/ 3m°\/ 3¢1 Vo )

2

+ 2(1 - ”—‘1)(2 —om — f"-voﬁ) /1 = vyisinh 7' H,
3 m

7n v:
4+ 2(1 — n)(2 — voz)\/l — é—mmvf\/l — é— /1 = y2coshs' Hy

ve? .
—{2— 002)(2 — 21 4 At — »7—1--1)02)\/1 -2 smhs’Ho}, (34)
m 3
Uoz 002 7n 7
e = —, |1 —-——12¢— (2 — 21 — —»002)(2 — 20 + nv? — v02>
3 3 m m

¥

2 n P
— 2(1 — n)(2 — 21 + nw,?) /l i voz\/l — v&}Vl — v,2cosh 7' H,
' 3m m

|
2 {2 Ty
+{2— 002){(2 — 21— -ﬂ~vo2> —4(1— n)?\/ 1— l—vog\/l — -nv(,?}\/l — vy coshs'Hy
m 3m m

n? oo
+ v (2 — voz)\/ 1 — ——v?sinh s’HO} (35)
m m

_ v 2 (') 2n " v 2)(2 2n + nv,* nv 2) 2(1 — n)(2 —2n + nvys?)
d = —— 2 — [ p— — — — —
$2 3 o o i 0

M2 — v02)\/1 — 3ﬁ—v02 A/1 — v2coshs' H,
m
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+ (2 — voz){— (2 — 21 + nvl? — 77{1)02)2
m

n A
+ (2 —2n + nvoz)?\/l — §~v02\/1 — ;voz}sinh s/Ho} R (36)

m

. 7? n v ——
Pe = 2002[ - 27;)'/‘1"004,\/1 - é;%’v()?\/l - >§~~ '\/1 — vy cosh #' H,

I UOZ s s n 2 2
+z<1—--— —(2—2n— "y,
3 m

n —_—
+ 4(1 — 71)2\/1 - 51—,&1)02\/1 — -h—évo?}x/l — vy2sinh ' H,

n
+ (2 — v02){(2 — 21 — Mv(,?)(’z — 21 + nv,® — ﬁv(,?) — 2(1 — n)(2 — 2n + nv?)
m

n 7n v,?
x \/l - 3—%002\/1 — mvog}\/l — —;— coshs’Ho}, (37)

2

. 7
©f = 10y {2{(2 — 21 + nwy? — mvo?)

— (2 — 21 4 1ve?)? /l 1y 2\/1 — e /1 — 13“—2coshr’H
Y 3m oy 3 ¢
2 wN | n
42" »ve4<1 — 3)9—)\/1 — —v2cosh s’ Hy
w 3 m
n ; n
4 (2 — vo‘l){u— (2 — 21 — mv&)(z — 2n + nyy® — ;%v(,?) + 2(1 — n)(2 — 21 + 1y ?)
\

7 ”n vyt . .
X \/1 — @}iv"z\/l — ;ﬁvoz}\/l - —:)O)—smh s'HOJ. (38)

Hence the components of displacement may be written in the forms, for the

semi~infinite medium:

U= V%{(g;@ae’y -+ %gﬂb@”)i@“”“f » 4 (%ﬁbaery + }:’éQ/’besy)f Ud}’ (59)
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and for the superficial layer:

lrgef »
= gipt—ra)
v @L{h/o(oc cosh7'y + gasinh7'y) + kA,z(wesmhs ¥y + grcoshs’ y)}#e

{h{ro(uc cosh7'y + ¢asinh r'y) + g;é(gbe sinh s’y + ¢f cosh s’y)}fUd], (41)

, 1 7!
V= = [{ h(g(cocsmhry + @acoshr'y) + -

f (goe coshs’y + ¢rsinh g/y)Pei(pt—fx)
® 14

PE

Y (pecoshs'y + grsinhs y)}fUd]. (42)

“+ { D (¢esinhr'y + gacoshr’y) + PE

The stress-components may be written in the forms, for the semi-infinite
medium:

(S A

-+ {(1 + 2hf22>¢aefy _ Z:“]:Sgbbesy}fUd:l (43)

o2

—~ rr 2
yy == [{(1 - _f;>@aery + i fipbgw}],),ei(m—fx)
h? k2 “

2

+{(1 — ?7;~>¢aery + i?—;—?eﬁbe”}f Ud} (44)

— i 2fr 2 s¢ .
xy =L {(z 4 pac”” + ! ; sabe”)PeKPt-f“
2 2 2

2fr . JP+s
+(2 h2 (IUae + k

<bbe°y) f Ud] (45)

and for the superficial layer:

o

. 2
g[ 72(1 + 1,]: )(wccoshr Y + @asinh#'y)
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.2n fs'

W ———(@esinh s’y + @rcoshs’ y)}Pe“”‘“f”

+ {12(1 + wfj)((‘bc cosh?'y + ¢a sinh7'y)

,271 fs!

k’ 5 ———(ghesinh s’y + ¢rcoshs’ y)} f Ud (46)

—

g [{n(l 27#2)( cosh#'y + pasinh#’'y)
= il (2
=g e ) y+o y

2nfs’ . .
+ Z—k{‘z“‘(@eslnh s’y + (prOShS'y)}Ijel(m—fx)
2

2r'2

+ {11(1 — )(g/;ccoshr’y + gasinh7'y)

+ 27;:; (¢esinh s’y + ¢rcoshs’ y)}fUd] (47)

—~ 2/
Xy = ?15‘[{ / —(gesinh?’y + gacosh’y)

L . P
+ f—flj,w—z (pecoshs’y + ofsinh s’y)} i1
13

D -7

2
+ { ;;2 (¢esinh?’y + ¢acoshr'y)

f2+ s'2

YD —(gecosh s’y + ¢rsinhs’ y)}fUd] (48)

in which Uus is still unknown.

3. Discrepancy between the Tangential Displacements

15

Ua is the discrepancy between the tangential displacements at the junction

and the unknown value and it takes place as the strain-energy of the whole

system becomes minimum. The total strain-energy per unit width in the

direction of x-axis may be expressed by means of
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Q

1 AD , /‘\0 — ,-\2
W = SE S_w{(xm + %) — 20xxyy + 2(1 + o)xy }dy
1 e —_ —— —
— -l 2 2y . 2¢' xx’ ! ‘ ! 19 /
-+ 2E’SO {(M + Yy — 207 xx' Yy + 2(1 + o' )xy }dy, (49)

in which £ and E' are Young's moduli and ¢ and ¢’ are Poisson’s ratios,
respectively. When the integrations of each term are expressed by li(=12,.-,19),
the equation (49) may be written in the form

W = (12/2EDAL(PY e~ 0 Liga® + Lpags + Lpr? + Lo + ¢22) + Llget + o%)
+ Lspepd + Ligegr + Ig(gepe + 0agr) + Lo(pewe — @aos)
+ Lilpage + oepr) + Lu(page — epr) + Lislpd — 0d®) + Lglpd — or®)}
+ (P fUae" =1L 2] @acha + Is{aht + @b 5[11;) -+ 21080
+ 21 pepe + gaga) + 20(@epe + ©rps) + Io(oega + gage) + Li(peds + @)
+ I(petpe + @ehe + Qar + @rpa) + I{@ede + Qehe — pahs — @fa)
+ Lig(page + @epa -+ 0cpr + @rde) + Lilpae + pepa — etps — @roe)
+ 2L 15(pepe — pagpa) + 2115(0epe — rr)}
+ UL da* + Lidais + Leps® + (e -+ ¢pa?) + I(pe? + ¢f?) + Topeha
+ Lipepr + Is(ehe + Qagpr) + I(pepe — Pagpr) + Lig(Pagpe + Pepr)
+ Lulgage — ¢egpr) + L@ — ¢a®) + Iig(g® — ¢r*)31, (50)

in which
L=16-230,
v

. NG A )]
I, =81 + G)Wf,
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I, = E(S ~— 3¢")cosh ¥ Hysinhv' H,,

r/
2 .
I, = ?«Si(l + ¢'ycosh s’ Hysinh s' Hy,

&zz%@~—3qumh2WH5—1L

7 , . 7(51)
= s;(l + ¢')(cosh 2s' Hy — 1),

(r' = )P —7's)

Iy = i2n(1 + 26') ' + S

S{cosh (' + s"YH, — 1},

(" + )P+ 7's)

[9 = i272(1 -+ 20") (7,/ - sl)h/?.k’2

Sf{cosh(r' — s')H, — 1},

(r' — ) fE—7's)
R

L = i20(1 + 20") fsinh(v' + s')H,,

@+ )P4 )

Iy = i20(1 + 20") fsinh (¥ — s')H,,

(= SR
I, = {4(1 —¢)+ (140 )(1 + 81;2’2»&),
Iy = n(l + 0')(1 + J;Z/ilz)Ho.

To simplify the equation (50), when we change to write the parts enclosed by
brackets into [lpe], [lpg] and [I¢¢], respectively, the total strain-energy may
be written in the form

©
T2 D2

e ] + T UasoioUlng + (U Liggl),

which is expressed by a quadratic equation of U.
Hence

oW

P
si =0 or 2fUalIgpg] + e‘“"‘f [lpg] = 0. (53)

Now, if [Igg] 40, we take
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fUs = — }[[@5[}] ..P,ez‘(m—fx)’ (54)
2 [gg] v
I
W= X
2ED?
erii(pt—fx)
i
4.2 pa
r
(yr — s F2 — ys)
y — s} f 7s) pagh
(r + s)h*k*
LZE ¢b2
s
4, 25:: cosh #' H, sinh #/ H, ©c® A+ pd*
1. 25;7Z cosh s/ H, sinh s'Hy pe? + of?
7n
4, 25-(cosh 2+'Hy — 1) pepd
7! ’
7
1. 2551 {cosh 2s'Hy — 1) pep f
e ol 2 pleh)
z3n(1(7,:—)gﬁ~s—)f {cosh (' + s")H, — 1} @epe + @dof
! ! 2 ol
iBn%)f {cosh (y! — s\ H, —1} epe — Qd@f
SRR
| Sl fE e sty
iBn%)s%-—Wfsmh ' 4 s')H, pdpe + peof
1 I F2 L plsl
isnz@%f sinh (v — 57} H, gdpe — pepf
f27,2 .
n<4. 25 + 1077 )Ho pet — it
2o/2
n(l. 25 + 1022 >Ho et — of?

R4
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where the unknown value of Uz is found.

To simplify the numerical calculations of the total strain-energy,

when we

change to write the equation (50) into the form of table, we have as¢ = ¢’ = 0.25

fodei(pl—fx)

P (fU*
2paga (pa®
pad + @bda dadb
20b¢b oot
20pede + pddd) e+ pd®
2pegpe + ©fPf) de* + @t
pepd + pdde deghd
ebf 4+ ofhe gegf

{pegpe + pedpe) + (pddf + pfdd)

Pee - pdpf

((pcgbe “+ eghe) — (pdgpf + ofd)

pegpe — gy

(pdgpe + egpd) + (@edhf + @fipe)

dgpe + de O

(pdgpe + peghd) — (peghf + @fpe)

gdde — dedif

2Apepe — @dipd)

e — (/jd2

b

2(§08§[le — gpfgﬁf)

get — s
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in which each term in the first column has expressed [: and if we sum up in
the columns each product of the terms in the other columns with £ on the
same lines, we shall take [Jo¢], [le¢] and [I¢d], respectively.

4. Dispersion Curves of M-, M,~, M.~ and M, ,~Waves

We shall express the dispersion curves of M-, M,-, M.- and Mu,~waves in
such cases that the densities of both media are equal and the ratios of the
rigidity of the semi-infinite medium to one of the superficial layer are 2, 3,
4, 5 and oo. M-and M,-waves can be decided by putting ® =0 and M.-and
Mu,~waves can be obtained by the principle of minimum strain-energy. The
results are given in Tables 1~17 and plotted in Fig. 2~6.

Table 1. M-wave in the case of n = 1/2.

Vo 0.9194 0.95 1.00 1.10 1.20 1.3002

0 1.498 2.077 3.236 6. 286 co

Eie

Table 2. M-wave in the case of n = 1/3.

l Vo 0.9194 | 0.95 1.00 1.10 1.20 1.30 I 1.40 1.50 1.5924
- i . -
7 0 1. 439 1.859 | 2.545 3.2564 | 4.238 l 6.450 | 15.180 =)
Q
Table 8. M-wave in the case of # = 1/4.
Vg 0.9194 0.95 1.00 1.10 1.20 1.40 1.60 1. 8388
L
o 0 1.362 1.789 2.334 2.921 4,214 7.830 co
I
Table 4. M-wave in the case of # = 1/5.
-
i 2 0.9194 0.95 1.00 1.20 1. 40 1.60 } 1.70 2. 0530

-~ 0 1.345 1.752

2.790 3.766 5.312 } 6. 880 oo
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Table 5. M,-wave in the case of n = 1/2.
v 1.00 1.10 .20 | 1.30 1.414 —
|
L i
—e 0 0.671 0. 957 | 1.341 2.822 —
H, 3
Table 6. M,~wave in the case of » = 1/3.
Uy 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.732
L 0 0. 646 0. 887 1.106 1.376 1.930 2.976 3.924
H,
Table 7. M,-wave in the case of n = 1/4.
2 1.00 1.10 1.20 1. 40 1.60 1.838 2.00
L
—_— 0 0. 635 0. 868 1.279 2.302 4.422 5. 507
H,
Table 8. M,-wave in the case of n = 1/5.
Uy 1.00 1.10 1.20 1.40 1.60 1.70 [ 2.053 2.236
I
L
—E~ 0 0. 621 0. 859 1.246 2.020 3.056 5.517 6.638
0
Table 9. M.~wave in the case of » = 1/2.
VUa 0.9194 0.95 1.00 1.10 1.20
L
o 0 j 1.81 2.51 3.83 8.00
H, :
—I—me - +1:0. 28 —i3.70 —i3.22 —i9.76
Cy
Table 10. Mu-wave in the case of n = 1/3.
Vo 0.9194 1.00 1.10 1.20 1.30 1. 40
L | -
P 0 2.14 i 3.00 3.74 5.52 8.62
Hy J
wgi — —i6.64 314 | —iddl —i6.27 —49.33
0
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Table 11. Mu-wave in the case of n = 1/4.
|
w | 0.9194 1.00 1.10 1.20 1. 40 1.60
. N
—— ] 2.00 2.58 3.65 5.52 12.05
H |
d |
EL : — —i7.36 —i4.98 —i7.84 —122. 39 +12.50
Cy
Table 12. Mu—wave in the case of n = 1/5.
!
Vg 0.9194 1.00 1.10 | 1.20 1.40 1.60 J 1.70
L |
e 1.90 2.72 1 3.21 5.00 8. 69 20.00
HO |
d ‘ |
Z- —10.76 = —72.94 I —i7.89 —1i6. 50 1 —10. 40 ] +i2. 86
0 : { |
Table 13. Mu,~wave in the case of »u = 1/2.
Vg 1.086 1.10 1.20 1.30
L
0 0. 50 1.67 2.50
H,
Ua
e — +10. 42 +140. 36 -+40. 09
Co
Table 14. Mu,~wave in the case of » = 1/3.
vy 1.060 1.20 1.30 1.40 1.45
L
— 0 1.67 2.00 2.57 3.00
H, !
Ud
— —141.23 —10.70 —il.68 —170. 96
on
Table 15. Mu,-wave in the case of »# = 1/4.
vy 1.05 1.20 1. 40 1.60 1.65
L
—— 0 1.67 2.27 4.00 4.40
H,
Ua
s — —i2. 67 —172.06 -2, 41 —71.65
Gy
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Table 16. Mu,~wave in the case of »n = 1/5.

i
vy 1. 045 1.20 1. 40 1. 60 1.70 1.75
e 0 1.64 2.59 3.13 3.26 4.00
H,
Uz . . . ;
e — —12.78 —i2.94 —173.67 —1i3.36 —i3.00
Co
Table 17. M- and M,-wave in the case of n = 1/co,
vy 0.9194/ 0.95 | 1.00 1.20 | 1.40 | 1.60 | 1.80 | 2.00 | 2.40 | .00 | 4.00
] ] H
I M 0 | 1.287] 1.651) 2.475 3.080 38.619 4.127) 4.614 — | 6.978 9.294
H, : :
M, — — 0 0. 833: 1.176, 1.654, 3,108 4.614] 7.021{10.07114. 584

vo

L
o
14

4 5 6 7 8 9 10 11 12 13

Pig. 2. The dispersion curves of M-, M,-, M- and My-wave
in the case of A=y, 2! =g, m=1and n=1/2
1.8}
1.7

1.0

0'9'0 1 2 3 4 5 6 7 8 9

0 1112 13

Fig. 3. The dispersion curves of M-, M,~, Mu—- and Mu,~wave

in the case of 2=y, ¥ =/, m=1 and n=1/3.
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M

L

09 i vl 1 L i 1 L i 1 'l 1 1 H Ho

001 2 3 4 5 6 7 8 9 10 1 12 13 4
Fig. 4. The dispersion curves of M-, My-, Mu— and Mu,-wave

in the case of 1 =p, 2! =g/, m=1 and » = 1/4.

H,

Fig. 5.

The dispersion curves of M-, M,~, Mu~ and Mu;~wave

in the case of 1 =p, 2 =y, m=1 and n = 1/5.
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0.9

0 1 2 3 4 8§ 6 7 8 9 1w 11 12

Pig. 6. The dispersion curves of M- and M,-wave in the case

of 2=y, 2 =p, m=1 and n = 1/co.

In the above figures, full lines have expressed the dispersion curves of M-
and M.,-waves, and broken lines the dispersion curves of M.— and M.,-waves.
It may be understood that M.- and Mu.~waves exist within more narrow
ranges than the ranges of existing M- and M,~waves, and the smaller # becomes,
the nearer M.,-waves get to M-waves and M.,~waves to M,~waves, respect-
ively, and at the limit of », that is 1/, Mw— and M.;—waves should correspond
with M- and M.,-waves, respectively.

We have thought that M.— and M.,-~waves take place when the total strain-
energy becomes minimum with the discrepancy between tangential displace-
ments, but in the actual phenomena, the waves of this kind can not be always
observed at the states of minimum strain-energy, but at the states of higher
strain-energy which have taken place because of imperfect slide. Hence we
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suppose that the observed values exist within the ranges between M- and
M.~waves or M- and Mu.,~waves, but never over the both limits.

5. Group-Velocity of M-, M,~, M. and M.,~Waves

As mentioned above, we have expressed several dispersion curves of the
waves, but as a matter of fact, the observed values are group-velocities
resulted from many elastic waves. The equation of the group-velocity is ex-
pressed in the form

L oy,

Vo=t T g L

(56)

in which V, is expressed by a ratio of the group-velocity of the wave to the
velocity of the transverse wave propagated within the superficial layer, and
the group-velocity does not generally correspond with the phase-velocity.
When we find the group-velocity with the graphical solution, we shall be able
to express the group-velocity of M-and M.-waves in Fig. 7~10, and one of
My and Muy-waves in Fig. 11~14, in which the dispersion curves and group-
velocities of M- and M.~waves are expressed with full lines, and these of
My and Muy-waves are expressed with broken lines, respectively.

We can find in Fig. 7~14 that the group-velocity of M.~ and M..-waves
differ from one of M-and M,-waves, and M.-waves have a characteristic that
two minimum values are expressed. The smaller # becomes, the smaller the
minimum group-velocity becomes and when the minimum group-velocity is
caused, the greater the phase-velocity and wave-length. As far these natures
M.~waves look like M-waves and M.,~waves are similar to My-waves. We
hope that there will be observed values within the ranges limited by two kinds
of group-velocities.

.8

Fig. 7. The group-velocities of M- and Mw—wave in the

case of A=p, ¥ =4, m=1 and n = 1/2.
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Fig. 8. The group-velocities of M- and Muw-wave in the

case of 2=y, M =p/, m=1and n=1/3.

0.9

0.8

0.7

0.6

Fig. 9. The group-velocities of M- and M.-wave in the

case of 1=p, X =y, m=1 and n = 1/4.

27
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Lo, Vo

The group-velocities of M- and Mu~wave in the case of

Fig. 10.
A=p, M=y m=1and n=1/5
1.4} vo, Vo
M2
1.3
12 / Group vel. of pf.

Group vel . of Mua
1.1

Fig. 11. The group-velocities of My
and Mus,-wave in the case
of A =up M=y, m=1
and # = 1/2.

Fig. 12. The group-velocities of My~ and
Mus—wave in the case of 2= g,
V=p, m=1and n=1/3
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Vo, Vs

vo, Vo

M

7
1.6 /‘\Mu:
//
,//Group vel. of Mz
4

v
Group vel. of Muz A\
Group vel. of Muz

Fig. 13. The group-velocities of My and 0-5
Mous-wave in the case of 2= g, 0.4

A=, m=1and »n=1/4. 0.3

0.2

Fig. 14. The group-velocities of My~ and
Mus~wave in the case of 2= g,
M=pl, m=1 and n = 1/5.

6. Distribution of Displacements at Different Depths

We shall study the distribution of displacements at different depths.
Horizontal and vertical components of displacement within the superficial
layer and within the semi-infinite medium are reducted to

. '
U= {;’L{;<ccosh 7'y + Dsinh7'y) + ks-,E(Esinh §'y + Feoshs'y)lewt=12,

7! if

V= {—-W(Csinh 7'y + Dcoshr'y) + EZ(Ecoshs’y -+ Fsinh s’y)}ei“"—f“’,
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U= (L'f Ae™ + iBesy)gi(pt~fx)
52 k2 ’
(58)
¥ if )
Ve (- - Ag? + 7 Be? gwi—ro,
< the + sze )e

The results of calculations of displacements in the cases of cerresponding to
several points of the figures that express dispersion curves are shown in Fig.
15~24 for M.~waves and in Fig. 25~35 for Muwaves. In figures, let @ and

b denote amplitudes of horizontal and vertical displacement-components,

respectively.
4 -3 -2 -1 4~ 1 2 3 2 -1 4 1 2 -3 -2 —1 .- 1 2 3
b 2 e b a b a
0 0 0
'({l . /(a a
~ Ho F— Ho L Ho
X — 2Ho -— 2Ho = 2Ho

Pig. 15. The distributions
of displacements in the
case of corresponding to
n=1/2and », = 1. 10 for
Mu-wave,

-2 -1 a1 2

Fig. 16. The distributions
of displacements in the
case of corresponding to
n = 1/2and v, = 1. 20 for
Mu-wave.

4 -3 -2 -»1ﬁ 1

Fig. 17. The distributions
of displacements in the
case of corresponding to
n = 1/3and v, = 1. 20 for
Mu-wave,

T
aQ

X

0
/(a
t— Ho

— 2Ho

Fig. 18, The distributions
of displacements in the
case of corresponding to

= 1/3 and », = 1. 30 for
Mu-wave,

~ Ho

~ 2He

Fig. 19. The distributions
of displacements in the
case of corresponding to
n = 1/3 and », = 1. 40 for
Mue-wave,

Q/V/H(
Y

— Ho

—~ 2Ho

Fig. 20. The distributions
of displacements in the
case of corresponding to
n = 1/4 and », = 1. 20 for
Mu—-wave.
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—5~4~3—‘4—-1ﬂ1 2
Ho 71/

a

b

Fig. 21. The distributions
of displacements in the
case of corresponding to
n=1/4 and v, = 1. 40 for
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\UH, H\JL—
b
a b 0 a g
o :
— Ho — Heo
L—2Ho - 2Ho

Fig. 22. The distributions
of displacements in the
case of corresponding to
n=1/4 and v, = 1. 60 for

Fig. 23. The distributions
of displacements in the
case of corresponding to
n=1/5 and v, = 1. 20 for

Mu-wave. Mu-wave. Mu-wave,
-6 ~5 -4 -3 -2 -1 ﬂ 1 -2 -1 1 2 3 4 -1 ﬂ 1 2 3 4 5
Ho. W, Ha
b tj/ a \k a
« [) [‘
0 [ 0
/(u a -
~ Ha L Hy - Ho
- 2Ho P 2H, - 2Ho

Fig. 24. The distributions of
displacements in the case of
corresponding to n = 1/5 and

v, = 1. 60 for Mu-wave,

Fig. 25. The distributions
of displacements in the
case of corresponding to
n=1/2 and v,=1.20 for

Fig. 26. The distributions
of displacements in the
case of corresponding to
n=1/2 and v, = 1. 30 for

Mus-wave. Mu—wave,
4 -3 -2 -1 1 2 3 5 =2 =1 gy 1 2 —? “.1,4:‘1 2
\WH, o o
pri} b b a b a
0 0 0
l-a . o
a
~ Ho - Ho —Ho
- 2Ho — 2Ho t— 2He

Fig. 27. The distributions
of displacements in the
case of corresponding to
7 = 1/3 and v, = 1. 20 for
Mu,—wave,

Fig. 28. The distributions

of displacements in the
case of corresponding to
n = 1/3 and v, = 1. 30 for
Muy,~wave.

Fig. 29. The distributions
of displacements in the
case of corresponding to
n = 1/3 and vy = 1. 40 for
Mug—wave,
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-2 ~1 ey 1 2
s

Ho Ho
b a b a
0 o
Ko ¢
— Ho —Ho
—2Ho ~ 2Ho

Fig. 30. The distributions
of displacements in the
case of corresponding to
»n = 1/4 and v, = 1. 20 for
Muy~wave,

—3 ~2 —lr—) 2 3
—

Fig. 31. The distributions
of displacements in the
case of corresponding to
n = 1/4 and »y = 1. 40 for
Mus—~wave,

No.12

~2 ~l—s1 2 3
L

b
1
\ "HO
— 2He

Fig. 32. The distributions
of displacements in the
case of corresponding to
n = 1/4 and v, = 1. 60 for
Mus~wave.

R

=3 -2 ] e 1 2

I -
,  He Hoy H.,/
a b a b @
0 0 0
S . .
—Ho F— Ho t— Ho
- 2H, — 2He - 2Ho

Fig. 33. The distributions
of displacements in the
case of corresponding to
n = 1/5 and v, = 1. 20 for
Mus—wave,

Fig. 34. The distributions
of displacements in the
case of corresponding to
7 = 1/5 and v, = 1. 40 for
Mus~wave.

Fig. 385. The distributions
of displacements in the
case of corresponding to
n = 1/5 and v, = 1. 60 for
Mus~wave.

It will be seen that there are two kinds of orbital motions of a particle at

the surface of media and one of them is in the same sense as the motion of
gravitational wave and the other is in the same sense as that of the usual
Rayleigh-wave propagated over the surface of semi-infinite medium and they
are elliptic motions. But though # is the same number, while the phase-
velocity is relatively smaller, the elliptic orbital motion is counter—clockwise,
and when the phase-velocity become relatively greater it becomes clockwise.
On the M.waves, the vertical displacement is greater than the horizontal
displacement at the surface, but on the M..—waves, it is contrary. Hence we
may find such phase-velocity that either horizontal motions of M.~waves or
vertical motions of M.~waves are nothing.

As all vertical stress-components are compressive stresses, and tensile
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stresses are not at all caused at the junction, the motions do not accompany
the separations as the initial assumption.

7. Conclusion

On the elastic waves propagated within the two-dimensional layered media,
the results of numerical calculations in the case of allowing the discrepancy
between tangential displacements at the junction have clearly expressed that
My and M.,~waves are different from M- and M,-waves which have been
known already and that the natures of M.-waves are different from one of
Mus—waves. The analysis is based on the condition that the superficial layer
and the semi-infinite medium can be reciprocally slided at the junction to the
last and the discrepancy between both media is decided so that the strain-
energy of the whole system may become minimum. Hence, this continuous
condition has more universality and more apropriateness and M.~ and M.,
waves obtained under such a condition are one phase of limit waves. We have
heard there is something hard to explain the larger discrepancy between the
observed values and the analytical curves. We have been afraid lest the observed
values with such discrepancy should be plotted for reasons that these have
errors due to defects of the recording instruments or the discrepancy is so
large on account of the inner structures of the earth having such elements as
we can not ascertain.

Lately, we have expected that we may explain the very observed values
being different from analytical curves by the application of this idea. In this
article, we have treated the elastic waves as the two-dimensional problem
and so we can not compare the three-dimensional seismic phenomena with
these results, but we can give some suggestions of the tendency of waves.
‘We may suppose the slide is caused at the junction between each layer in the
earth, but we may doubt if the slide will take place till the strain-energy
reaches the states of minimum. In the case of the imperfect slide, the observed
values will not correspond with the analytical curves and be recorded within
the narrow ranges limited by M-waves and M.~waves or My,-waves and M~

waves.
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