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SYNOPSIS.

This paper is a continuation from the first report by the erters,) and it
presents the generalized formulation of the operational method for bending
problems of continuous beams. The powerfulness of the method in philosophy
and computation may be observed from the shifting chart and the geometry
matrix. The rigorous solution for all kinds of continuous beams can be
obtained by systematic shift operations.

The procedures presented herein can be readily developed to problems of
the beams on elastic foundation, the beams with axial force, the column
buckling, and their vibration analyses.

INTRODUCTION.

Notation. —— The symbols adopted for use in this paper are defined where
they first appear and are arranged alphabetically in the Appendix.

The powerful approach to the bending probll)ems of beams and plates has
been established by the eigenmatrix method, which is due to the perfect
classification of data, so that physical quantities of similar quality are
represented by the corresponding matrix, and hence the problem can be
treated systematically.

The operational method is the powerful weapon for various complex
structural systems. The physical conditions between respective constituent
units or groups can be represented by the matrix operator, and the analysis
is carried out by simple and systematic operations. Simultaneous equations
are of no use by this method.
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Since these few years, tl}g}ggerational method has been developed for various
structures quite successfully. Moreover, it has been found that the classical
Clapeyron’s three moment theory can also be treated by this method
dispensing with simultaneous equations?)

From the above investigations, further effectiveness in the operational pro-
cedures for the analysis of all kinds of ordinary continuous beams has been
confirmed.

The elastic behavior of any member in a continuous beam is governed by
the well-known differential equation, and any two consecutive members are
interconnected with each other at their common connection point through
due connection conditions. A member may be loaded arbitrarily, and a
given external load will be represented by the corresponding load-matrix.
From the superposition law, a system of concentrated loads can then be
represented only by the summation of respective load-matrices. The partially
distributed load can be treated similarly. The assemblage of all the load-
matrices should therefore consist of the positions and the magnitude of given
loads, and it is perfectly independent of beam configurations. On the other
hand, the operational matrices, resulting from connection or supporting
conditions, can be determined from the geometry and material properties
of the continuous beam.

Corresponding to the possible states of connection or supporting con-
ditions, there may be several kinds of shift formulas with which the
eigenmatrix can be shifted from one span to the adjacent span, and hence
they will be formulated exhaustively. Boundary conditions will permit the
determination of the current-matrix.

The above operation can be illustrated schematically by the “shifting
chart” which indicates the procedure suitable for a given system.

By such operations, the eigenmatrix of continuous beam can be obtained
in the form of the “geometry matrix” postmultiplied by the assembled load-

matrix. A derivation of the geometry matrix is given in the Example.

BASIC CONCEPTS.

The deflection at each domain of the constituent span shown in Fig. 1
is given hy
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provided

_x‘
P=T (2)

The parallel lines denote respective correspondences of w, to N, wi,
to N, and w', to N',, in which the subscript # represents the span order

f=—normal domain—»l f«—(i)~th domain ~—— q(x) conjugate domain —m]
ymmt
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Fig. 1. Constituent Span of Continuous Beam (r-th Span).

and the superscript ¢ the domain order provided the normal and the
conjugate domains are denoted by no superscript and prime () respectively.
w is the deflection, / the span length, EI the rigidity, p the non-dimensional
current abscissa of coordinates given by Eq.2. N is the eigenmatrix given
for each domain as follows:

N.={A B C D}, (3)
, £ «
N, =N+ D (K, + Ak, + k), (4)
k=0
N, =N, + K, (5)

The second term on the right side of Eq.4 represents the aggregate matrix
for a point where all the load-matrices in the leftward domain are assembled.
The respective terms in parentheses are load-matrices for the concentrated
load, the partially distributed load, and the external concentrated moment,
given by the forms:

K,=P{—x® 3 —3¢ 1}, (6)

S: dK, = ZS:(](E){—Iﬁ 3 —3c 13}dk, (7
3

K, = 7933 {&* —2¢ 1 0} (8)

The term K, in Eq.5 is designated as the “load term” of the constituent
span considered, which is given by assembling all the load-matrices on
the span as follows:
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1
K, — Z_g(xj, n S:dxj, + K, )

Thus, the deflection of each domain of the constituent span is expressed
by its eigenmatrix consisting of 4-by-1 elements and the corresponding
aggregate load-matrix which can be given by each loading condition. The
dimension of each element of the eigenmatrix is the same as that of the
concentrated load.

An eigenmatrix is shifted, when possible, to the adjacent span in such a
manner that the connection conditions at the common point of the two
consecutive spans considered are satisfied. At times the shift operation
of the eigenmatrix is prohibited, in which case the degradation of the eigen-
matrix is necessary or otherwise. In this way, the boundary conditions for
determining the current-matrix may be those at an intermediate junction
point as well as those at the extreme ends of the beam.

In the present paper, the continuous beam is considered as an assemblage
of members whose deflections are governed by Eq. 1.

First, a member will be subjected to a preliminary treatment when nec-
essary, which will result in a definite restriction upon the eigenmatrix of the
member.

After that, the connection conditions remained untreated at an inter-
mediate point between two adjacent members are considered, from which
the necessary shift operation can be made.

In the generalized continuous beam, there are several possible states of
connection points, and hence they may be classified into two large groups as
follows:

(4C)-point: There are four connection conditions but no boundary
condition at this point, of which the following four possible
cases must be considered:

(a) abruptly-changed cross-section;
(b) abruptly-changed cross-section with resisting moment;
(c) elastic support; and

(d) elastic support with resisting moment.

(2BC)-point: Two respective boundary conditions and connection condi-

tions are considered at the following points:

(e) rigid support;

(f) rigid support with resisting moment;

(g) pin joint; and

(h) elastic pin joint.
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These conditions are illustrated in Table T with corresponding graphical
symbols, in which [I] represents the number of independent boundary condi-
tions at each end of the constituent span, and & is the number of connection
conditions at each connection point. The symbols 0, M, and S denote the
slope, bending moment, and shearing force at the left end, respectively.
Those symbols primed refer to the right end of the span. Mc is the
resisting moment which is proportional to the angle of rotation at the
connection point, and Rc is the reaction at the elastic support.

Table 1. Physical Characteristics of Connection Point (r-th Connection Point).

(4 C) point

) lyoel 1 Abruptly-changed Flastic Iilastic support
. v . .
Abruptly-c l‘ﬂfng’e( cross section with with
cross section resisting moment support resisting moment

wl’ w wy jw 0 w) fw 0 wl]” fw 0
8 é 4 8 0 [ [ 0
- 4 [4 _ n 0 _ 4 - .

M M M M M, M M 0 M M M,
Slr-i {S)r Sir-1tSfr L0 SiralSir {—Re SiralSir 1-Rc

7 T

Graphical symbol
of (4C) point

(2BC) point

Rigid support

. . S Elastic
Rigid support ) ‘\vuh Pin joint pin joint
resisting moment
% Re

(w), y=0{{w),=0[(w), _=0l(w), =0 [(p), =0] (M),=0 (M), =0 (M), =0

M,

Mr MC

Graphical symbol | 1
of (2BC) point
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BOUNDARY CONDITIONS.

The boundary conditions for each constituent span of a continuous beam
can be expressed in the following forms:

For the left end: BN, = 0. (10)

For the right end: B'.N', = 0. (11)

Egs. 10 and 11 must at times be assumed at intermediate connection points.
The matrices B, and B, are designated as the “boundary-matrices,” con-
sisting of 2-by-4 elements at both extremities of the continuous beam, and
of 1-by-4 elements at both ends of an intermediate span.

Both Extremities. ;

Both extremities of the continuous beam are assumed to be of elastic
support where the deflection is proportional to its reaction, and in addition,
to be subjected to a resisting moment which is again proportional to the
angle of rotation at this point. All the possible boundary conditions can be

included in such an assumption. The above conditions are written in the
forms:

At the left extremity: w, = kR, 0,=mM.. (12)
At the right extremity: w,=kR, 0, =m'M,. (13)

Here, k&, k', m, and wm' are constants to be attached to each supporting
point, and other symbols are illustrated in Fig. 2.

M, My M
We Hc ‘ S”' ) HC w:.f
e wi, N,
wy, Ny 1Y
R, = L, Bl —— ln, EI, ¢
(a) Extreme reft Support. (b) Extreme Right Support.

Fig.2. Boundary Conditions at Both Extremities.

Then Egs. 10 and 11 become

"1 0 0 217

BlN1 = N1 = 0, (14)

0 1 —p 0
and
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1 1 1 1—27

BIIIN/n = N,n - O! (15)
0 1 2 4+ g 3434

in which, for shortness,

AT 3k A T3k
_2BL _2m1) .
- 11 1 3 , = ln n, . (

_ U _m_| L )

Egs. 14 and 15 are the generalized boundary conditions for both extremi-

ties. Every possible condition can be represented by the values of 2, g,

i

2, and 4 in the boundary-matrices shown in Table IL

Table II. Values in Extreme Boundary-Matrix for Each Condition.

Left extremity Ri extrems
‘ 3 Condition ight extremity
l of {
support :
A # A H

lastic support with
2 P = ¢ p s »
(( % A /

resisting moment

é elastic support 2 A o
0 P (P_m rigid support with --u-{) 0 "
P

resisting moment

simple support - 0 oo

fixed support -n-—l-é 0 0

o0 o free end o0 00

Intermediate Support.

Egs. 10 and 11 can also be used for the 2BC-points in Table L At the
rigid support, the following conditions hold regardless of the existence of
resisting moment. Then,

W,r_.]_ = w,. = O. (17)

Similarly, the pin joint and the elastic pin joint have common boundary
conditions given by

M, =M, = 0. (18)

Eqs. 17 and 18 are given in Table IIL
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Table III. Boundary Conditions at Intermediate Support.

Case

111 1IN, ,=0 10 01 3N, =0
Condition
[1 0 0 OiH, =0 10 0 1 0iN,=0
Symhol i :
ymiby ! [IE] [

CONNECTION CONDITIONS.

The connection conditions at an intermediate connection point of a continu-

ous beam are expressed in the matrix equation

Cr {N,r—l Nr} = Oy (19)

Table IV. Connection-Matrix.

(4C) point <1>

M, s M,

Ay 7= py =00 Aoz 0D fy

1 1 1 1 a0 0 0
A X
01 2 3 0 ; 0 0
c,= y —
00 1 3 0 & & 0
00 0 1 o 0o 1,

(2BC) point @

Re

012 3 0o £ 90 o 1111 20 0 0
€ :“r j|ywn/r|t /?1 :l cr: }t o {g
r iy
O—/z 1 04, 0001 7 0 0 1lr
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in which €, is the “connection-matrix,” N’,_; and N, are the eigenmatrices
of the two adjacent spans, respectively.
In Table IV is shown the connection-matrix for each possible case. Here,

the following symbols have been introduced:

l
&, = Zr:; 4 (20)
__EL (21)
/37 Elr—-l ’ ’
6k, LI, .
2 = e (22)
2m,.EI.
{[r e (23)

SHIFT CPERATORS.

From the connection conditions obtained in Eq.19, we can derive the
desired shift formula between eigenmatrices of the two adjacent spans of a
continuous beam. The formula is classified into two main groups as follows.

Operators at (4C)-Point.

Using the connection-matrix in Table 1V, Eq. 19 yields the shift formulas
N, = err"‘l + FrK1'~17 (24)
Nr——l - s,rNr + FIrKr——I) (25)

in which 8, or §,, and F, or F, are the right or leftward shift operators,
and feed operators, briefly the “shiftors” and “feeders” repectively, which

take the values

, (26)
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a3
1 —1 1 —-1j]— 0 0 ©
B8
aZ
0 1 -2 3 0 -ﬁ- 0 0
s, = ) 27)
[£4
0 0 1 -3 0 — a 0
7
1
0 0 0 1 - 0o 0 1
and
F,= —E (E being the 4-by-4 unit matrix), (28)

and other symbols have been defined by Eqgs. 3 and 9.
All the supporting conditions of (4C)-points can be expressed by the values
of 2 and g in the above equations as shown in Table IV.

Operators at (2BC)-Point.

Since the number of connection conditions is deficient in shifting all the
elements in the eigenmatrix of a span to the adjacent span, the shift
formula results in a particular form in this case. In virtue of Eqs. 3, 5,
and 19, and Table 1V, the following shift formulas for either direction can
be derived. In this case, for the left span with pin connection end, a pre-
liminary treatment must be made before the connection. That is to say,
because of the non-square size of the connection-matrix, the eigenmatrix
in the left span with pin joint must be reduced to a 3-by-1 eigenmatrix.
Thus, the desired shift formulas become

Ar = srAr—l + F.K,—, (29>

A= serr + F/rKr"'l + erar-l' (30)

Eq. 29 is the rightward shift formula and Eq. 30 is the leftward one.

These equations indicate that the A, and A,-; semi-eigenmatrices on the
left sides depend on the A,.; and A, matrices on the right sides, respectively.
S, S, F., and F, are called as before the shiftors and feeders, respectively.
A particular term R',a,_; appears in Eq.30 because of the non-square size
of connection-matrix. That is to say, three elements in the left span eigen-
matrix participate in the connection equation, but there are only two con-
nection conditions for these unknown elements, and hence one element must
be selected as a redundant element and fed for other two elements of
its own span.  Therefore, R', is called the “feeder for redundant element”
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providing that a,_; represents the redundant element.

In virtue of the non-square size of the connection-matrix,

exists an element independent of the rigid support or pin joint condition.
The above redundant and independent elements are always determinable

after the shift operations are carried out through the three connection points

in question.

41

there also

In Table V and VI are given operational factors corresponding to inter-

medate (2BC)-points.

Table V. Operational Factors for Intermediate Rigid Support with Resisting Moment
(If M, =0, thenp, = co).

Element

Left Span Element Right Span
Apey= —(B+CH+ D)y Determinable
A, =0
-1 1 1 11K, Element .
“ B Dependent “B "
C_l Semi-eigenmatrix _C|,
D, {for R',a,.y) Redundant Element none
-5
Independent ~B |
C (for §,A,-,) (for §',A,)
Semi-eigenmatrix _C_|r
_D_ r—1
none Independent Element D,
Leftward Operator <g=—=—- Operator et~ Rightward Operator
R "1 2 3 "
B . By
s, =a, Shiftor ;| 1 o« 2 a 1
S i
T |, N B e,
" - 0 1 2 3 7
0 -1 0 8 Feeder for B,
Flr= Load T aflo 2 a+23(a+l>
oad Term r Mol | SR
.0 0 -1 -8 e B\l
R = I~ 3 nl Feeder for Redundant none
r _—3_
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Table VI. Operational Factors for Intermediate Elastic Pin Joint
(For simple pin joint, 2, = oo).

Left Span Element Right Span
Croi= —3D,- ~ L0013 Jk,,|  Deferminable C, =0
}-A- Dependent ) ’_ A7
D, Semi-eigenmatrix D,
B, (for R',a,_y) Redundant Element none
- 4~
Independent ~ A~
B (for §,A,-) (for §',A,)
Semi-eigenmatrix D,
— D__ r—t
none Independent Element B,
Leftward Operator <o—=——— Operator ===t Rightward Operator
-3 2 o — )
Y29 11 -2
_| B 4 e _ B
§, = Shiftor 5, = e 1 1 o
1 1 el | 2 T2
. 2 _r . A 4 r
- - -1 1 0 -2 7
-1 -1 0 0 Feeder for 8,
Flp = Fr= 101 a2
3
0 0 o —1_ Load Term ar -3 7 0 -ﬂ--{-7
-
P 17 Feeder for Redundant
Ry = 0 Element none

Operators for Group Shifting.

Separating the continuous beam into isolated members or member groups
at respective (2BC)-points, we designate them as the “constituent groups.”
In one of these groups the shift operation can always be carried out in either
direction by a 4-by-4 shiftor given by Eq. 26 or 27, and in virtue of bound-
ary conditions attached to both ends, the number of unknown elements
is reduced to two; that is to say, by the above preliminary operation, the
eigenmatrix of each constituent group can be degraded to a 2-by-1 semi-
eigenmatrix.
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Then the connection conditions at (2BC)-point give the following shift
formula between two consecutive groups. This is called the “group shifting,”
which is effected by the eguations

AR = SR-1AR + FRKR -1 + TrRKR, (31)

Ap-1 = S'RAR + F RKR + T'RKR-1. (32)
The subscript R refers to the group number. Ag-: and Agr are 2-by-1 semi-
eigenmatrices, and Kgz-1 and Kz are 4-by-1 associate load terms of both
consecutive constituent groups. Sz and 8, Frand F'g, and Tr and T' i are
2-by-2 shiftors, 2-by-4 feeders for load term of the group with independent
eigenmatrix, and 2-by-4 feeders for load term of the group with dependent
eigenmatrix, respectively.

This procedure can be applied for continuous plate-girder systems effectively.
Although the generalized formulation for group shifting may be made,
preference should be given to the numerical treatment for given systems.

SHIFTING CHART.

The operational procedure of continuous beams can be illustrated schemat-
ically by the shifting chart expressing the relation between the number of
the elements of eigenmatrix and the number of physical conditions at
connection points. This chart suggests all possible ways of shift operations.

The following symbols are introduced:

D, @, B @ e number of unknown elements of constituent span,
[, [B] coveremreermnmmenens number of boundary conditions, and
D, B e number of connection conditions at intermediate

supporting point.

The eigenmatrix in each constituent span has four unknown elements. The
physical conditions at both ends of the span correspond to the freedom of
the eigenmatrix. In a continuous beam, the total number of unknown
elements is equal to that of physical conditions. Therefore, the system can
be solved by due treatment between the above elements and conditions.

Some typical shifting procedures are shown in Figs. 3 through 7. According
to the operation to be adopted, the following arrows are defined:

——— ; Operation within its own span. The number of unknown
elements can be degraded by houndary conditions attached to each end.

———p : QOperation for elements in a span with dependent eigen-
matrix. Usually, after the connection, these elements can be expressed by
current-elements, but occasionally, at (2BC)-point, an exchange of one
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of the current-elements occurs.

e~ ! Operation for current-elements.

N. Yosmizawa and B, Tanimoro.
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The topological array of

such arrows shows that the eigenmatrix in each span can be represented by

the same current-elements.

e Final condition.

r—span 1--ste—sgpan 2‘"):*""5{)&!} 3-->§<—-span 4-te—gpan 5
|

i
|
1
|

Agpan 6 :J‘«» span 7—)&

! LG i
1 /@ ‘ S //D / @ p
i

|
< /ﬂw D 41

»
=

S
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Fig. 3.
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Shifting Chart for Rightward Operation.
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Fig. 6.

Shifting Chart for Outward Operation.
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e g roup 1 f-—group 2-- group 3 et

po o e

. ; o e
-me’bv@:.»@—:-»@;-»\/ig;;» 9 ,lAJ 3
|

v PR .
Q=2 (D g ~~D —— D
Fig.7. Shifting Chart for Group Operation,

® W

First, Fig. 3 shows the rightward shifting procedure. At the extreme [eft
end, two unknown elements in the first span are determined. Secondly, in
virtue of four connection conditions between the first and second constituent
spans, the four unknowns of the second span can be expressed by the two
elements of the first span; that is to say, the two elements in the first span
are shifted to the second span. Thus, we can shift the elements in the
standard span to the adjacent spans successively, so that these standard ele-
ments are designated as the “current-elements.”

At (2BC)-point, because of its characteristics, several particular treatments
must be made. The arrows illustrated in the figure are one of the effective
procedures.

At (2BC)-point one of the current-elements in the left span is determined
by the boundary condition attached to this point, and from the right span,
another element participates in the current-elements.

Proceeding the shiftings on, the eigenmatrix of the extreme right span
is expressed by two unknown current-elements. Then these can be readily
determined by the extreme boundary conditions as shown in the figure.

Fig. 4 shows the leftward operation. Regardless of the shifting direction,
the procedure at (4C)-point is the same as that of the rightward operation,
but the treatment at (2BC)-point gives some different aspects.

In the case of the above operations in one direction, the recurrent
multiplications by the operators at respective connection point result in the
complexity in numerical values treated.

To avoid such an inconvenience, it is recommended to use the inward
and outward opertions, or the group shifting operation as follows.

Fig. 5 shows the inward shifting procedure. The operations are carried
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out from both extreme spans to the interior spans. If a suitable (2BC)-point
is taken as the final connection point as shown in the figure, then the two
unknowns can be determined, and if a (4C)-point is adopted, then the four
elements can be determined.

In Fig. 6 is shown the outward shifting procedure. The starting span of
operation can be selected arbitrarily, and the current-elements are shifted
to both directions from this span. Finally, the eigenmatrices of respective
extreme spans are represented by three unknown elements in which two
elements are common current-elements. Therefore, several kinds of treat-
ments may be made between both extremities as shown in the figure.

In the case of continuous plate-girder systems, the group shifting should
be adopted as shown in Fig. 7. The preliminary treatment is performed in
each constituent group, and the number of current-elements can be reduced
to two at the interior group or reduced to one at the both extreme groups.

Next, the complete shifting is carried out by the connection conditions at
(2BC)-points, and the final conditions can be given at an arbitrary (2BC)-point.

APPLICATION.

In applying the above described procedures to a given ‘continuous beam, it
is advantageous to carry out the shift operations in the form separating the
operators from the load terms. By such a treatment, the eigenmatrix of

each span can always be expressed in the form
N, = LGrl G,p - GrnJ{Kl Ky - Kn}s (33)

in which G,;, G, G,s --- are designated as the “geometry matrices” con-
sisting of 4-by-4 elements determined by the beam configuration, and K,
K, Kz --- are the load terms of respective constituent spans.

It may be concluded that the geometry matrices are the final solution of
the continuous beam, since they can represent all physical properties of
the beam for all kinds of loading conditions. That is to say, if the load terms
of respective spans are given, the eigenmatrix can be readily obtained by
Eq. 33.

As a simple application, let us take the six-span continuous beam shown
in Fig. 8, and derive the geometry matrices for the respective spans. The
analysis may be carried out numerically by means of the group shifting.
Fig.8b is the desired shifting chart providing that the beam configuration

is given in Fig. 8a.
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= i T ! i { ! T !

(a) Configuration

fee——— group 1 re—group 2-=j=——— group 3 >
g pan 1~>1<—~span 2~->$<a——span 3 span 4 span 5~>f<—~-span 66—
? f T f ;
® @ @ @
K -

// //
r»@-..-—-@m 4\ -.,,.,@,...'T"f » @ T 1 "@“""6-”‘@‘ 2

DI ) M/M@

(b)Shifting chart

Fig.8. Configuration and Shifting Chart of Continuous Beam.

e Ratios, ——

The following values of a and B are adopted in the present numerical

example:

a, =1 (r=2 3, 4, 5 6), (34)

9 — 66 = 1 25, ‘53 == O. 8, [84 = ,85 - 1 (35)
O perators.

Referring to the shifting chart, the necessary operators become as follows:

"1.25 1.25 1.25 1257
0 125 25 375

S =Fy =8 = Fse = ) (36)
0 0 1 3
_ 0 0 0 1
0.8 0.8 0.8 0.8
0 0.8 1.6 2.4
(37)

$;=F; = s
0
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"1 2 37
sé = 3 (38)
0 1 3_
"0 1 2 37
F4 == 3 (39)
0 0 1 3_
11117 [100 07
C5 - > 77 (40)
0 0 0 1_ 0 0 0 1_
Preliminary Operation in Group 1.
The extreme left boundary conditions are given from Table II as
1 0 0 07
Nl = 07 (41)
0 0 1 0_
from which M; can be reduced to the form
M={0 B 0 D}. (42)
Shifting rightwards, the conjugate N'; of the third span becomes
N’y = 5,8, (N + K); + $:K, + K, (43)
in which
! 2 3.8 7.27
0 1 3.6 10.2
;8 = (44)
0 0 1 6
_0 0 0 1
The boundary condition at the right end of the third span is given by
L1 1 1 1iwN3=0. (45)

Substituting from Eg. 43 into IEq. 45,

[1 3 84 244](N+K),+10.8 1.6 3.4 7.2|K,
+11 1 1 1K =0, (46)

from which

4. 4
B = — Dl—[l_l 3 8.4 24.4},

0.8 1.6 3.4 725 |1 1 1 1J]{K: Ky Ks} (47)
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Then, in virtue of the preliminary operation, the eigenmatrices N, and N/,
are given by the forms

- o - 0 0 0 07 fo0o o0 o o
1] —24.4 (1 3 84 244 |08 1.6 3.4 7.2
Nl:“ i R 3 y
31 o 3o o 0 0 0 0 0 0
3 o0 0 o040 o o o
0 0 0 0°
1 1 1 1
{K, K, K;}, (48)
0 0 0 0
0 0 0 0.
and
- 972" "3 6 1.4 2167 [ 24 2.4 2.4 2.4
1] 6.2 ll-1 0 24 62| |—-08 08 1.4 0
NI&”‘_’ Dl'{_- ’ )
18 3 0o 0 3 18 0 0 3 9
2 0 0 0 31 L 0 0 0 3_

1K, Ko Ks} (49)

e Preliminary Operation in Group 3.

The left boundary condition of the fifth span is given by
LO 0 1 OJN;=0. (50)
Then, MN; becomes
N={A B 0 D (51)
Shifting rightwards, the conjugate of the sixth span can be written
N'g = S;(N+ K); + K. (52)

The extreme right boundary conditions of the present continuous beam are

given by
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-1 1 1 1°
N = 0. (53)

0 1 2 3

Substituting Eg. 52 into the above equation,

1327 I_—l 0 3.4 13.2 7

Dy +

’

B

_—10. 2| _0 —1 -36 —10.2]

-5

H

{Ks Ks}. (54)

0.8 0.8 2.4 407
0 —-0.8 —1.6 —2.4]

Then N; becomes after the above preliminary operation as follows:

- 13.2 "—1 0 3.4  13.27 [—0.8 0.8 2.4 407
~10.2 0 —1 —3.6 —10.2 0 —0.8 —1.6 —2.4
N5: D5+ ’
0 0 0 0 0 0 0 0 0
1 0 0 o0 o Lo 0 0 0 _
% {Ks Kq}. (55)

Shift Operation at Intermediate Rigid Support, ———
Using Table V and Eq. 29, the operation at this point can be performed

as follows:
A4:O, (56)
,“B’ L[48. 27 dr=1 0 84 s127 —08 0.8 7.4 27
=5 1 | i
Cl 3 24 _ 3l_o o 3 27 _ 0 0 3 18
—1 2 5 87
K, Ky Kt (57)
0 0 3 9_

In virtue of Eq.5, the conjugate of the fourth span becomes

0 0~ "0 0 0 0 0 0 0 0~

1148.2 o |Dy7 14| —1 0 84 5.2 —0.8 0.8 7.4 27
Nl4:"' Jr_ ) »
3 24 o |lDd 3|l 0o o 3 27 0 0 3 18

0 3_ 0 0 o0 oL o 0 0 0._
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"0 0 0 071 3 0 0 07

-1 2 5 8 0 3 0 0
) {K: Ky Ky K,J.

0 0 3 9 0 0 3 0

_ 0 0 0 O 0O 0 0 3

The right boundary condition of the fourth span is given by
L 0 O 1 3 J Nl4 = 0,

from which
8 1
D4:_7D1—~~3—[|_0 0 1 93L0 0o 1 61 L0 0 1 3]
v
Lo 0 1 3]]{K:i K: Ky K}

Then the conjugate N’y can be reduced as follows:

-0 "0 0 0 07 [ o 0 0 0°
11482 -1 o 84 512| |—0.8 0.8 7.4 27
Ny =— D, + — , ,
3| 24 1Mo o 3 o7 0 0 3 18
g | 0 0 -1 -9 | o 0 —1 —6_
-0 0 o0 077 [3 0 0 07
-1 2 5 8 0o 3 0
, (K, K: Ky KL
0 0 3 9 0 0 0
0 0 -1 -3 0 0 —1 0

Connection at Intermediate Pin Joint.

The connection conditions at this point are given by

1 1 1 1- "1 0 0 07

N .

_0 0 0 1_ 0 0 0 1

Substitution from Egs. 55 and 61 into the above equation yields

1[764. 27 "—1 0 10.4 69.27

3

1
1+ =

3

’

l“—O.S 0.8 9.4 397

— _0 0 -1 -9 _ 0 60 -1 —6_

51

(58)

(59)

(62)
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—1 2 7 147
{K, Ko K3 K}

1‘3320‘
"lo 0 -1 0

—1 0 3.4 13.27

’_—0.8 0.8 2.4 4.07

0 0 0 0

0 0 0 0

x{K; K¢}, (63)

from which the final solution becomes
1
2 547

- 15 0 —354 —28207 [[12 —12 —339 —17737

’

D
_D;_

—40 0 95 —121 | | —32 32 55  —366 _

T 15 =30 —303 —804" —45 —45 —228 07

’

_—40 80 —41 —403) | 120 120 —241 O |

—45 0 153 594 71 ['—36 36 108 180~

120 0 —408 —1584_’ _ 9% —9 —288 —48

x{K, K; Ky K, K; K} (64)

Eigenmatrix for Each Constituent Span. ——————

Substituting the above solution into Eqgs. 48, 55, and 61, the respective
eigenmatrices M;, Ns;, and N'; can be obtained in the following form:

Ny "Gy G Gy G G G|
Ny |=|6y Gu Gu G4 Gy Gy |{K Ky Ky K, K; K}, (65)
N5 | | Gsy Gsz Gsz Gsy Gss  Gse

in which the geometry matrix G’y is the conjugate of G, expressed by
Gy =6y —E (E = the 4-by-4 unit matrix). (66)
The eigenmatrices of other spans are given by the formulas
Ny = S (N + K),,
Ny = S3(N+K)s, 67)
Ng = S (N - K.

Then the consolidated final solution of the present continuous beam can be
expressed in the form
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in which, [M,] is the consolidated eigenmatrix, [, ;1 the consolidated geom-

etry matrix, and [K;] the consolidated load term, respectively. They are
given as follows:

(NI ={N N Ny N, Ny NI, (69)

G11 GI" GlS GM Gl:’) 61(‘)—

[G,;]= ) I (70)

Go1 Goo Gz Gor Goz Goo_

The geometry matrices for respective eigenmatrices are given in Table
V11, in which the check for the result obtained can be readily observed.

——— Consolidated Formula.
The physical quantities, deflection, slope, bending moment, and shearing

force, at any point in the continuous beam can be given by the equation

“w 7| 1
d
0 dx
M| = —Elrg; Wy (72)
ds
S —El 75

in which w‘,. is the deflection at the i-th domain of the #-th constituent
span.

For numerical computations, it is convenient to transform the above equa-
tion to the following form:

e — - 0 4 .

w GEI ?2 0 O 1 o p* ¢ 0 0 0 0 0 O
— 1

g _ 0 SET 0 0 0 0 0 0 p o 0 0 0

M 0 0 [/ 0 6 0 0 0 0 0 0 1 p O

S4 Lo o 0 1.0 0 0 O 0 0 0 0 0 1
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- 3 0 0 07 - e Sy g -
0 3 0 0 32 22 o
0.0 30 — 3 — 3k 3
0 0 o 3 1 ) .
3 & & ol —2¢
x %1 2 (1) 2 Z ©rilts ~1‘$ i HS:(’(”) o | ﬂ%?Jl—E 2
0 0 0 3 1 ) .
0 0 —1 0 p . .
0 0 0 —3 1 4 .
- R - Ll -1 _o .

(73)

This is the consolidated formula for all physical quantities of the continuous
beam. The necessary quantities can at once be evaluated by the above
equation. For instance, the deflection and the bending moment may be
obtained as follows.

Deflection:

- — — a—
o

— 4

Wi o= Z’3 1 2 3 > - 3
= SEr-L e e e ;‘Grjkﬁr}oj P .
_ _ L1 _
T - 327
32 — 6k
+1{'aw de + 2% ()
—3k 3
_ 1 . 0 LI
Bending moment:
[ 20 0 —1 0-
Mi,o=LI_1 pJj=>] G, K
3TLo o o —3]
L D Tk T m}q—l_A—
+ 20 P} 1'*“[5:(](:‘6) !d,;+-l—l (75)
0| i AL . P P




Table VII. Geometry Matrix (x1/7641).
Kj Gij Goj
= 0 0 0 0 ii] 5966.% 9 —7728.75 7302.75 |
%, —2913 —7 641 —12757.2 6661.2 —3472.5 0 —826.5 5 255. 25
0 0 0 0 135 0 4455 —2 457
45 0 —1062 -8460 |l 45 0 —1062 —819  _
T 0 0 0 0 j|i —2868 —4773 ~1756.5 2450475 |
‘. —2330. 4 —3782. —388.2 24922.8 —2778 —4863 — 4299 11 207.95
0 0 0 0 108 —108 —3051 —15957
L 36 —36 —1017 —5319 | 36 —38 —1017 —53819 |
= 0 0 ) 0 }|] —3585 2381.%5 1921.5 18323.%5;
K —2913 —1815 4846.2 17 070.6 ~3472.5 —2606.25 2649 12 293.25
0 0 0 0 135 —270 —2727 —7236
45 —~90 —909 —2412 4l 45 —90 —909 —2412 |
3 0 0 0 0 J|F 1203.75 1203.75 6099 CR
1098 1098 5563.2 0 866.25 866. 25 4389 0
K 0 0 0 0 —405 —405 —2052 0
135 —135 —684 o L -3 —135 —684 0
B 0 i) 0 0 ||| 1203.75 0 T4092.75 —15889.5
. 1098 0 —~3733.2 —14493.6 866. 25 0 —2045.25 ~11434.5
’ 0 0 0 0 —405 0 1377 5 346
135 0 459 1782 || —135 0 459 1782
B 0 ) 0 0 LI 963 953 —2 889 1815
878.4 ~878. —2635.2 —4392 693 —693 —~2079 —3 465
Ko 0 0 0 0 —324 324 972 1620
—108 108 324 540 _ —108 108 324 540 |

(Continued.)
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Table VII. Geometry Matrix (x1/7 641).
Kj Gsj G.j
= 3130 0 —41%5 74%5.6 J|1 0 0 0 0
e |l 2 454 0 3918 —~1692.6 —1824 0 4332 —4887.6
270 0 1269 —4914 360 0 —855 1089
45 0 —1062 —819 |l —120 0 285 —363
= 1711.2 17112 ~19%6 17661.6 || 0 0 0 0
. || —1963.2 1963.2 1464 ~10992.6 —~1459.2 1459.2 2448 —16689.6
: 216 ~216 1539 —~8991 288 — 988 —495 3994
.3 —36 —1017 2822 |l —96 96 165 —~1098
= 5502 —Ai978 3147.5 16774.8 {| I 0 0 0 0
‘. — 2454 —2733 —4425.6 ~7531 —1824 3648 —18869. —~18376.8
270 —540 —5 454 14472 360 —~720 369 3627
45 —90 —909 —2412 ||, —120 240 ~123 ~1209
= 1224 1224 6201.6 0T 0 0 0 0
—279 —279 —~1413.6 0 —2169 ~2169 ~10 989. 0
s —810 —810 —4104 0 —1080 —1080 —5472 0
135 —135 —684 o 4L 380 360 ~793 —7641
= 1224 0 —4161.6 Z76156.8 J | 0 0 0 0
—279 0 948.6 3682 ~2169 0 7 374. 28 630.8
K —810 0 2754 10 692 ~1080 0 3672 14 256
I —135 0 459 1782 ||l 360 0 1224 —4752
= 979.2 =979, ~3937.6 —4896 |1 0 0 0 0
—9293.2 223.2 669.6 1116 —1735.2 1735.2 5 205. 8676
Ko — 648 648 1944 3240 —864 864 2592 1320
—108 108 324 540 ||l 288 — 988 —864 —1 440

(Continued. )
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Table VII. Geometry Matrix (x1/7 641).
Kj Gsj Gj
~—1584 0 3763 —4791.6 §1] —600 G 14% Z1815
%, 1224 0 —2907 3702.6 1080 0 — 2585 3267
0 0 0 0 ~360 0 855 —~1089
_ —120 0 285 -363 _J|} —120 0 285 —363 |
= 1267.2 1967.2 2178 TT4493.6 §|] —480 480 825 5490
. 979.2 —979. 2 —~1683 11199.6 864 —864 —1485 9882
0 0 0 0 —288 288 495 —3294
_ —96 96 165 ~1098 i -9 a6 165 —1098 |
= 1584 3168 ~1693.6 —15058.8 {11 —600 1300 —615 —6045
%, 1224 —2448 1254 —12331.8 1080 ~2160 1107 10 881
0 0 0 0 —~360 720 —369 —3627
—120 240 —123 —1209  _f|L —120 240 —123 —1209 |
1752 1752 —9543.6 0 i 1800 1800 ~3615 6
%, —3672 —3672 78746 0 —3240 —3240 6507 0
0 0 0 0 1080 1080 —2169 0
360 360 —723 0o L 360 360 ~723 0o
25889 0 9822 38154.8 1§ 1800 0 1521 14445 |
—3672 —7641 —15022.8 —29 467.8 —3240 0 — 4266 —26 001
ok 0 0 0 0 1080 0 3969 8667
360 0 —1224 —4752 1|l 360 0 1224 2889 |
—2311.2 2311.2 6933.6 28663.2 ||| —6 201 1440 33521 14562 |
—2937.6 —3175.2 —3412 16 869.6 ~2592 —5049 —7506 ~21627
Ko 0 0 0 0 864 — 864 —2592 —432
288 —288 — 864 —144  _|L 288 —288 —864 —144

0% "ON

*SWwedg] SNONUIU0Y) 103 poylen (euorrersd(
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CONCLUSIONS.

Regarding the present analysis of bending problems of continuous beams,
several concluding words are given as follows:

1. Because the procedure is composed of the treatment of perfectly
classified data of beam configurations and external loading conditions, the
analysis can be carried out systematically, and the necessary operators are
obtained readily from the corresponding tables or equations. The operators
at an intermediate connection point can be used independently of that of
other point.

2. The eigenmatrix of a domain adjacent to the standard one in a span
can be given merely by additions of the corresponding load-matrix at the
loaded point.

3. The operational procedures are shown by the shifting charts, from
which various ways of processing analyses can be constructed, so that a
result obtained by one way can be checked by another one.

4. The geometry matrix is a useful result of the operational method,
because it depends only on the configurations and material properties of
a given beam, and when multiplied by the load terms of the system, it
gives the eigenmatrix for the corresponding loading conditions.

5. The eigenmatrix is the final solution of the beam under given loading
conditions. It readily gives the solution of deflection, slope, bending moment,
and shearing force of the beam.
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APPENDIX. —NOTATION.

The following symbols have been adopted for use in this paper:

a,
A,

Ap

{A B C D},
B, B,

c

Fz, F'p

Grly Grﬁ) te

M =

N

Ni,
N,

redundant element see Eq. 30;

semi-eigenmatrix of »-th constituent span, see Tables V and
VI

semi-eigenmatrix of R-th constituent group, see Egs. 31 and
32;

elements of eigenmatrix of »-th span, see Eq. 3;

boundary matrices of left or right end of r-th span, see Egs.
10, 11, and Tables II, IIT;
connection-matrix at #-th connection point,
Table IV;

unit mtarix;

flexural rigidity of r-th span;

see Eq. 19 and

= right or leftward feed operator at »-th connection point, see

Egs. 26, 28, and Tables V, VI;
right or leftward feed operator at R-th (2BC)-point, see Eq.
31 or 32;

geometry matrices of r-th constituent span,
Table VII;

integer representing the order

see Eq. 33 and

number of domain;
integer representing load term of j-th span;
constant attached to elastic support, see Eq. 12;

= load-matrix at loading point of external concentrated mo-

moent, see Eq. 8;
load-matrix at loading point of external concentrated load,

see Eq. 6;

= Joad-term of 7-th span, see Eq. 9;

span length of »-th constituent span;

constant between resisting moment and slope at supporting
point, see Eq. 12;

bending moment;

resisting moment at supporting point, see Eq. 12;

external concentrated moment;

= total number of constituent spans of continuous beam;

eigenmatrix of normal domain of 7-th span;
eigenmatrix of i-th domain of 7-th span;
eigenmatrix of conjugate domain of 7-th span;
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Sr,8'r

TR, TR

w,
wi,
w,

x

a,

= feeder for redundant element, see Eq. 30 and Table V;

= rigidity ratio, see Eq. 21;

= lower boundary of partially distributed load,

Operational Method for Contniuous Beams.

external concentrated load;

intensity of distributed load;

order number of constituent span or connection point;
order number of constituent group;

reaction at elastic support;

No.

20

right or leftward shiftor at -th connecticn point, see Eq.

26 or 27, and Table V or VI,

right or leftward shiftor between R—1 and R-th constituent

groups, see Kgs. 31 and 32

right or leftward feeder for its own group between
R—1 and R-th constituent groups, see Egs. 31 and 32
beam deflection at normal domain of #-th span;

beam deflection at i-th domain of 7-th span;

beam deflection at conjugate domain of #-th span;
current abscissa;

span ratio, see Eq. 20;

slope angle;

non-dimensional load abscissa, see Fig. 1;

constant attached to elastic support, see Eq. 22;

see Fig. 1,

upper houndary of partially distributed load, see Fig. 1,

constant attached to elastic support, see Eq.23;
non-dimensional current abscissa see Eq. 2,

summation;

integration;

number of boundary conditions in shifting chart;
= number of connection conditions in shifting chart;
number of unknown elements in shifting chart;

reduction operation for eigenmatrix within its own span;

shift operation for current-elememt;
final operation;
row vector; and

column vector.

or

or

= operation for elements in a span with dependent eigenmatrix;



