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                             SYNOPSIS.

                                                           6)  This paper is a continstation from the first report by the writers, and it
                                                      2)4)5)presents the generalized formulation of the operational method for bending

problems of continuous beams. The powerfulness of the nLethod in pltilosophy

and computation may be observed from the shifting chart and the geometry

matrix. The rigorous solution for all kinds of continuous beams can be

obtained by systematic skift operations.

  The procedures presented herein can be readily developed to probiems of

the beams on elastic foundation, the beams with axial force, the column

buckling, and their vibration analyses.

                          INTRODUCTEON.

 Aibtation. The symbols adopted for use in this paper are defined where

they first appear and are arranged alphabetically in the Appendix.

 The powerful approach to the bending problems of beams and plates has
                                        1)been established by the eigenmatrix method, which is due to the perfect

classification of data, so that physical quantities of similar quality are

represented by the corresponding matrix, and hence the problem can be

treated systematically.

 Tke operational method is the powerfu1 weapon for various complex

structural systems. The physical conditions between respective constituent

units or groups can be represented by the matrix operator, and the analysis

is carried out by simple and systematic operations. Simultaneous equations

are of no use by this method.
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  Since these few years, the operational method has been developed for various
                       2)4)e)7)
strttctttres quite successfully. Moreover, it has been found that the classical

Clapeyron's three moment theory can also be treated by this method
dispensing with simttltaneous equationsf)

  From the above investigations, further effectiveness in the operational pro-

cedures for the analysis of all kinds of ordinary continuous beams has been

confirmed.

  The elastic behavior of any member in a continuous beam is governed by

the well-known differential equation, and any two consecutive members are

interconnected with each other at tkeir common connection point througlt

due connection conditions. A rnember may be Ioaded arbitrarily, and a

gi'ven external load will be represented by the correspondjng load-matrix.

From the superposition law, a system of concentrated loads can then be

represented only by ehe summation of respective load-matrices. The partially

distributed load can be treated similarly. The assemblage of all the load-

matrices should therefore consist of the positions and tke magnitude of given

loads, and it is perfectly iRdependent of beam configurations. On the other

hand, the operational matrices, resulting from coRnection or supportiRg

conditions, can be determined from the geometry and material properties

of the coRtinuous beam.

  Corresponding to the possible states of connection or supporting coR-

ditions, there may be several l<inds of shift formulas with which the

eigenmatrix can be shifted from one span to the adjaceRt span, and hence

they will be formulated exhaustively. Boundary conditions will permit the

determination of the current-matrix.

  The above operation can be illustrated schematically by the "shifting

chart" which indicates the procedure suitable for a given system.

  By such operations, the ei,genmatrix of continuous beam can be obtained

in the form of the "geometry matrix" postmultiplied by the assembled Ioad-

matrix. A derivation of the geometry matrix is given in the Example.

                           BASIC CONCEPTS.

  The deflection at each domain of the constituent span shown in Fig.1

is given by
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Fig. 1. Constituent Span of Continuous Beam (r-th Span).

1

and tlie superscript i the domain order provided

conjugate domains are denoted by no superscript and

w is the defiection, l the span length, El the rigidity,

curyeRt abscissa of coordinates given by Eq.2. N is

for each domain as follows:

                         Nr = {A B C D}.

          e
N'r == Nr ÷Z (Kp +
          rcts"o

SfdKp + K.)r,

the normal and the
prime (') respectively.

p the non-dimensional

the eigenmatrix given

(3)

(4)

                            N'r =: Nr+Kr･ (5)
The second term on the right side of Eq. 4 represents the aggregate matrix

for a point where all the load-matrices in the leftward domain are assembled.

The respective terms in parentheses are load-matrices for the concentrated

load, the partially distributed load, and the external concentrated moment,

given by tlte forms:

                      Kp=: P{-rc3 3re2 -3rc 1}, (6)

                  S,"dKp==IS,"q(m){-rc3 3m2 -3rc 1}drc, (7>

                      K. == -lil-mi{rc2 -2rc i o}. (s)

The term K. in Eq.5 is designated as the "load term" of the constituent

span considered, which is given by assembling ali the load-matrices on

the span as follows:
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                      Kr "':` tl.,(Kp + S:dKp + Km)r･ (g)

                                                     '
  Thus, the deflection of each domaiR of the constituent span is expressed

by its eigenmatrix consisting of 4-by-1 elements and the corresponding

aggregate load-matrix which can be given by each loading condition. The

dimension of each elemen£ of the eigenmatrix is the same as that of the
concentrated load.

  An eigenmatrix is shifted, when possible, to the adjacent span in such a

manner that the connection conditions at the common point of the two

consecutive spans considered are satisfied. At times the shi'ft operation

of the eigenmatrix is prohibited, in which case the degradation of the eigen-

matrix is necessary or otherwise. In this way, the boundary conditions for

determining the current-matrix may be those at an intermediate junction

point as well as those at the extreme ends of the beam.

  In the present paper, the continuotts beam is considered as an assemblage

of members whose deflectioRs are govemed by Eq. 1.

  First, a member will be subjected to a preliminary treatment when nec-

essary, which will result in a definite restriction upon the eigenmatrix of the

member.

  After that, the connection conditions remained ttntreated at an inter-

mediate point between two adjacent members are considered, from which

the necessary shift operation can be made.

  In the generalized continuous beam, there are several possible states of

connection points, and hence they may be classified into two large groups as

follows:

   (4C>-point: There are four connection conditions bttt no boundary

              condition at this point, of which the following four possible

              cases must be considered:

          (a) abruptly-changed cross-section;

          (b) abruptly-changed cross-section with resisting moment;

          (c) elastic support; and

          (d) elastlc support with resisting momeRt.

   (2BC)-point: Two respective boundary conditions and coRnection condi-

               tions are considered at the iollowing points:

          <e) rigid support;

          (f) rigid support with resisting moment;

          (g) pin joint; and

          (lt) eiastic piR joint.
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  These conditions are il!ustrated in Table I with corresponding graphical

symbols, in which [I] represents tke number of independent boundary condi-

tions at each end of the constituent span, and <l> is the number of connection

conditioRs at each connection point. The symbols 0, M, and S denote the

slope, bending moment, and shearing force at the left end, respectively.

Those symbols primed refer to the right end of the spaR. Mc is the

resisting moment which is proportional to the angle of rotation at the

coltnection point, and Rc is the reaction at the elastic support.

     Table I. Pliysical Characteristics of Connection Polnt (r-th Cennection Point).
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                      BgUNPARY CONDITIeNS.

 The boundary conditions for each coRstituent span of a continuous beam

can be expressed in the following forms:

   For the left end: es.tw. == O. (10)
   For the right end: B'.N'.=O. (11>
  Eqs. IO and 11 must at tirnes be assumed at intermediate connection points.

The matrices B. and $'. are designated as the "boundary-matrices," con-

sisting of 2-by-4 elements at both extremities of the continttous beam, and

of 1-by-4 elements at both ends of an intermediate span.

  Both Extremities.

  Both extremities of the continuous beam are assumed to be of elastic

support where the deflection is proportional to its reaction, and in additioR,

to be subjected to a resistiRg moment which is again proportional to the

angle of rotation at this poiRt. AII the possible boundary conditions can be

included in such an assumption. The above conditions are writteR in tke

forms:

   At the left extremity: w, == kR,, 0, == mA4}. <12)

   At the right extremity: zv', ::= k'R',, 0', =m'M'.. (13)

Here, le, le', m, and m' are constants to be attached to each supporting

point, and other symbols are illustrated in Fig. 2,

          M, M, M,I Me
                                        s,; 6)E tvE
            WC 0c Sl '
          ., L..pt.llli･-i-[ili-･ Ni ,,,.,, tT:',i.Ynl, nvSRt

       (a) Extreme Left SupporE. (b) Extreme Right Support.
               Fig.2. Boundary Conditions at Both Extremities.

  Then Eqs. 10 aRd 11 becom,e

                          -'1 O O 2-'
                   BiNi -- Ni =O, <14)
                          -.O 1 -pt Om
and
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                           "
                       -1 1 1 1-2'-
                BtnNtn= Ntn == O,
                       ..O 1 2+xt' 3-i- 3st'-

in which, for shortness,

               -2- -3,le- -JltM -3le,-
               -,,-=a'4'!-//･"-･ -,,-:-2f.f"..;/･i･

  Eqs. 14 and 15 are the generalized boundary conditions for both

tles. Every possible condition can be represented by the values

2', and ft' in the boundary-matrices shown in Table II.

        Table II. Values in Extreme Boundary-Matrix for Each Condition.
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                       CONNECTION CONDITIONS.

  The connection conditions at an intermediate connection point of a continu-

ous beam 3re expressed in the matrix equation

                           Cr{N'r-i Nr} :=: O, (19>

                      Table lV. ConRectioR-Matrix.
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in which C. is the "connection-matrix," N'.-i and

of the two adjacent spans, respectively.

  In Table IV is shown the conRection-matrix 'for

the followiBg symbols have been intiroduced:

                                   lr
                              cv.= --)                               ' lr-1

                                   Mr
                              Pr :::: -E-iIL-i''

                             2 .,, 6.krrE..Ir,

                              rl3
                                    r

                                   21nrEIr
                             Y'r :wwwwl. '

Beams.

 rw. are the

each possible

           39

elgenmatrlces

 case. Here,

(20)

(21)

(22)

(23)

                          sxxge:[r epEKAToRs.

  From the coRnection conditions obtained in Eq.19, we can derive the

desired shlft formula l)etween eigenmatrices of the two adjacent spans of a

continuous beam. Tke forrriula is classified into two main groups as follows.

  Operatoj's at (4C)-Point.

  Using the connection-rriatrix in Table IV, Eq. 19 yields the shift formulas

                         Nr =: $rNr-i+ptrecr-b (24)

                         Nr-i=S'rNr+F'rKr-b (25>

in which S. or S'., and g. or pt'. are the right or leftward shift operators,

and feed operators, briefiy the "shiftors" and "feeders" repeceively, which

take the values

                       a
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(27)

and

                 pt'. == -E (bl being the 4-by-4 unit matrix>, (28)

and other symbols have been defined by Eqs. 3 and 9.

  All the supporting conditions of (4C)-points can be expressed by the values

of R and st in the above equations as shown in Table IV.

  Operators at (2BC)-Point.

  Since the number of connection coRditions is deficient in shifting all the

elemeRts in the eigenmatrix of a span to the adjacent span, the shift

formula results in a particular form iR this case. In virtue of Eqs. 3, 5,

and 19, and Table IV, the following shift formulas for either direction can

be derived. In this case, for the left span with pin connection end, a pre-

liminary treatment must be made before the coRnection. That is to say,

because of the non-square size of the connection-matrix, the eigenmatrix

in the left span with pin joint must be reduced to a 3-by-1 eigenmatrix.

Thus, the desired skift formulas become

                       Ar "= $rAr-i+FrKr-b (29)
                    Ar-i = S' rAr+g' .K.-i+ R' .a.-y (3e)

Eq. 29 is the rightward shift formula and Eq. 30 is the Ieftward one.

  These equations indicate that the A. and A.-i semi-eigenmatrices on the

left sides depend on the A,-i and A. matrices on the right sides, respectively.

$., S'., S., and F'. are callecl as l]efore the shiftors and feeClers, respectively.

A particular term R'.a,-i appears in Eq.30 because of the non-square size

of connection-matrix. That is to say, three elements in the left span eigeR-

matrix participate in the coRnection equation, but there are only two con-

nection conditions for these unknown elements, and hence one element must

be selected as a redundant element and fed for other two elements of

its own span. Therefore, ew'. is called the "feeder for redundant elemenY'
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providing that a,.t represents the redundant element.

  In virtue of the non-square size of the connection-matrix, there also

exists an element indepeRdent of the rigid support or pin joint condition.

  The above redttndant and indepeiident elements are always determinable

after the shift operations are carried out through £he three connection points

m questlon.

  In Table V and VI are giveR operational factors correspondiRg to iRter-

medate (2BC)-points.

Table V. Operatlenal Facters fer Intermediate Rigid Support with Resisting MGmeRt

                        (lf M} m O, then pt. =: oo).
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Table
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VI. Operatienal Factors for Intermediate Elastic

            (For simple pin joint, 2, = oo).

Pin Joint

No. 20
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  Operators for Group Shifting.

  Separating the continuous beam into isolated members or member groups

at respective (2BC)-points, we designate them as the "constituent groups."

In one of these groups the skift operation can always be carried out in either

direction by a 4-by-4 shiftor given by Eq. 26 or 27, and iR virtue of bound-

ary conditions attached to both ends, the number of unknown elements

is reduced to two; that is to say, by the above preliminary operation, the

eigenmatrix of each constituent group can be degraded to a 2-by-1 semi-

elgenmatrlx.
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  Then the connection conditions at (2BC)-point give the following shift

forrnula between two consecutive groups. This is called the "group shifting, "

which is effected by the equations

                   AR -- SR-.iAR -l- FRKR-i+ TRKR, (31)

                   AR-1 =: S'RAR+pt'RKR -r T'RKR-i. <32)
The subscript R refers to the gyoup number. AR-i and AR are 2-by-1 semi-

eigenmatrlces, and KR-i and KR are 4-by-1 associate load terms of boSh

consecutive constituent groups. $i? and S'R, ptRandS'i?, and TR and T'R are

2-by-2shiftors, 2-by-4 feeders for load term of the group with independent

eigenmatrix, and 2-by-4 feeders for load term of the grottp with dependent

eigenmatr2x, respectively.

  This procedure can be applied for continuous plate-girder systems effectively.

Although the generaiized formuiation for group shifting may be made,

preference should be given to the numerical treatment for given systems.

                          S"IFTING CHART.

  The operational procedure of continuous beams can be illttstrated schemat-

ically by the shifting chart expressing the relation between the number of

the elements of eigenmatrix and the number of physical conditions at

connection points. This chart suggests al! possible ways of shift operatiolts.

  The following symbols are introduced:

   CP, @, @, @ ･･･-･････number of unkkown elements of constituent span,

   [I], [il] ･･･････････-･･･････-･number of boundary conditioBs, and

   @, @･･･････････-････････-number of connection conditions at intermediate

sttpportlng polnt.

  The eigeRmatrix in each constituent span has four uRknown elements. The

pkysical conditions at both ends of the span correspond to the freedom of

the eigenmatrix. In a continuous beam, the total number of unknown

elements is equal to that of physical conditions. Therefore, the system can

be soived by due treatment between the above elements ancl conditions.

 Some typical shifting procedures are shown in Figs. 3 through 7. According

to the operation te be adopted, the following arrows are defined:

    ----tsm--: Operation within its own span. The number of unknown

elements can be degraded by bottndary conditions attached to each end.

    ---pt- : Operation for elements in a span with dependent eigen-

matrix. Usually, after the connection, these elements can be expressed by

current-elements, but occasionally, at <2BC>-point, an exchange of oi}e
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0f　the　curren之．elelnents　occurs．

　　一一：Operation　for　current－eleHlellts。　The　　topolo9圭cal　array　of

stlch　arrows　shows　that　the　eigenmatr量x　in　each　span　can　be　represented　by
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  First, Fig. 3 shows the rightward shifting procedure. At the extreme ieft

end, two unknown elements iR the first span are determiRed. Secondly, in

virbue of four connection conditiolts between tke first and second constituent

spans, the four unknowns of ehe second span can be expressed by the two

elements of the first span; that is to say, the two elements ln the first span

are shifted to the second span. Thus, we can shift the eiements in the

staRdard span to the a(ljacent spans successively, so that these standard ele-

ments are designated as the "current-elements. "

  At (2BC)-point, because of its characteristics, several particular treatments

must be made. The arrows illustrated in the figure are one of the effective

procedures.

  At (2BC)-point one of tke current-elements in the left span is determined

by the boundary condition attached to this point, and from the right span,

another element participates in the current-elements.

 Proceeding the shiftings oR, the eigenrnatrix of the extreme right span

is expressed by two unknown current-elements. Then these can be readily

determined by the extreme boundary conditions as shown in tlte figure.

 Fig. 4 shows the leftward operation. Regardless of the shifting direction,

the procedure at (4C)-point is the same as that of the rightward operation,

but the treatment at (2BC)-point gives some different aspects.

 In the case of the above operatioRs in one direction, the recurrent

multiplications by the operators at respective connectlon point result in the

complexity in numerical values treated.

 To avoid such an inconvenience, it is recommended to use the inward

and outward opertions, or the group shifting operation as follows.

 Fig. 5 shows the inward shifting procedure. The operations are carried
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 out from both extreme spans to the iRterior spans. If a suitable (2BC)-point

 is taken as the final connection point as shown in the figure, theB the two

 unknowns can be determined, and if a <4C)-point is adopted, then the four

 elements can be determined.

  In Fig. 6 is shown the outward shiftin.cr procedure. The starting span of

operation can be selected arbitrarily, and the current-elements are shifted

to both directions from this span. Finally, the eigenmatrices ef respective

extreme spans are represented by three unknown elements in which two

elerr]ents are commoR current-elements. Therefore, several kinds of treat-

rnents may be made betweeR both extremkies as slaown in the figure.

  In tke case of continuous plate-girder systems, tke group shifting should

be adopted as shown ln Fig. 7. The preliminary treatment is performed in

each constituent group, and the number of current-elements can be reduced

to two at the interior group or reduced to one at the botk extreme groups.

  Next, tke complete shifting is carried out by the connection conditions at

(2BC)-points, and the final conditions can be given at an arbltrary (2BC)-point.

                             APPMCATION.

  In applying the above described procedures to a givei? continuous beam, it

is advantageotts te carry out the shift operatioRs in the form separatiRg the

operators from the load terms. By such a treatment, the eigenmatrix of

eack span can always be expressed in the form

             Nr ==i LGri er2 ''' GrnJ{sci K2 ''' scn}, <33)

in which e.i, G.2, di,3,･･･ are designated as the "geometry matrices" con-

sisting o'f 4-by-4 elements determined by the beam configuration, and Kb

K2, sc3, ･･･ are the load terms of respective constituent spans.

  It may be concluded that the .creometry matrices are the final solution of

the continttotts beam, since they caR represent all physigal properties of

the beam for all kinds of loading conditions. That is to say, if the load terms

of respective spans are given, the eigeRmatrix caB be readily obtained by

Eq. 33.

  As a simple application, let us take the six-span continuotts beam showR

iR Fig.8, and derive the geometry matrices for the respective spans. The

analysis may be carried out numerically by means of the group shifting.

Fig.8b is the desired shifting chart providing that the beam configuration

is given in Fig. 8a.
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                           (a) Configuration

                           (b)Shifting chart

           Fig.8. Configuration and Shifting Chart of Continuous Beam.

                               Ratios. -

  The following values of ev and P are adopted in the present numerical

 example:

                      a, ==1 (r =2, 3, 4, 5, 6), (34>

                 P2=S6 --- 1. 25, 5, =r- O. 8, P,=P, == 1. (35)

                              OPerators.

    Referring to the shiftiRg chart, the necessary operators become as follows:

                                -L 25 L 25 L 25 1. 25'"

                                  O 1. 25 2.5 3. 75
                S2 ::-L F2=S6 -- F6= , (36)
                                  OO13

                                  O O O 1.-

                              -O.8 O. 8 O. 8 O. 8-'

                                O O.8 L6 2.4
                      s, == pt, =: , (37>
                                OO13

                                OOO 1-
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                           -1 2 3-"
                       Sd xe" '
                             O13

                          -O I 2 3-
                      ff4 ="- !
                           O O 1 3

            c,==[[g gm-Ig g o, 21

                   Preliminary OPeration in GrouP 1.

  The extreme left boundary conditions are giveR from Table II as

                           1000
                                        tw1 == O,
                           O O I O

from which Ni caR be reduced to the form

                        rw, =: {O B O D},.

Shifting. rightwards, the conjugate tw'3 of the third spaR becomes

                   twr3 = ss3SL, (ee -F K), + S3X2 + K3,

in which

                          -"1 2 3.8 7.2-

                           O 1 3.6 10.2
                    S?,$2 ==i .
                           0016

                           OOOI
The boundary con,dition at the right end of the third span is given

                      Ll 1 1 1]rwt3 z:-L O.

Sttbstitutin.cr froarn Eq. 43 into Eq. 45,

     Ll 3 8. 4 2ri.. 4J (rw -l-- ec ), + LO.8 L6 3. 4 7. 2j sc,

                                      -I-Ll 1 1 ljK3 =:= O,

from which

            24. 4
      Bi ='=- -- -3-- Di - [L1 3 8.4 24. 4j,

            LO.8 1.6 3.il 7.2j, Ll 1 1 lj]{K, K2 sc3}･

by

No. 20

(38)

(39)

(40)

(41)

(42)

(43)

<44)

(45)

(46)

(47)
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 1 O]rws =O.

2. 4

1. 4

 3

 o
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Tke extreme

given by

right

      N, == {A B O D},.

 the conjttgate of the sixth spaR can be

      Nt, k- S6(N+K)s --1- K6.
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o
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                       -"1 1 1 1"-
                                     N'6 == O. (53)
                        O123

Substituting Eq. 52 into the above equation,

   -A- -13.2- --1 O 3.4 13.2'-
       = Ds -i- ,   -B-, -- 10. 2- .O -1 -3.6 -10. 2-.

                          I-068 -O･,i, -2'S, -`',P,Iij{K, K,} (s4)

    Then Ns becomes a£ter the above preliminary operation as follows:

      ny 13.2- --1 0 3.4 13.2- --O.8 O.8 2.4 4.0-

       -10.2 O -1 -3.6 -10.2 O -O.8 -1.6 -2.4

                                               ×{K, X,}. (55)

              Shi.frf OPeration at Intermediate Rigid SuPPort.
                                                            '
  Using Table V and Eq. 29, the operation at this poiBt can be perforrned

as follows:

                              A, == O, (56)

Igl,-=gl4:L2ID,.g[I-,i- g 8b4 51L2I,I-g･8 068 7b4 i!-,

                                I"ol i g gl--1{K, K, K,}"" (s7)

In virtue of Eq. 5, the conjugate of the fourth span becomes

       -o o- -o oo o- -o oo o-
     1 48.2 O -"D,- 1 -1 O 8.4 5L2 -O.8 O.8 7.4 27

     3 24 o .-D,-. 3 o o 3 27 ' o o 3 18'

       -O 3- ..O OO O- -O O OO
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             -'O O O O- -3 O O O-

              -1258 O3OO                            , {Ki K2 K3 K4}.
              O039 O030
              OOOO OO03
The right boundary condition of the fourth span is given by

                    LO O 1 3j Nr, == O,

from which

       81 D4x--iii-Di--ii-[I..O O 1 9], Lo o 1 6J, Lo o 1 3j,

                              LO O 1 3]]{Ki K2 Ka K4}･

Then the conjugate N'4 can be reduced as follows:

        -o' -"o o o o' Ho o o o'
      1 48.2 1 -1 O 8.4 51.2 -O.8 O.8 7.4 27
 N'4-munv3 24 Di+5 o o 3 27 ' o o 3 18'

         -8 OO -1 -9 O O-1 -6
              -O O O O- -3 OO O-'

               -1 258 0300                               , {Ki K2 K3 K,}.
               OO39 O030
               O O -1 -3 OO -1 O

                  Connection at Intermedinte Pin foint.

  The connection conditions at this point are given by

                 1 1 1 1 1 0 0 0
                              Nt4 := Ns.
                 0 0 0 1 O O O I
Substitution from Eqs. 55 and 6i into the above equation yields

    g-g`,2'D,.g[-6i g ig5 69,2M,=g8 O,8 2`, E℃-,

51

(58)

(59)

(60)

(61)

(62)



52 N. YosHizAwA and B. TANiMoTo. No. 20

     ---1 2 7 14-" -3 3 2 O-
                    , {Kl sc2 K3 sc4}
       O O -1 -3 OO -1 O
         M13.2- --1 O 3.4 13.2-- --O.8 O.8 2.4 4.0-
       = D, --i- ,           1 OOOO OOOO
                                              ×{Ks K6}, (63)

 from wltich the final solutioR becomes

   -Di 1 -- 15 O -354 -2820-" -12 -12 -339 -1773-
   -D,- 2547 --4o o gs -121-'--32 32 55 -366 -'

             -15 -30 -303 -804- '-45 -45 -228 O-"

                                 )e              -40 80 -41 -403 120 120 -241 O

              --45 O 153 594 -- -`-36 36 108 180-
                                  '                120 O -408 -1584 96 -96 -288 -48

                                ×{Ki sc2 sc3 K, X, ec,}. (64)

               Eigenmatrix for Each Constituent SPan. -

  Substituting the above solution into Eqs.48, 55, and 61, the respective

 eigenmatrices Ni, Ns, and ew'4 can be obtained in the following form:

              ell G12 G13 G14 Gls G16        Nl

       N'4 =: G,, 642 G,3 e',4 G4s G46 {Kl K,, K3 K4 Ks K6}, (65)

      -Ns- -Gsl Gs2 ees3 Gs4 gss Gs6-

in which the geometry matrix g'44 is the conjugate of e" expressed by

           Gk == G'44-er (E =: the4-by-4 unit matrix). (66)

The eigenmatrices of other spans are giveR by the formulas

                      rw2 -- $2<N -i- sc)b

                      rw3=S3 (N -i- K)2, (67>
                      rw6 = S6 (N+K)s.

Then the consolidated final solLitioR of the present coBtinuous beam can be

expressed in the form

                       [par] ":" [Grj] [scj], (68)
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ln wkich, [N.] is the consolidated eigenmatrix, [G.,･] the consolidated geom-

etry matrix, and [Kj] the consolidated load term, respectively. They are

given as follows:

                    [rwr]={rwi tw2 rw3 N4, pafi NG}, <69>

                        ell e12 Gi3 G14 Gls $16M

                        e21 $22 e23 G24 es2s gep.6

                        631 G32 $33 e34 G3s S36

                [Grj]= , (70)                        e" G42 ee43 e44 G4s g46

                        6sl gs2 gs3 es4 eess e56

                        -$6i G6". Gse 664 e6s ptG6m.

                    [scJ'] :{Ki K2 re3 K4 Ks scg}. (7!)

  The geometry matrices for respective eigeflmatrices are given in Table

VII, in which the check for the resuk obtaiRed can be rea(lily observed.

                      --- Consolidated Formula. -

  The physical quantit!es, deflection, slope, bending momeRt, and shearing

force, at any point in tke continttous ])eam can be given by the equation

                         zvt l
                                   d
                         0 nvd'xrm

                         M == -EI.ad'N2-..- Wir, (72)

                                     d3
                         S -EI'rduH3

                        - -r

in which wi, is the defiection at the i-th domain of the r-th constituent

span.

  For numerical computations, it is convenient to transform the above equa-

tion to the following form:

   -' -' -l3 -    Wt 6EI O O O --1 p p2 p3 o o o o o o-
                 l2
    0- O -'2EIOO OOOO1p p2 OOo

   -S-r -. O O O 1-r-O O O O O O O O O 1-
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  - -3 O O O- -` --rc3'le -'-rc3- -3tg2 -'--

        0300 3rc2 3rc2 -6rc
        O030 -3tc -3rc 3
. -l;-S g 1] li Oo G.jec,･ -y*p /i,, -yiSl`q(m) mrcg. d,c -t- tt/ M22" .

        OO -10 rc rc -1
  - ..o o o-3- - --1 th. --1- -. O--,m
                                                               (73)

This is the consolidated formula for all physical qttantities of the continttotts

beam. The necessary quantities can at once be evaluated by the above

equation. For instance, the deflection and the beRding moment may be

obtained as follows.

   Defiection:

                          - - -mtg3m

      . I3 n p 3tl2     w'.= -6/l"i]?ill..i p p2 R3--l :Ii]Grjscj ri-¥ P nv3.

                                             i

                                      -ntrc3M - 3m2"M--'

                              +iSfq(m) i,rc.2 drc÷-ep--l -,6" ' (74)

                                        1O

   Bending moment:

                    1n o o -1 o
     Mir=lrL1 P--I s-¥-o o o m3-.,SrjKj

                   + *-P --re ,- + i!f q(rc) - mre ,- du + t2' - -, 'I-; . (7s)



Table VII. Geeivtetry Matrix (× 1/7 641).

Kj
l

Kl
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Ks
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GIJ- G2j
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-2 913

    o

   45

    o

-7 641
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    o

     o

-12 757. 2

     e

 -1 062
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 6661.2
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-8 46e
'
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o
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o

o

-7 722. 75
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 7 302.75-
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-2 457

 -819

    e
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    o
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    o
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    e
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  -90
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 -909
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 le8
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 le8
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Table VII. Geometry Matrix (× 1/7 641).

Kj G3j G,]'

Kl

sc2

K3

l
.

l
1

K4

Ks

K6

 2 139

-2 454

   270

    45
 1 711.2

-1 963. 2

   216

    36

     o

     o

     o

     o
-1 711.2

 1963.2

   -216

    -36

-4 125

 3 918

 1 269

-1 062
-1 986

 1 464

 1 539

-1 O17

  7 425. 6

 -1 692.6

 -4 914
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T
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      o
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   o
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   o
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-855
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      o
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      o
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 -1 ogg
" -5 502
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     45
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-2 733

 -540

  -90

 3 147. 6
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 -9e9

 16774.8 "" -
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   --     .t...o - i-

g
o

     o

- 1 82ti
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 -120

   o

3648

-720

 240

     o

-1 869. 6
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      o

-18376.8

  3 627
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-l

l

l
I
E

l

1 224
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1 224
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-l35

 6 2el.6
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-4 le4
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e

o

e

o
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-16156.s --
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 168
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-4 896
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     o
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-1ose
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     o
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     'o
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     o
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o

o

o

     o
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Table VII. Geometry Matrix (× 1/7 641).

KJ' Gsj

Kl

Ko

El
l
-

-1 584

 1 224

     o

 -120
-1 267. 2

   979. 2

     o

  -96

   o

   o

   o

   o
1 267. 2

-979.2

   e

  96

 3 762

-2 907
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      e

 -1 209

-i l i-"

i

i
-600

1 080

-360

-120

 1 200

-2l60

   720

   24G

-615

l le7

-369

-123

-6 045

 10 881

-3 627

-1 2e9

-
I

f

E
I
i

i
'

t

   f
K4
   l

I

E

t= 4752
  -3 672

       o

     360

 4 752

-3 672

     o

   360

-9 543. 6

 7 374. 6

     o

 -723

o

o

e

o

-
ii
--e

L

I

Ks

K6

l-

i
-
.

-2889

-3 672

     o

   360

     o

-7641

     o

     o

  9 822. 6

-15 e22. 8

      o

 -1224

 38 134. 8

- 29 467. 8

      o

 -4752
-2311.2

-2937.6

     o

   288

 2311.2

-3 175.2

     o

 -288

 6 933. 6

-3412.8

     o

 -864

 28 663. 2

- 16 869. 6

      o

  -14tl
i

:
i
l

  1 800

-3 240

 1 080

   360

 1 seo

-3 240

 1 eso

   360

-3 615

 6 507

-2 169

 -723

o

e

e

o

- 1800
 -3 240

   1 080

    360

o

o

e

o

 1 521

-4 266

 3 969

-1 224

 IA- 445

-26 eel

  8 667

  2 8S9
-' -6 2Gl

 -2 592

    864

    288

-1 44,e

-5 049

 -S64

 -2B8

 3 321

-7 506

-2 592

 -864

 14 562

-21 627

  -432
  wu 1..44

I
2
ZP

No

o
vo
epa
pt
pio
=
e
x

x9
-

g

t
i
9
8
.E-
2
m
w
8
B
.c,)

or

N



58 N. YosHizAwA and B. TANiMoTo. No. 20
                            CONCLUS{ONS.

  Regarding the present analysis of beRding problems of continuous beams,

several concluding words are given as follows:

  1. Because the procedure is composed of the treatment of perfectly

classified data of beam configurations and external loading conditions, the

analysis can be carried out systematically, and the necessary operators are

obtained readily from the corresponding tables or equations. The oper3tors

at an intermediate connection point can be used independeRtly of that of

other point.

  2. The eigenmatrix of a domain adjacei}t to the standard one ln a span

can be given merely by additions of the corresponding load-matrix at the

loaded point.

  3. The operational procedures are shown by the shifting charts, from

which various ways of processing analyses can be constructed, so that a

result obtained by oRe way can be checked l)y another one.

  4. The geometry matrix is a useful result of the operational method,

because it depends only on the configurations and material properties of

agiven beam, and when multiplied by the load terms of the system, it

gives the eigenmatrix for the corresponding loading conditions.

  5. The eigenmatrix is the final solution of the beam under given loading

conditions. It readily gives the solution of deflection, slope, bending moment,

and shearing force of the beam.
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                      APPENDIX. -NOTATION.

   The foilowing syml]ols have been adopted for use in this paper:

         a, == redundant element see Eq. 30;

        A. = semi-eigenmatrix of r-th constituent span, see Tables V and

              VI;

        An = semi-eigenmatrix of R-th constituent group, see Eqs. 31 and

              32;

{A B C D}, = elements of eigenmatrix of r-th span, see Eq. 3;

    B., B', = boundary matrices of left or right end of r-th span, see Eqs.

              10, 11, and Tables l!, III;

        C. == connection-matrix at r-th connection point, see Eq. 19 and

             Table IV;

         E = unit mtar!x;

       Ef. = fiexural rigidity o'f r-th span;

     F., F', =: right or leftward feed operator at r-th connection point, see

             Eqs. 26, 28, and Tabies V, VI;

    iVi, F'R = right or leftward feed operator at 1?-th (2BC)-point, see Eq.

             31 or 32;

 G.i, G.2, ･･･ = geometry matrices of r-th coRstituent span, see Eq. 33 and

             Table VII;

         i = iRteger representing the order number of domain;

         1' = integer representing load term of 7'-th span;

         fe == constant attached to elastic su.pport, see Eq. 12;

        K,. =: load-matrix at loading point of external concentrated mo-

             moent, see Eq. 8;

        Kp = load-maerix at loading point of external concen£rated load,

             see Eq. 6;

        K. == Ioad-term of r-th span, see Eq. 9;

        l, = span length of r-th constitttent span;

        m = constant betxxFeen resisting moment and slope at supporting

             poin#, see Eq. 12;

        M =L- bending mo/ ent;

       M} = resisting moment ai; sLipporting point, see Eq. 12;

        M2 = external concentrated moment;

         n = total number of constituent spans of continttous beam;

        N. == eigenmatrix of normal domain of r-th span;

       Ni. == eigenmatrix of i-th domain of r-th span;

       N'. = eigenmatrix of conjugate domain of r-th span;
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   external concentrated Ioad;

  intensity of distributed load;

  order number of constituent span or connect!on pomt;

  order number of constituent group;

  reaction at elast'ic support;

  feeder for redundant elemen't, see Eq. 30 and Tab!e V;

   right or leftward shiftor at r-th connection poin"t, see Eq.

   26 or 27, and Table V or VI;

 : right or leftward shiftor between R-1 and R-th constituent

   groups, see Eqs. 31 and 32;

= right or leftward feeder for its own grottp between

   R-1 and 1?-th constituent groups, see Eqs. 31 and 32;

   beam defiection at Rormal domain of r-th span;

  beam defiection at i-th domain of r-th span;

   beam defiection at conjugate domain of r-tk span;

   current abscissa;

   span ratio, see Eq. 20;

  rigidity ratio, see Eq. 21;

   slope angle;

   non-dimensioiial load abscissa, see Fig. 1;

   lower boundary of partially distriiouted load, see Fig. 1, or

   constant attached to elasLLic support, see Eq. 22;

= u.pper boundary of partially distributed load, see Fig.1, or

   constant attached 'to elastic support, see Eq. 23;

  nen-dimensioftal current abscissa see Eq. 2;

  summatlon;

  lntegratloni

  number o'f boundary coRditions in shiftiRg chart;

  number of connection conditions iR shiftiRg chart;

   n'amber of unlcnown elements iR shifting chart;

   reduction operation for eigenmatrix wi'thin its own span;

   operation for elements in a span with dependent eigenmatrix;

   shift operation fer current-elememt;

   final operation;

   row vector; and

   column vector,


