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SYNOPSIS

Various methods for the analysis of continuous beams have been proposed
and investigated. They are compelled to treating simultaneous equations
involving many unknowns, which have been recognized to be unavoidably
necessary in the analysis of solid mechanics.

This paper takes a set of bending moments at any two consecutive
supports of a continuous beam as the matrix consisting 2-by-1 elements,
which is referred to as the “eigenmatrix.”l

Then, one of these eigenmatrices can be shifted from one span to its
adjacent one by a certain shift operator matrix which is defined by the span
length and the moment of inertia of cross-section. By such a shift operation,
the bending moment at any support of the continuous beam can be obtained
readily and systematically, dispensing with simultaneous equations.?2

The influence from external loads, settlement of suppots, and temperature
change is also expressible by a 2-by-1 shift operator matrix. For these
factors, it will be necessary to make a simple modification to the fundamental
operators.

This method will be of great advantage in the analysis of complicated
continuous beams.

INTRODUCTION

The generalized Clapeyron’s theorem is written in the following form
for any consecutive two spans of the continuous beam illustrated in Fig. la.

l lr 1
Mr 1 +2M7([r 1+L>+Mr+1
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Fig. 1.

In the above equation, the right side represents the influence by the external
load, the settlement of support, and the difference in temperature
respectively.

Introducing the ratios

L I I,
b=t v = = @
Eg.1 yields
1 1
Myoy o+ 2Mr (14 ko) + Myaskr = — 6(®r17— + Uy ke
- 7
6EL, Ir_ L
- "'J-k?' (@rwr—1 — aywy — wy 4 Wra1) + 3E5< 1AT7'—1 - J“ATrkr)’ (3)
l”r r—1 hy
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and, for simplicity, using the symbols

, 6337*-1 6117
K y—1 = l,-_l 4 Ky = -l,. b 2
6EI ol, "9 3Ee |
or = Z, = o p= "5 5

the above equation becomes
M1 + 2My (1 + k) + Myi1ky

- — (K/r——l + Krkr) — 0y (drwr——l — Wy — Wy + wr-.l—l)

+ ﬁ(Zr—lllTr—-l -+ Z?'AT)‘kr>-

This is the fundamental equation adopted for use in the present paper.

CONNECTION CONDITION

(4)

(5)

In order to derive the basic relation between bending moments at any

consecutive supports of a continuous beam, we shall consider the case in

which all the influences represented in the right side of Eq.5 equal to zero.

Taking out any set of three consecutive spans as shown in Fig.2,

Clapeyron’s theorem yields two equations
Mr~1 + 2M7‘(1 -+ k1) + Mr—}-lkr = (), }
My + 2My i1 (1 + kra1) -+ Mygokrir = 0. f

M, ertm M, ’r\ MT’HT:N M, ZT:h
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Fig. 2.

The above equations can be written in the matrix form

1, 2(1 4 BT
0, 1

_Mr_l_
AL My

k)', O -
2(1+ kry1), Rran

Myt
Mg

:O,

which may also be written in the compact form

Cr {Nr—ly N7’+1} == O,

#) The notations in this paper are indicated in Appendix III.

the

(6)

®

#k) It is assumed here that the beam has a symmetrical cross-section with respect to

its neutral axis.
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in which
L 2(L4+k)T T R o
C?’ = | y (9>
| 0, 1 - _2 (1 -+ k7‘+1), kr+1_ |
and
“My_1 “Myya”
Nr-1 = , Ny = (10)
— My — 742

Eq.7 or 8 is the connection equation for the two physical quantities Nr-1
and Nr+1. The physical matrix of the form of Egs. 10 will be referred to as
the “eigenmatrix” of the span considered. Contrarily, Eq.9 is one of the
operational matrices, with which definite operations are to be performed on
eigenmatrices.

SHIFT OPERATOR
Eq.8 will yield the shift formulas
Nri1 = LANr—1, Nr—1=L"Nr, (11)

in which the shift operators L., and L’, represent

1 ke, 0L 2L+ k)"
b= ek
rhr 4l — 2(1 4 kry1), ke | O, 1
1 | —kra, —2(1+ krYRraa -
Hrtl) 201 4 kry1), — B 40+ B )1+ Rry1) _
and
1L, —2(1+ kR kr, 07
L'y=—
0, 1 2@+ krga), Ry
}_'— kr + 4(1 -+ kr)(l + kr+1)7 2(1 + k7’> k7'+1— ( )
- , 13
_ - 2(1 + kr—f—l), - kr—H
respectively. It can be verified that
L. » =E (E being the 2-by-2 unit matrix), (14)

which proves, from the practical standpoint, the correctness of the compu-
tations.

L~ is the rightward shift operator, or briefly the right shiftor, since
Eq.1la suggests that the physical quantity N,—1 can at once be shifted
rightwards by premultiplication by the shiftor L,. By similar reasoning,
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L', is the left shiftor.

L, and L', are, in the broad sense of words, the “ratios” between the
two physical quantities N»—-1 and Nr+1.

VARIOUS FORMS OF FUNDAMENTAL SOLUTION

As a simple application of the preceeding reduction, a continuous beam
subjected to the external edge moments M and M, which are given quanti-
ties, is taken as shown in Fig.3.™ It will be found necessary to classify the
analysis of the continuous beam into several groups by the number of spans,
i.e, by the odd and even numbers of the constituent spans.

ro- 1 n—1 n

1 2 T
T )
\1 1y j‘ 121 lrz‘l‘ Ly il‘n—r’]—*— N
—odd ~number spans«————J

even ~number spans-

Fig. 3.

1. Continuous Beam with Cdd-Number Spans.

When a continuous beam consists of odd-number spans, there will be
four forms of solution, corresponding to the way of selection of the standard
eigenmatrix Ny.

Solution 1 (Fig.4).

In this case, the eigenmatrices are taken to be

R "M, "My “My—1
Nl = ’ N3 = ’ N5 = ) N?L—‘l = s (15)
M, | M, M, M
in which 9 and M’ are the given external edge moments.
Taking N as standard, Eq.1lla yields the following shift formulas:
Nz = L2N:;, Ns=L4Ns = LN, - y N-1= La—dl—sLdoNi.  (16)

*) To denote the support number of a continuous beam, two letters » and » are
used. The letter » represents any support number and can be any integer, while
the letter » represents the support number at the extreme right or the next
support and must be an even number:

n=2 (1=1,2,3,--).
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p My My, M, M; Mo M, ~
{/ 1 2w /73 AN 75 n—2%__ /n—l noy
\\A Aj \& AJ \A / \A A—‘ //

N, — Ny, —> —_—— — e N,
L, L, Lo,
TFig. 4.

The shiftors Lo, L4 -+, Lu—2 are given by Eq.12. Then substituting from
Egs. 15 into Eq. 16c,

l n—1

g0
- Lal—2 Ln——4"' L4L2 l |; (17)
o M, |

which can be transformed to

0 717 D
-+ A/Wn—l = Ln—Z"'LZ -+ Ln—Z"'LZ ZW’Z, (18)
My Lo 0 1|
from which it follows that
T M, | o =1]
=| Lu—obo—sLe ,
__Mn—l_ _ 1 = _ 0 I
I o]
X1 — Ln-—2L)l—4"‘L2 + (19)
0 _9)2’__

This is the desired final equation, and the present problem (Fig.4) has
been solved dispensing with simultaneous equations.
Selution 2 (Fig.5).

The eigenmatrices are taken to be

_MZ_ _1W4_ MM;L—Z_
NZ"_" B N4: y T NJI*Z - 3 (20)
_fwa_ __Ms__ n—-1_]
and then the rightward shift operation yields
N;z—2 = L7z—3 L)z—S"'LS LS N2- (21)
e m’
P M, M, My Ms M, _» M, 4 -
{/ 1 772 ™ 74 5 =2 n-IN n oy
\\A = z 7 & zJ = =) /I
= N2 — N, e N, -

L, L [T

5

Fig. 5.
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To take boundary conditions into account, the Clapeyron’s theorem for
the extreme right and the extreme left consecutive two spans is written as

MM+ 2Mo (1 + kg) + Mk, = 0,
M2 + 2Mya (1 4+ kpen) + Mhypr = 0, } 22)
which can be written in the matrix forms
M+ L 2(1 + ko), by | Nz = 0,
L1, 201 + kuct) I Nz + Deus = 0. } #9)

Egs. 23 are the necessary boundary equations which are expressed in
terms of the given external moments N and P'.
Substituting Eq. 21 into Eq. 23b, and referring to Eq.23a, the final solu-
tion is obtained as follows :
-yom -
‘ \ (24)

2(1 + k?)) kg -
11, 201 4+ k1) JLu—sba—s L |

'AJ{)
_Ms_

_?Dt’kn—l

Solution 3 (Fig.6).

Using the following method, the eigenmatrix at any odd numbered span
is determined directly. For example, taking [Ns as standard, the right and
leftward shift operations from Ns yield

Nt
N:= 1 } = L2145,
M,_

o (25)
Mu-—l
Nu—l = = Laz—ZLn—4"‘L8LGN5.
_ W
91/:»( M, M, M, My M, Moy ‘ﬂ\R
[ 1 2‘\ /’3 4‘\ /’5’ fﬁ ﬂz—] LY
S A G )
N -
N, =— HN; = N —» — = — — N..,
1 L, 3 L, 5 L, Loy 1
Fig. 6.
Writing the above equations together,
- mT Cm 0, 07 , B
‘ _ ~ L'el's
_ Mg _ 0 1, 0 M2 :
- = + = N, (26)
Mn—l 0 0, 1 _Mn—l_
Lo—2ln—s-Ls

m v 0, 0_
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from which

- Ms | [ 0, oYy —Mm ~
N B
Mg 1, O 0
= . (27)
M, 0, 1 0
“‘E_n—2L1z—4”'L6,
_Mn—l_ _ 07 0 — _"mt/ —

This is the desired final solution. Egq.27 requires to compute a 4-by-4
inverse, although this is of a simple form.

Selution 4 (Fig.7).

Taking N as standard, the right and leftward shift operations yield

N2 = Lo-sln—s5-LolsNes, N2 = L'3L."s Ns. (28)
m ¥
Ei/> M, M, M M, M,_, M, , =X
{ 1 /'2 3\ 76 7\ an.? n——\l\ 2\
(\ X & zJ = 7 & z7 =2 |
~— Ny =<=— Nj <= Ng —»---—> Ny -~
| ..L 5 L1 Loz
Fig. 7.

Substituting Egs. 28 into Egs. 23 yields

[2(1 + ko), kodL/sb.sNs = — I, }
(29)

11, 201 + ku—1) I Lu—sb—5-LoNs = — M k1.
Writing these equations together, the following final equation is obtained:
M L2(1 + k), AjLldls T
'AML 11, 2(1 + Bu—1) La—sbaosby

~1!

oM T
_Sﬁ/k)z—l_

(30)

2. Continuous Beam with Even-Number Spans

As described in the preceding article, there are also the following cases

of solution regarding the selection of standard eigenmatrix:

(a) N for the first span,

(b) N2 for the second span,

*) There are the following relations between the right and left shiftors :
Ly—oly—g-Lale = [LIZL/4"‘L,72—4L’11—2]_1,
(Ln—zlp—g---Lalo] "t = L/ok /gLt y—gl/ ppz.

Combining these relations with Eqgs.25, we can get the same result as solution 1.
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(c) Nl2r—1 for an arbitrary odd numbered span, and

(d) Ner

for an arbitrary even numbered span.

Solution 5 (Fig, 8).

i}}}/
/

am
> M.? A/I,'; My 2 My—1 My “:t
{1 2N /73 =2\ a1 2\ a1\
\\ & =7 \A LA A/ Y /)
- N — N —_— — — —  — N, -
1 L-z 3 L“ Ln—z n—-1
Fig. 8.

Taking [N as standard, the rightward shift operation yields

Nn—l == Ln—ZLn-4"'L4L2N1. (31)
The right boundary equation is written to be

Ll, 2(1 + kn)J Nn—l = gﬁlkn.

(32)
Substituting Eq. 31 into the above equation,

M FoT
LL 2(1 + k) JLn—2b—s--Le ‘ + ‘ ) ! M; | = — Mk, (33)
SO B N

from which the following final equation is obtained:

H

]VIE =

- \_17 2 (1 + kn)J Ln—2Ln——4"‘L2

‘+9ﬁ’kn < (34)
_0_

X I..17 2(1 -+ kn)J L?Z——2L71—4"'L2

Soluticn 6 (Fig.9).

M, ~1 M n, . Jié
{1 2 8N /4 =1\ /7 nt1
\\A & L3 BN =7 & 2
s
S~ N — N; —> — — — N, -
L Ls Lot
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In this case, the standard eigenmatrix is taken as Nz, and the rightward

shift operation vields
Nn = L;z—an—3"'L5L3N2,

which is transformed to

0] (17
t : ‘ + l iMn = Lo—1bo—a - LsleNe.
Ml L0

The left boundary equation is written to be

M+ 2(1 + ko), ko] N2=0.

Writing Egs. 36 and 37 together,

B 0 21+ k), ke
0 -+ 1 Mn -+ NZ = O,
—Ln—bla-3-La
R 0

from which the final equation becomes

- "M, “2(1 +ko), Ry, O
Nz
= ]\43 = e 1 O
- Ln—an—3"'L3
M, M, N 0 |L9v_
Solution 7 (Fig.10).

mi.> My My M, M My Ma, My <
{1 f\ /5 4\’\ ((5 (JV\ -1 n‘\ n+1\)
\ £ YA 5 —E T - A
S~ N . N N . A g 7

i LZ 8 | ? Ls Lono2 Nt

Fig. 10.

(85)

(36)

(37)

(38)

(39)

For example, taking N5 as standard, the right and leftward shift

operations from N5 yield
Nou—1=Lo—2bo—4--LalelNs, Ni= L2 4NGs.
The right boundary equation is
I_l, 2(1 + kil)_J Nn—l + m’kn = (. -

Substituting Eq.40a into the above equation,

(40)

(41)
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|_11 2(1 + kil)J Ln—an—fi'”LBLﬁNS -+ Sﬁlk;z = (3. (42)
Eq. 40b is transformed to

07 Bl
) My — L'l N5 -+ =0. (43)
Writing Eqs. 42 and 43 together,
0 . . - M
— Ll
1| M+ Ns+| 0 |=0 (44)
_0_ .. I_l, 2 (1 + kll>_| Ln~ZLn—4"'L6_ _ﬂﬁ’kn_
from which the final equation becomes
M, "0, Bt )
— L2y
_MG_ ‘Oy l_l, 2(1 -+ k?l)_l L71—2L71—4"'L6_ ﬂgjtlk;l_
Solution 8 (Fig. 11).
n a
P M, My M, Ay My -~
(/ 1 2 N 4 i /7 nil
\ N AR </ \Z 2
/
~— N ——— ) ——r - No ~—
- Ly ! Ls Loy
Fig. 11.

Taking N4 as standard, the right and leftward shift operations yield

Nn B Laz-lL;z—3"'L5N4, NZ = LI3N4. (46)

The left boundary equation is written to be

M+ [ 2(1 +ks), k) Nz= 0. (47)

Using the same procedure as described in the preceding solution 3, Egs.46a
and 47 may be written in the form

L2(1 4+ ky), oLz T 0 B
Nll”i" 1 1Wn -+ 0 = (, (48)
0 _ Y

—Laaba-s-Ls
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from which, the final equation becomes

M TL2(1 + ko), RodL's, O

M; | =~ L 1 0 |. (49)
- Ln—an——3"‘ 5y

M, 0_| |

3. Continuous Beam with Clamped End.

The clamped end of a continuous beam (Fig.12a,and 12b) may be
considered to be equivalent to the adjacent imaginary span which has an
infinitely great amount of moment of inertia as shown in Fig.12c, and 12d.9

Fig. 12,

To derive the basic equation of the clamped end, assume that there are no

external load, no settlement of support, and no difference in temperature in
this system.

Clamped at the Left End.

By Eq.1, the Clapeyron’s theorem for the span [/, and the imaginary
span /, in Fig.12¢c vields

l / I l
Mo+ oMy (2 + )+ Mept = 0, (50)
oo (o] ]1 ]1
from which it at once follows that
Mg = — 2M1, (51>
and the eigenmatrix for the span /; becomes
M - -
N;.= = M. (52)
My -2

Two unknown elements are reduced to one, and the problem can be
solved. *®

*#) Writing down the three moment equation for the spans /[, and /,, the support moment
M; can be represented by the clamped end moment M;. Thus, in the case of a con-
tinuous beam with clamped end, we can express the entire support moment as a
function of the clamped end moment.
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Clamped at the Right End.

By the same procedure as in the preceding derivation, the eigenmatrix
N, in Fig.12d is represented by

- g-

N = Mn+1- (53)

1

EXTERNAL LATERAL LOAD

When a continuous beam subjected to external lateral loads, the
Clapeyron’s theorem (Eq.5) takes the following form for any two consecutive
spans in a continuous beam:

M1+ 2My (1 + k) + Myiiky = — (K'y—1 + Koky),

(54)
My + 2Mr 1 (1 + krgr) + Mrgokryr = — (K'y + Kraikran),
in which
6 6 \
Klr—l =5 287~1, Kr e uy,
Zr-1 l?’
(55) **)
6 6
K, =—%, Krir = 7— 1.
lr l;’—f—l
Eqgs.54 can be rearranged to the matrix form
1, 2(1+ k)T \" 11 | ke, 0 WMy
+
_0, 1 LM | 20+ k1), ke || Mrga
“K’r—l -+ Krkr -
= — , (56)
__K,r -+ Kr+1k7+l_
which can also be written in the compact form
Cr {(Nr-1, Nvt1} = —- Ko, (57)

in which, C,, N»-1, and Nr+1 have been defined by Egs.9 and 10.
K» is a 2-by-1 matrix which is determined by loading conditions as follows:
B K/r—l -+ Krkr -

Kr = .
_K,r + Kr+1kr+l_

(58)

Eq.57 yields the shift formulas

#k) The values in Eqgs.55 are defined as the “Load Term” in this paper, and are
collected in Appendix I for typical loading conditions.
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N7’+1 = L?‘N)'—l + Pr, }
(59)

No—1= L'Nys1 + P’?’y

in which the shiftors L and L', have been given by Egs.12 and 13.
P, and P’ are the shiftors which represent the influence of the external
lateral load, and are defined by

P 1 B - (Klr—l + Krkr) k?’+1 ﬁ\
T kbt | 2(Kyly 4+ Kok (LA rat) — (K'y 4+ Kratkrst) br |
(60)
P' 2 (K'r + Kr+lk7'+1) (1 + kr) - (K'r—-l -+ Ki‘ki’) ”l
- —(K'y + Kryakrs1) il

1. Continuous Beam with Odd-Number Spans Subjected to Lateral Load.

When a continuous beam consists of odd-number spans, there are also

four cases of solution as described in the previous article.

Solutien 1 (Fig. 13).

m l e
~ l l . i N
R LN R Ea\ S AN g 1 P
< VARG °/ J \& J
~ ~

. N . N

N, L, P, LR TS Lo, Py s et

Fig. 13.

Taking N as standard, the rightward shift operation yields
Nn—-l = Ln—.‘ZLn—4L'}z~6'"L8L6L4L2N1 -+ Ln—2L)z~4Ln—6'"L8L6L4P2
+ Ln—»ZL71~4Ln—6'"L8L6P4 ++ Ln—ZP;L«Il + Pu—z

- Ln—ZLn—4"'L2N1 + L1z-—2_Ln—4{"'L6 (L4P2 -+ P4)
+Ps} + Pus }-%— Pu-2  (61)

The above equation can be transformed to

e

0
1

1
1\4}1—1 = L7:-—2L71—4' ’ 'L‘)

+ Ln—2l:Ln~4("'P2"') + P :] +Pus (62)

+

-0

0

from which it follows that
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‘_—1—
| o

| =1 Ln—aln—e-Le

- Mz -
_Mn-—l_

0
- Ln—ZLn-—A‘ N 'LZ

“932_1

— l Loz [:Ln_.4 (P2 4 Pt [ + Pz (63)

+
M

This is the final equation for the present case. Comparing this with
Eq.19, it may be seen that these equations are quite similar, the only

difference being in the additional term due to loading condition postmultiplied
by Eq.63.

Solution 2 (Fig. 14).

m

_ m’
7 | I \ s
[ 1 It EnS R N bt nedN  Zhe2 o iT\pliin
S G A TE
N, e _— — — Ny,
Ly Py bnog, Pnog

Fig. 14.

The standard eigenmatrix is in this case taken to be Nz, and then the
rightward shift operation yields
Ni-2 = Lu—sbu—s5-LsLsN2
+ hr—dbn—sLsPs + -+ Lu-3Pn—s5 + Pu—3s
= Lun—shun—5--LsLsNe2
+ bu-3[ln-s5(-Ps) + Pu-s] + Pu-s. (64)
The right and left boundary equations are written to be
11, 2(1 + kpe1) I Nz = — MEp—1 — (K'y—2 + Ku—1ky-1), } (65)
L2(1 4 &), ko] Ne= — M — (K'y + Koks).
Referring to Eq.64, and using the same procedure as described in the deri-
vation of Eq.24, the final equation in this case is obtained in the form
M,
_fwa,l‘

2(1 + k), ks -
— {—1’ 2<1 + k"—l)_l L11~3er—5"'L3 o

-1

N2 =

m + (K + Kky)
9)?'/6,,_1 + (K,n—-z + Kaz—lkn—l)

x
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- - 1. (66)
+ 1_1, 2(1 -+ kn—l)_l —LH—S [Ln——S("'PS“') + Pn——S] -+ P;z——3

Comparing this result with Eq.24, the term due to loading condition is
added in the postmultiplied matrix in the above equation.

Solution 3 (Fig. 15).

m m
- A TS
T I
il s oy N a Y
>/ \& ./ AN /

S S

Nl e N3 —~— N5 e e Nh—l
L, P Ly, Pi Lg, P Loz, Proz
Fig. 15.

Taking any odd numbered eigenmatrix, for instance, N5 as standard,
the final equation becomes

" Ms ) |7 0, 0711
- LI2L141
M 1, 0
M2 y 1
- Ln—Z"'LGy
_]‘411—1~ s O_
T—m )T 1
L:P4+ P
0
« n . (67
0 - -
Ln-——2 L7z~4("'P6"')+Pn—4 +Pn——-2
e L - - _
Solution 4 (Fig. 16).
m__ aw’
I 1/2 eV A u gz o N 0
L Z 7 G 7 NS 2/ /
- 7
N2 =7 N; ™= Ns 77"~ Nu

L;;, P;} L5,P5 L?,P?’ Lrﬂ,‘;, Fn»-.‘f -
Fig. 16.
Taking N6 as standard, the final equation becomes

L2(1 + k), kel Lal's -t
_l_l, 2(1 + kn—l)_] Ln——3Ln—5"'L7 i

My
Ns= l
_M; |
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M+ (K'y + Kaoks)
X
mz,kn—l -+ (K/n—z + Kn—lkn—l>

FL2(1+ Ry, Rl L'aP's + P'{l

- = - |- (68)
+ Lly 2(1 + k;z-1).§ "L7l—-3ELn—5<"'P7"‘) + Pn—S] -+ Pn—B }

2. Continuous Beam with Even-Number Spans Subjected to Lateral Load.

As in the preceding solutions, the final equation for this case will also
take the form postmultiplied by a certain matrix due to external load.

Assuming that, there acts an arbitrary series of external loads on the
continuous beam as shown in Figs.8, 9, 10, and 11, solutions for each case
can be derived using the same procedures as described previously.

Solution 5.

Taking N as standard, and shifting to the rightward direction as shown
in Fig.8, the final equation becomes

—1
-0
MZ = e Ll, 2(1 -+ kn)_]Ln—ZLn—tt"‘L?

1

X le 2(1 + kn)_an—~2Ln-—4"’L2

Dia
+ mtlkn + (K,n—l + Knkn)
_0 |

11, 20+ k) l] Lned Lot (-P2) + Poaed] + Pz | . (69)

Solution 6.

Taking N2 as standard in Fig.9, the final equation becomes

My~ 2(1 + k), Ry O
1143 = — 1
— La—1boi—3-Ls,
M, 0

S M (K o+ Kok -

0
M

(70)

_‘] Ln—l [:L71—3 (Pg) + Pn——3j +P)z—l
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Solution 7.

Any odd numbered eigenmatrix is taken as standard in this case. Taking
N5 as standard, the final equation is written to be

MMZ— ——O’ “1-1
o e
1W5 = — 1,
_M_ 0, L1,2(1 + k)l La-2-Ls_
SR
— (L P+ P2
X110

_mlkll -+ (K,n—l + K}zkn)

_ N (71)
-+ LL 2(1 + kn)J _Ln—«Z[Ln—A&("'PG"') -+ Pn—flj + Pn—~2~

Solution 8.

Any even numbered eigenmatrix is taken as standard in this case. Taking
M4 as standard, the final equation is written as follows, and may be com-
pared with Eq.49 which was derived for the unloaded case.

M, L2(1 + ko), Rodl's, 07|71
[Wf, = —

- Ln—an-—3“'L5,
M, _

N+ (Kll + szz) + L2 (1 + k2>7 kz_l P's

x| 0, — - (72)
o - _L?l—l [Ln—S(“'P5"‘) + Pn—-3] -+ Pn—l_

3. Clamped End of a Continuous Beam Subjected to Lateral Load.

Using the same procedure as described in the previous fundamental

solution, the clamped end of a continuous beam can be analyzed for given
leading conditions.

Clamped at the Left End.

In this case, the additional term due to loading condition

(73)
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is to be added in the right-hand side of Eq.50, and the following relation
is readily obtained:

In addition, writing down the three moment equation for the spans /;
and /s,

M, — (4M, 4 2K,) (1 + ko) + Mk, = — (K'y + Kky), (75)

the third support moment is obtained to be

s

1 g
M; = T (3 + 4k My + 2(1 + ko) Ky — (K'y + Koky)

2

(76)
In a similar manner, all support moments of a continuous beam can be

represented by the clamped end moment M,;, and therefore the problem can
be solved if the right boundary condition is given.

Clamped at the Right End.

By the same procedure as described above, the following relations are
obtained:

Mn = 21Wn+1 - K’n (77)

Mn—l B (4 + 3/371) M)z+l -+ 2(1 -+ kn) K/n‘“ (K/n~1 + I{nkn)' (78)

In these equations, M1 represents the bending moment at the right clamped
end.

SETTLEMENT OF SUPPORT AND DIFFERENCE IN TEMPERATURE

Taking the influence due to settlement of support and difference in
temperature into consideration, the shift formulas can be represented by

Nevmi=L N1 +B+S+ T (79)
and

Nr—l = L'r Nr+1 + P'r + S’r + T/Ty (80)

in which L, and L'+ have been defined by Eqs.12 and 13, and P, and P,
by Egs.60 respectively. ‘
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S, S+ Tr and T'r are 2-by-1 matrices which are defined by the
following formulas:

Shiftors for Settlement of Support.

— O (yWyr—1 — yWy — Wy + Wrt1) Bra1

1
S = Brkyi1 | — Gr41(Qr 10y — Oy 1Wr 1 — Wril + Wr2) ky , (81)
_ "f‘ 2(';7 (arZ/Ur—.-l" AWy — Wy + Wr+1) (1 + k;’+1)_
T — O (W Wyl — Wy — Wy + Wya1) + 20,11 (Qr+1Wr — Qr41Wr 41
S’r - — Wra1 + w?'+2) (1 -+ kr) . (82)
_ — Ora1(Qr 410y — Qr41Wy 41 — Wyl -+ Wrr2) _
Shiftors for Temperature Change.
B (Zr—XATr—l -+ Z)'ATrkr) kr+1 h
B
T = bl = 202421 + 24T ke (1 + k) ’ (83)

- + (ZYATr + Z7’+1-4'Tr+1k7'+1) kr_
_(Zr—ldTr—l -+ ZrATrkr) - 2<ZrATr + Z1'+1~/]Tr+1kr+1) (1 + kr>_

T,=58 . (84)
(Z£:ATy + Zr14Tr11kr 1)

Using the same procedure as described in the case of external lateral
load, the influence due to settlement of support and difference in temperature
can also be taken into the analysis of continuous beams.

PARTICULAR CASE

In the case of a continuocus beam with equal span and equal cross-section,
the shiftors take the following simple form:

-1, —4
L7 = ’ (85)
_ 4, 15
15, 47
L/r = s (86)
_— 4, - ]n‘
T (Kt K) -
L : (87)
AK 1+ K — (K + Krg1)
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_4 (K'r + Kr+l) - (Klr—l + Kr)_
P, = , (88)
B —(K'y + Kria) -
"~ — Wp-1 + 20, — Wy+1
S, = , (89)
_4wy—1 — 9wy + 6wyrr1 — Wrp2 |
T — wr—1 + 6wy — QWri1 + 4Wriz
Sr=9 , (90)
- Wy + 2Wr11 — Wya2 -
Tr=28Z4T , (91)
_—3
T, =2pZ4T , (92)
_ 1.

GENERALIZED SOLUTION

As in the previous investigation of a continuous beam with simply
supported ends, the common form of final equation consists of

(1) n-by-n inverse to be determined by the beam construction,
(2) n-by-1 column matrix representing the edge moment, and

(3) nm-by-1 column matrix representing the loading condition
(the number » representing 1, 2, 3, or 4).
Then the generalized solution can be written in the form

N=R[M+Ql (93)

Here R represents an n-by-# inverse matrix and is designated as the
“Premultiplier.” In the same manner, Ml is the “Edge Moment Matrix,”
and @ is the “Load Matrix.”

When the both ends of a continuous beam are clamped, the final equation
takes the form

N = RQ. (94)

In the case of a continuous beam with overhanging end (Fig.17a), the
load on the overhanging part can be reduced to the edge moment effect as
shown in Fig.17b. Therefore, the final equation is the same form as Eq.93.
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|
B
i
SRS
—
T
I
\
\\

Fig. 17.

The generalized formulas for all kinds of continuous beam are shown in
Table 1. The values of R, M, and @ are summarized in Appendix II.

Table 1. Generalized Formulas for Continuous Beam
Type of Beam f Formula Corresponding Table
Simple~Simple (,-L.J‘T__J_jj
Free ~Free N=R[M 4+ @] Table III, IV
Simple~Free
Clamp ~Simple %_‘_L‘_iﬁD
K N=R[M+ Q] Table V, VI
Clamp ~Free f_}j—reru
Clamp ~Clamp P R 2 A N = RQ Table VII, VIII
EXAMPLES

Practical applications of the present method will be given in the follow-

ing examples.
Example 1.

Determine the bending moments at the supports of a continuous beam
with seven equal spans when the middle span alone is loaded by a

1)
uniformly distributed load g.

From Table II, the load term is obtained to be
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t 1 ]
K4 = K 4 - qu" (95)

Substituting the above value into Eqgs. 87 and 88,

-0 1 0 " 4K, 1 4
P:= =2ae| |, Ph= = e,
_— K, —1_ K _ _—1 ]
- —K, ~1" 4K — K[ R
4K, — K';_ 3 _ — Ky _ _—1_
Ps = = ‘4“5112 , Ps= = z—qlz ,
4K, 4 _ 0 . 0_
and
P2 = PI;Z = Pﬁ = PIG = Q. (97)

Then the shiftors L., and L./ are given by Eqgs. 85 and 86, and reduce to

—1, —4 15, 4

L= ) L' = (98)

_ 4, 15 _—4, —1

Using the Solution 2 in Table III, the eigenmatrix is obtained as follows:

“2(1 + k), kb, P14 1 -1 \
R: — = e - —4 -2
[1,4]
_l_li 2(1 + kz)_] L:')LS__ _ _ 47 P -
—— 780, 17
1
2 911 ’
209, —4
M=o, (99)
B (K'y + Kyks) h
Q:
(K'e + Kiky) 4+ L1, 2(1 + ko) TLPs + Ps
. —1, —4 7| o7l =171|1_1 p
7 11, 4 } +‘ =3 )
4, 15 | |_—1_ 4
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from which

2

ql?
284

-1

Nz:’ \:REM+Q]=
M.

3

(100)

4

By the right shift operation, the unknown support moments are de-

termined as

N—UW["LNnLP“qlgi—‘L —4"—1"+t o g—15
A : ’ 284! 4, 15 4 71 || 284 —15)
M a2 4"
st :LN4+P52284
M| _—1_ (101)

The check calculation for the above obtained values may be carried out
by the left shift operation as follows :

"M, 2 |7 —17 .
N, = _4a , 0.K.
M 284_ 0_
.y g - —15" 0.k
No=L'No=gg| ) K.
(102)
N:=L'N P’—qlz_ v 0.K
3= 5+ + = og1 s ) - A5
e
=L N3—2§ 1 0. K.

Example 2.

The main pile of a cofferdam is strengthened by wales and struts as
shown in Fig.19a. Calculate the bending moments at the strengthened points
of the main pile. The wales are arranged with ten equal spaces on the main
pile.
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Support Moment
(Xql2or X0.01wbH3)

wale / strut EQ_‘::‘L—:ﬁ 11 0
110 —0.016 666 67
>>>> 9 —0.014 43371
T8 —0.025 598 50
H 7 —0.033 17231
66 —0.04171228
05 —0.049 978 57
- i —0.058373 44
= 3 4 —0.066 527 66
t i 2 ~0.075515 91
- — - 1 14> —0.081 408 71
@ " main pile
a

Fig. 19.

The main pile is subjected to the hydrostatic pressure and can be con-
sidered as a continuous beam with the lower end clamped and the upper end
free as shown in Fig. 19b.

Using Table II, the load term is written down easily as follows :

2 ql? ql®
K, = é—d(Sqa + 7q,) = %0 (8 +6.3) = o X 14-8=14.32,
K=" PR S SR VIP SR VIPY
= 60(7Qa + qp) = 60 o) = 60 X . - o Lty
K,=12.80, K,=12.71, K,=11.31, K'y=11.23, (103)
K, = 0.8 K,= 9.7 K; = 8.3, K= 8.24,
Ky = 6.84, Ky= 6.7, K, = 5.33, K, = 5.2
K; = 3.8} K'¢= 3.72, Ky = 2.34 Ky,= 2.2 y
Substituting the above values into Eq. 87, it follows that
R —(K'y + K;) X 27
P.= =4 ’
AR+ Ky) — (K + Ks) 84 |
(104)
217 T —15" l —9
P4 =2 ’ PG =4 » Pg =41
66 _ 48 | | 30|

#) TFor simplicity, the notation 2=¢l%/60 is adopted for use in this example.
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Here the shiftors L, and L', are given by Eqs.85 and 8 and have con-

stant value for the entire span.

The load on the overhanging part in Fig.19b may be reduced to one of

the edge moment effect on the support 10, which is given by

1
ol 12 == — A,
Pl 60q A

(105)

Then, using the Solution 9 in Table V, it follows that (n = 10 in this case)

-1 -1, —4 P 1T -1
R - L8L0L4L2 ’ - ’
_—2_ 0 | 4, 15 i —2_| L 0O_
B 0, —1
.
70226
| — 70226, — 18817
-0 - 0"
usad - /: ,
R -1
Q:L4 ['—L3P2‘“L2P4—LP6‘“P8
K
T — 2911, —108647Y 0 ~ ~— 209, — 7807} — 27"
= ] —
10 864, 40545 || 14.3 | 780, 2911 | 84
15, — 567 —217] [ —1, —4J—157] [—97
56, 2094 66 | 4, 154 48_ 30 _
T — 91911. 27
g A‘ N
| 343021.5_
from which
M, 1 | —343020.5"
N = :R[M-FQ]:%'“Q’ .
_IVlg_| — 60817.3_
Using Eq. 74,
M, 1 Y "0 3 —343020.5
= fra — = ) .
_Mzﬁ} —2 [ k| 70226] _318190.8_

’

(1086)

(107)

(108)
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Shifting to the upward direction, each support moment is determined suc-

cessively as follows :

M, o . [—280318.3
N. = — LN+ P = oons ’
M, _ ' 70226] _ 245960.0_
M, o o [—210887.7
N;= =LN: + = e ,
A PT0226) _ 175 057.2.
_ 109
M, NP . [ —139778.5 (109)
= = —+ B T T YTy ,
M PTERTT0226) _ 107860.8_
M, - . . [—60817.5
No=| = LNe+Ps = 2555 .
" My PTT0226]  g0996.0

Comparing Eq.109d with Eq.105 or 107, we can see the correctness of
computations. Thus the computation of this method can be carried out with
an automatic procedure. The values of support moments are given in Fig.
19b.

Example 3.

Find the bending moments at supports of the continuous beam with
variable cross-section shown in Fig. 20.

TEIRTRTR

o
i

Fig. 20.

From the given configuration of the beam, it is evident that

kr=1 (r=2, 3, 4, 5, 6), (110)
and therefore
1 4
L= . (111)
4, 15

From Table II, the load term is obtained thus:
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K, =K = qui’ = p,
K2 == K’2 = K5 = }’{’5 = KG == K’G = M }‘ (112) )
Ka = K/3 - 4/17
K4 = K'4 = 9//5. /
Substituting the above values into Eq. 87, it follows that
-9
P‘Z: s
_ 3
T 13
P.= o (113)
_ 42
- 10"
P = L
38
Using the Solution 21 in Table VIII,
S o1 =43k |
R: L4L2 ]
—2_ 2 -
L 4R 1) [T 12 7
s sl L 2] 2349 362, 97
07| 4K — (K's + Kg) (114)
Q = L4L2 -+ - L4P2 - P4
i - K’G -
—1, —47[ 0" T2 — 1, —4—2 T— 137
= s " — ‘— n
4, 150 1 -1 4, 15 3 _ 42
-
120

*) For simplicity, the notation g

_i_qlz is adopted for use.
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from which

N M~ R L. = 841"
= =RQ@Q = — . (115)
_M,_ 2840\ _ 1201
The eigenmatrix for the first span becomes by Eq.74 as follows:
M 17 T " p | — 84
N, = = My — = . (116)
M, | | —2_ _K,| 2340] _ 658

The unknown support moments are determined by the right shift operation
as follows :

2 T 1207

N3=LN1+P2=‘2‘§ZO ——6214,
(117)

o |— 4357

Ni=LN: +P,: = §g40 oo |

The values above obtained may be checked by the following shift operation

6 g [—1 —4|[-62147) [—107
N = =LN:+ P; = 5340 2
7 2340 4, 15| — 4357 38
a7 242 ok
Tai0| _yag | o MY
CONCLUSIONS

In conclusion, the following notes are given :

1. The exact solution for all kinds of continuous beam can be obtained
by simple matrix algebra.

2. The bending moment at any support of a continuous beam can be
determined directly.

3. Compared with the moment distribution method, this method has a
higher eﬁiciéncy and perfect exactness. The efficiency will grow greater and
greater as the system become complicated.

4. The computation can be designed with the simultaneous checking
method.

5. The calculated result is checked arbitrarily and effectively by the
right or left shiftors.
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APPENDIX I

LOAD TERM

Operational Method for Clapeyron’s Theorem

Table II. LOAD TERM FOR OPERATIONAL METHOD
Loading Condition K K!
—a Plb— ?g (+b)P l;—?(l-l—a)P
1. 1,
T %
qa?, 2 ({a_ﬂ 2 . a2
R PR
L@ pE - 0t — d?) | L (@ = (R - @t — )
4 T
7 . 8 .
607 607
ql? b b ql* a a®
2 (1+ 7)(7 - 35) = (1 + 7)(7 - 31—2)
ga® ga®
7% (3 — 154l + 2012 100 — 3a?
gope (3¢ 10al + 205 6o ¢ )
9% 1900 — 454l + 401 499" 1 _ gany
e a® — 45a 2 ®— 3a
602 602

12
—(8
60( go + 795)

a

l-
—(7q, -+ 8
60( q a5)

147(13 — 2% + a¥)

fl—aa — 2a% + a¥)

Note:

Method” and the “Slope Deflection Method”:®

K= — 2Hp,

K! = 2Hp4.

The following relations are seen between the load terms in the “Operational

APPENDIX II. VARIOUS FORMS OF SOLUTION FOR ALL KINDS OF

CONTINUOUS BEAM

The solutions for all possible cases of continuous beams are collected and
classified in the following Tables III, through VIIIL
Using together with Table I, the analysis of all kinds of continuous beams

can be carried readily and systematically.
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Table 111 SIMPLE~SIMPLE
Shifting Procedure f N ] R
% M’ B -1
712N PN M. T 0T [T—-17
(== | L, ok, Lo ,
N _/ M, | _1 1. 0.
Ny B |
Solution 1.
i
R W
712 3N n ML 2(1 + k), ky 7|1
(= ) -
- N‘.Z' —e ~ .-Mii— _Ll’ 2<1 + kn—l).! Ln-SLn—S"'LS_.
Solution 2.
R .7 — -1
R w\me Ms o, 0, 0
L VATA 2 M, Y1, 0
(\; N =) ’ ’
e Ns——> 1\4‘2 O: 1
S : - Ln~‘3"'LG;
olution 3. M, 3 0, 0 _
m,. oW
7/ : FRAN o _
(2 iy 5 ) Mf’k SR S R
- - NG — - -MT_ _.Llr 2<1 + kn—l) _]L7173L11—5"'L7_
Solution 4. r
Table IV. SIMPLE~SIMPLE
Shifting Procedure i N i R
n m’
o Tm, - .
\/ 1 2% n+1y - wO_‘—l
&) ]
S N / -7 [M] - I_ly 2<1 + kn)JLn—ﬂ"'L'Z
1 — 1
Solution 5. ~ !
- ~ M -2 D, ke 071
/1 g2 3% N : (L + k) ko,
\\i \ % \_,/) My - !
Ng —= U = Lk, 0
Solution 6. - - ’ -
e wm -, - .
- -t M, ) -1
(/ 1 75 6~ 1\ ) 0 — LLL!,
K = ) Sy M, -1,
<—RNg —> -
Solution 7. M _ 0, L1, 20+ k)l el
S'Ue»— " ‘932, - - _ ’ L, ! -1
/1 745N a+In M, L2(1 + ko), kaJL's, 0
T 20 ] |- .
<~ MNy—> —L, L
Solution 8. M -~ 0
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(for Odd-Number Spans)

33

Q

-0
- Ln—?.Ln~4' Lo

-0
|

- Ln—ED—n——é("'PE"‘> + Pn—4]+ Pn—2

l_(K’ 1+ Koke)

B N _’ _CI{’n—2 +Kn—1kn—l>
| ey - _
+ Ll’ 2(1 + kn~1)Jl Ln——a[Ln—SC"'P3"'> +P71—5:] + Pn—z {
=W = -
L/,P/, + P/,
0
0 — -
Ln~2 Ln—4 (PG) + Pn—4 + Pn—Z
L — T . _ ~ N
1‘(K'1 + Kaks)
- m ~ _<I(/n~2 + Kn—lknwl) ' _
Rk, + 2L -+ ko), Ro JTL/5P !5 + P’s]_
+ Llyz(l + kn—l)_l Ln~3[Ln—5<"'P7"') + Pn—s] + Pn-3
(for Even-Number Spans)
M Q

[1,2(1 + k) JLyor L

(K, + Knkn)

SR/

= | Ly [Ln——s (P5> + Pn»—:}] + Pn~1 ]

5 _ —
X + SUt,kn + L]-r 2(1 + kn).] I Ln—2[Ln—4 (P?.) + Pn—é] + Pn—il ]
"M " (K'y + Koks) -
0 '—l le—l[Ln—s('”Pil"') + Pn—ﬂj + Pn—~1 l
0| . e
W B — (L:P + Py 7
0 — —
T fen (Klyoy + Knkn) + 1 1,2(1 + kn) | _Lnﬂz("'Ps"') + P, !
T 3 (K'y + Koko) + | 2(1 + ko), ko | Py
0




34 N. Yosuizawa and B. TaNmMoTO No. 18
Table V. CLAMP~SIMPLE
Shifting Procedure ‘ N ‘ R i
w : —
<§1 2N n \ M, T -1 -1
g “/ e ) Lll—ZLn-4“'L2 s
Ny ~ M —2 0_
Sotution 9. - B
- -1
Solution 10a. - _92
WM - L 2k ) L Ly
21 /2 3\ - N | 1 -1 3 3 3 —{:{1@2
'2 \«_; N ..;/ ' /) | - — kl v“
2T - M =32, i 0 -t
( N
Solution 10b. M, ~ Gk, 1
”;“_Mi_ _O ) Ll» 2<1 + k71~1>_”-n—3“""3_T
m’ || Mo CLLLLLAL! -1, I
2 g, pLIF LN )
71 £9 10N n My ‘ 2,
J N J - 0, —1
2 - Ng . ~— M1 L,,Agl-,z.w}"'l—lo: 0’
Solution 11. M, L ’ -
m’ | | M - INERR I
é}] 78 ‘9\ [N — LALAL,
i N V) ) M, 3 4 4k
-7 ko
R Ns-——)- ’ “
Solution 12. My | L L0, 11, 201 F kel gl
Table VI. CLAMP~SIMPLE
Shifting Procedure N [ R
: - Tl
Solution 13a. 1
3 ~ o [M,] L1, 2(1 + kn) JlpoLy
2 -~ MU T =17 1, 0 |t
Ni — — Lol ,
M, =2 ] 0, 1
Solution 13b.
M L 0 1, 21 + k)
‘gﬂf Mg 1, 0, 2, 071
41 72 i\ a+1\ M, 0, 1, _ B+ 4k~3>’ 0
ERRN J ] 0 ko
z -7 M, — L, L ’ 1
Solution 14. Mo T, 0
7 - | o
WAL =1, -1
=1 79 108 nvh\ ! L/gL/LlL /g
E N // M, 2,
- Np — . 0, LL,2(1 + k) JLpz-Luo
Solution 15. - 10 - . -
o | [ M f 2, 0, T
71 78 9% n+7\ Mn ! 3 + 4k, 0 —LALILY,
Z N2 % / ! A ’
<~ Ng— N M| | L
Solution 16 l O “luibngb
) My | | L0, 0, -
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(for Odd-Number Spans)

M Q
-0 - -0 5 N _
L71—2L11—4“'L2 - Ln—‘ll L71—4<”'P2"'> + Pn—4 + Pn—‘l
A oL - = _
|._11 2<1 + kn—I)J Ln-3 Ln—S("'Pa"') + Pn-z'z + Pll——3
[k ] - _x - .
L Paey) K, o tBon
+ Il-—3Ln—-.) L3 ka(l + kﬂ)[(1 . ;}—(K’; + I(2k2>_ + n-2 + n-1n—1
- 0 i K N
1 2
0 T (K'y + Kaky) — 7 (} + k) K, B
Wi, (Ko + Kyaky) + L1, 2004k ) ) | Lyog[Lps CPy )P, ]+ Pyg
=5 = == — =
0 K, LI[L(LIPlg + Pl) + P74+ Py
+
0 0
Ln—ﬁ[L11~4("'P10"'> -+ Pn—4j + Pn-~2
= _0 ] R B
=5 T "y = =
2 1 g K — i gy | TP P
0 E( + kK, “E( 1+ Kgks)
‘.Ui’k,,,,, (K’n—ﬁ + Kn—lkn—-l) + Llr 2<1+kn—1> ][ Ln—S[Ln—:')("'PO'”) +Pn—-5]+ Pn—3
(for Even-Number Spans)
M Q
= = =5 =
N _ Ky + Knkn + 1, 21 + Fn) || Ly ol goLo
EZIs - R
B h -+ LII-—-E[""II—@(“'PQ'”) + Pn—4] + Pn—?.
o T -0 S
0 - Ln-—f.'Ln-4"'L2 - Ln—ﬂ['—n—:& (P2> -+ Pn—4] - Pn—2
gt + ST
D En | . (K!,_ 1+ Knkn) _
=g X, =
0 K/ + ngg_ 2(1 + kK,
0 R By
. — Lo | Los GoPe) 4+ Py | =Py
=0 = = =0 =
LAl (LIPs + Plg) + P, ]+ P/, +
0 ) _ K -
I o (Kl + Kaln)+ 11, 2(1 + k").ll Ly oL, (- Pp) + Py ]+ P,y
“Fo — K, - -
0 21 + k)X, Ky — Kok | Liy(LIPL, + P — P,
- ks ke _
0
} - LnAl[Ln—:}("'PO"J -+ Pn—a] - Pn—l
|2 _ .
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Table VIL CLAMP~CLAMP
Shifting Procedure N % R
ELA e -1 o2
2 N A/ % ' an2|—n-—4"'L2 ’
1L — Mo -2 | — 1_
Solution 17.
%1)’2 3N QA - 2 | [—4—3k_ |
2N 7 e U Lol L] 3 4k
n-3lupy 57" ey 2 |s
Ng— M “_kz il , )
Solution 18. -
ML, 0, e -1
41 7 8 n — LLIL
% (A ) g Mn -2, 0,
~— N;— M, 0, -2,
Solution 19. M o 1 ~Laebnsbs
:Ml— - 2 0, IR 1
41 £8 9N b an || 3tk — LA
4 2 e 3 ke ’
<— Ng — My 0, 4 + 3k,_;,
Solution 20. Al _ s, —Lagbs B
Table VIII. CLAMP~CLAMP
Shifting Procedure N “ R
(21 2\ ntlg M - 17 ——-4—3}671__”
4 / E Ln—SLn—4"'L2 s
Nl g _Mn-l-l__ _ *’«2' 2 -
Solution 21.
- -1
41 72 3N nt1g M, T T -2 7 2
2 N \/ % L71~1L71—3"'L3 3 + 4k >
No —> e
_Mn+1 ! | 2 - 1
Solution 22. - -
M 1, 2, -1
41 778N nt1g —LLLLLY
2 ) E My - 2, 0,
~ N; — M, 0, (4 -+ 3kn),
Solution 23. M 0 5 — Lk, 4L
- 8 L {( y k) T Ay )
M, - -2, o, -1
—LALIL,
41 r8 98 ity || M| | 222 o,
E )¢ :
-« Ng — My 0, —2,
_Ln—an~3"'L9
Solution 24. M, i o, 1, _
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(for Odd-Number Spans)
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Q

Ln—:‘.Ln—é"'L2 - Ln—E

"0 I_K’n_l—
Kl Lo

L71—4<"'P2"'> + Pn—-l - Pn—Z

2<1 + k11—X>K,n-l - (K/n—i'. -+ Kn—llerxvx)~1

| - K’n—l -
- K, -
— Ly_gbg] 2(0 + ks) K, — Ky + Kokg | — [y 5(-Ps) + Py ]
s ' )
— T =

Liy(L/ Pl + PO + Py

K,

+
K’n—l
0 Ln-—ﬁ[Ln-—4<"'P8"'> + Pn—4] + Pn~2
K, + Koy 2(1+ k) L5 (LRl + Pls) + Pl
k - k LS

2 +
Kln—? + Kn—lkn_-l - 2(1 + kn——l)K,n—l
e K’n—l

Ln—~3[Ln~5( o 'PQ' ’ ) + Pnﬁsj + Pll—S

( for Even-Number Spans)

Q
07 _2(1 + kn>1(ln - (Kln-l + Knkn> 7
Ly—2:--Ls +
_Kl,_ -~ - K’n -
- le—?[er—4<"'P2"') + Pn—-4:] - Pn—2
- K, T =&,
Lol gobg| K'Yy + Koke  2(1 + ko) K +
kg kz t 0

~ Lo | LuCoPye) + Py | = Py

= G = =
LIo(LPls + P + Py
K,
+
Kln—l + Knkn - 2<1 + kn)Kln - it

Ln—ﬂi Ln—&("'PB"') + Py, |+ P,
... K, - _ - - .
— K, - — -

! !
K+ Kok 2(1 + ko) g L/s(L/sPY + Ply) + Pl
- 1
' — _
Ky Lo | LaaCPs) + Pog |+ Py

_ 0 - h
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APPENDIX III. NOTATION

The following symbols have been adopted for use in this paper :

I

il

fl

By

Il

AT, =

ll)'

ay

L

pAld

support number countered from the extreme left support;

any even number representing the number of constituent span of
continuous beam;

span length of #-th span countered from the extreme left span ;
bending moment at 7-th support of continuous beam ;

moment of inertia of cross-section of beam in 7-th span ;

standard moment of inertia ;

section modulus of cross-section of beam in #-th span;

modulus of elasticity ;

area of bending moment diagram of #-th span calculated as a simple
beam for its loading ;

= reaction at the left or right support of 7-th span calculated as a
simple beam subjected to the moment diagram load A-;

settlement of 7-th support;

coefficient of thermal expansion ;

depth of cross-section of beam in #-th span;

difference in temperature between the upper and lower sides of beam
in 7-th span;

{ﬁ I, see Eq. 2a;
1,

I see Eq. 2b;
Ly

.7Z_L,see Eq. 2c;
Z r—1

- = load term, see Egs. 4a, 4b, and Table II;

6E1

e

k-, see Eq. 4c;
ngs, see Eq. 4d;

“eigenmatrix,” see Eq. 10;

connection matrix representing the connection conditions between
two eigenmatrices N—-1 and Nr+1, see Eq. 9; )

= 2-by-2 matrices called the “shift operator” between two physical
quantities N-—1 and N;,+1, see Eqgs. 12, and 13;

2-by-2 unit matrix ;

= given external edge moments at the left and right extreme
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supports of a continuous beam ;

K» = 2-by-1 matrix representing external loading conditions, see Eq. 58;

P P, = shift operators consisting of 2-by-1 matrix, representing external
loading condition, see Egs. 60;

S, 8’y = shift operators consisting of 2-by-1 matrix, representing influence
of settlement of support, see Egs. 81, and 82;

T» T'r = shift operators consisting of 2-by-1 matrix, representing influence
of temperature change, see Egs. 83, and 84;

R = “premultiplier,” see Eq. 93, Table I, and Appendix II;
M = “edge moment matrix,” see Eq. 93, Table I, and Appendix II;
Q “load matrix,” see Eq. 93, Table I, and Appendix I;
_ )
A= 60’ see Example 2;
12
¢ = = see Example 3;

4
L | = row vector; and

{ 1 = column vector.

ERRATA
PAGE LINE FOR READ
8 8 Spans Spans.
13 5 beam subjected beam is subjected
13 7 a the
13 Eq. 54a M+ - M, + -
19 Eq. 77 K, K,
20 Eq' 83 ZrATrkr(l -+ kr-H) ZrATrkr><l + kr+1>

21 Eq.92 )

29 5 operation operation:



