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SYNOPSIS.

A further development of the eigenmatrix methodl) is presented for con-
tinuous beams involving pin joints as well as rigid supports. The approach
of the paper is based on the perfect classification of physical quantities, so
that the behavior of the beams can be completely represented by the eigen-
matrix.

The analysis is carried out by systematic shift operation of 2-by-2 or
4-by-4 operational matrices. The concept of such as statically indeterminate
system or simultaneous equations is eliminated in the present procedure, and
hence the necessary analytical computation can be facilitated.

INTRODUCTION.

Notation.—The symbols adopted for use in this paper are defined where
they first appear and are arranged alphabetically in the Appendix.

The fundamental procedures fogz) solving hyperstatic structures have
been proposed by the junior author and the present paper is a further
development for the analysis of continuous beams with rigid support involving
some pin joints, such as Gerber-girder bridges and more complicated systems,
provided there takes place no deflection at the rigid support or no bending
moment at the pin joint.

The physical quantities of constituent span can be represented by the
eigenmatrix consisting of 4-by-1 elements which should be determined by
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Nl

given conditions.

Introducing houndary conditions at each end of a constituent span, the
ahove elements can be reduced to the semi-eigenmatrix consisting of 2-by-1
column elements.

There exist two connection conditions between consecutive constituent
spans of the continuous beam. In virtue of these conditions, the right or
leftward shift formula for wvarious combinations of constituent spans is
obtained. In the pin joint coupling, a peculiar property which rejects
the ordinary shift operation appears.

For the continuous plate-girder bridge, a preliminary treatment must be
made at points of cross-section with abrupt change before the use of con-
nection equatons. A practical example will be given as an illustration.

Using the shift formula, all constituent spans can be expressed by the
current semi-eigenmatrix of any span, so that we can compose various
shifting procedures for the analysis of continuous beam dispensing with
simultaneous equations. Check calculations for results obtained can be

provided by the similar manner.

BASIC EQUATIONS.

Definition.—The span orders are denoted by subscripts. The terminology
“domain” refers to portions separated by loaded points of a constituent span.
The domain orders are counted from the extreme left domain of the span,
and represented by superscripts. The first domain is taken as the normal
domain where the superscript is omitted, while the last domain is taken
as the conjugate domain where the prime ("} is used instead of superscript.

When a beam is bent by a lateral concentrated load, the flexural deflec-
tion is given by the equation
N

w 2)

13
(1)

—— o ot o

=Bl !

w' N’

The parallel lines denote the correspondence of w to N, and w' to N’, respec-
tively. In the above equation, w is the deflection, [ the span length, EI the
flexural rigidity, and p the non-dimensional current abscissa defined by

o= 7" (2)



No. 20 Operational Method for Continuous Beams. 3

N and N’ are the eigenmatrices given by
N={A B C D},
(3)
N ={A B C DY.

The dimension of the elements of the above eigenmatrices are the same as
that of the concentrated load.

LOAD-MATRICES,

Concentrated Load.
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Fig.1. Concentrated Load.

At the loaded point of the external lateral load P in Fig. 1, the continuity

conditions can be written

{ d d* & (4)

P?
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in which P is the concentrated load, and « is the non-dimensional load
abscissa defined by

(5)

KX =

<.
I

In virtue of Eq. 1, Eq. 4 yields after some rearrangements the following
continuity equation:

N' = N+ K, (6)

in which K, is designated as the “load-matrix” of the concentrated load
and takes the form

K,=P{—«* 3 —3r 1} (7)
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Distributed Load.
dx
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Fig.2. Partially Distributed Load.

Referring to Fig. 2, the load-matrix for the partially distributed load
can be derived by integration of the elementary load dp, in which case the
eigenmatrices of normal, intermediate, and conjugate domains are given by
the equations

N={A B C D}
Ni = N - Kiq, (8)
N =N + Kq,
respectively. The eigenmatrix for the domain with distributed load will
take another form. If the non-dimensional abscissa n:i is introduced

to represent this domain, then the load-matrices of an arbitrary point and
the conjugate domain become

7
Kiq:SZQ(/C){—K?’ 3k —3r 13dx,
1

¥
Kq :S lg(R){—r® 362 —3 1}dx,
1
in which ¢ () is the intensity of the distributied load.
External Concentrated Moment.
In this case, the continuity conditions at the loaded point become
{1 d _d_f*_ d3}w ') *{O Mmie O}
dp dp* dp? ( o=r EI ‘
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Fig. 3. External Concentrated Moment.

Substituting Eq. 1 into Eq. 10, the following equation and load-matrix are
obtained:

N' =N +K,,
3
Kp=-M{# —2 1 0}

Generalized Formula.

For the combined action of various external loads, the deflection can be
obtained by superposition of the effects caused by respective loading con-
ditions.  Taking the general case shown in Fig. 4, the deflection of each
domain of the 7-th span is given as follows:

w 1Y
X l,3 o 2
we = L1 o 0 P lN+ DK, + S dK, + K,,)|- (12)
6EI, fronr p
w' |, N+ K .
normal domain conjugate domain
e (i)-th domain b e
A

[ |

; i
‘ i1 » l
o 1o vv‘mtv ’m’:\ ALAALA P 1
,57&/

-z o )
i \ // ‘

w,, N, wi, NI w,, N,

Fig. 4. Combined Action of Various External Loads
on the #-th Constituent Span.
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The parallel lines denote the correspondence of respective rows on both sides.
The second and the third rows on the right side of Eq. 12 represent the
eigenmatrices of the i-th intermediate and the conjugate domains respec-
tively. They are given by superposing the successive load-matrices at the
loaded points of the left portion of the span.

For later convenience, the “load term” of the i-th span is defined as

1

K, = DK, + S;‘dx,) LK, (13)

=0

Then the eigenmatrices of normal and conjugate domains of the 7-th span
are given as follows:

N, ={A B C D}, } ”

N, = N, - K,.

BOUNDARY CONDITIONS.

Intermediate Support.
The intermediate rigid support or pin joint in a continuous beam has an
independent boundary condition each, that is to say,

w, =0 for the rigid support, or

d2w, (15)
— =0 for the pin joint.
dpt

In virtue of Eq. 1, the above equations can be written in the forms

BN, =0 for the left end of span, and} (16)
16

B'/N'. =0 for the right end of span,

in which B; and B'; are the “independent boundary-matrices” and are given
for respective cases as shown in Table 1.

Both Extremities.

After the independent boundary condition has been treated, the boundary
conditions at both extremities must be dealt with. They take the forms
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BN, =0 for the left extremity, and }
(17)

B'N,=0 for the right extremity,
providing that the continuous beam consists of # spans.

The “extreme boundary-matrices” B and B’ are shown in Table I,

together with the corresponding independent boundary-matrices.

Table I. Boundary-Matrices.

Left extremity Intermediate support Right extremity
Condition B Left end B, Right end B, B’ Condition
0 I ! 3 1 I l 1
%“MLO 100 @ =~ Al 1 2 3 )mnn-n*‘ 3

Fix | I | ] Fix

|
Rigi_q__support
|
0 0010} L1 0 0 0] L1 11 1] L0 01 3_}! 1
Simple \ * Simpl
Hl 000} Lo o1 0] oo 1 3] 111 1']|Slmpe
Pin joint

| I | ?

0 : L0 1 e—
oo w m Lo 001
Free ] L0001 ! | ! i Tree
I |

SEMI- EIGENMATRICES.

Initially, the eigenmatrix at each constituent span of a continuous beam
has four unknown elements as shown in Eq. 3a. These can be reduced to
a 2-by-1 semi-eigenmatrix by independent boundary conditions attached
to both ends of the span. For example, a constituent span between pin
joint and rigid support is briefly referred to as the “P-R span” shown in
Fig. 5, and then, referring to Table I and Eqs. 16, the independent boundary
conditions of the span become
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from which

A, =—-B, —~D,~|1 1 1 1]K,. (19)

Then the eigenmatrix for normal or conjugate domain can be represented by

the following reduced form:

Pin joint E . Rigid support|
[ -
. r “T\ H Wl rel '
I . ~ N
e ’
N, K, N;

I, |

Fig.5. Constituent Span of Continuous Beam (P-R span).

N, =LA, +PK, or N, =LA + QK,, (20)
in which
-1 1
1 0
L= , (21)
0 0
_ 0 1
-B
A, = , (22)
_D |,
and
-1 ~1 -1 -1 0 ~1 -1 —17
0 0 0 0 0 1 0 0
P= , Q= (23)
0 0 0 0 0 0 1 0
0 0 0 0_ _0 0 0 1_

Eqg. 22 is the reduced semi-eigenmatrix of the present span. Values of
factors in Eqs. 20 are given in Table II for all possible configurations of the

constituent span.
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Table II. Semi-Eigenmatrices and Related Matrices.
Configuration L A P Q
| | 0 0~ ~0 0 o0 ofJif1L 0 o o0°
W -1 -1 “C” -1 -1 -1 -1 -1 0 -1 -1
i i 1 0 1_ D_’ 0 0 0 o o 0 1 o0
R-R span 0 1 0o o o olllLo o o 1_
l | -0 0~ =0 0 0 oIz 0 0 07
W 1 0 “B" 0 0 0 0 0 1 0 0
i | 0 -3 I_DJ 0 0o -1 -3|{lo o o -3
R-P span 0 1 0 0o o o.ljlLo 0 0 1_
| i -1 —1 -1 —17[|[0 =1 -1 -1
h,_w 1 0 "B~ 0 0 0 0 0 1 0 o
| i 1lo o ‘_D_J o o o oflle o 1 o
P-R span ) 1 _0 0 0 0.0 0 0 1]
} { -1 0- 0 0 0 0 1 6 0 0
. j 0 1 -4 0 0 0 0 0 10 0
| | 0 0 1_ BJ 0 0 (l) 0 0 0 i 0
P.P span K 0 0 0 -2 ~1]|]0 0 -2 0

CONNECTION CONDITIONS.

The continuous beam is composed of the connection of constituent spans.

For connection conditions between spans,

the rigid support and the pin

joint will be considered in the subsequent discussion. Taking the 7-th inter-

mediate connection point,

support:

! 0
l

EI
0

and for the pin joint:

d

do ,

P
dp? -

N
dp

Er|| & ¥

Elde |,

the physical conditions are written for the rigid

(24)
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1 0 7 T 1T it o 1 -
0 El s W, = o EI ds | W (25)
| 13 ~r—1 _d_l;3 _te=1 o 13 - dp3 Jeo=0

In virtue of Eq. 12, the above conditions can be written after some rear-

rangements in the following form:
Cr {N/r*l Nr} = O, (26)

in which €, is designated as the “connection-matrix” at the 7-th support

and is given by

- ~ ~ . -
0 1 2 3 0 — 0 0
Cr = sy T ‘8 (27)
L0 0 1 3_ 0 0 a 0
for the rigid support, and
- _ - e
1 1 1 1 — 0 0 0
c = | B (28)
0 0 0 1] 0 0 0 1.
for the pin joint, provided that for shortness
I
— T, 29
“=7 (29)
ET
= r . 30
g- B (30)

OPERATORS (SHIFTORS AND FEEDERS).

Referring to Egs. 20 and Table II, Eq. 26 yields the following shift formulas:
The rightward shift formula:

Ar = SrAr—l + FrKr-—l "[‘ TrKr- (31)
The leftward shift formula:
Ar—l = s’rAr + FHKr + T/rKr—l' (32>

In these equations §, or §', is the right or leftward shift operator, or briefly
the “shiftor,” since the semi-eigenmatrix of an arbitrary span can be shifted
to the adjacent span.
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Similarly, F. and T, or F, and T/, are the right or leftward feed operators
or briefly the “feeders,” since with these all the load terms concerned are
fed into the shift formula. The load term of its own span isfed by T,
or T',, while that of the other span by F, or F,. The former T, or T, will
be referred to as the feeder of its own span or the *“self-feeder,” while the
latter F, or F/,. the “shifting feeder,” respectively.

Combining the constituent spans shown in Table II, the above operators
can be obtained for possible cases as shown in Tables III and IV, in which
the sets are referred to, for instance, as follows:

Combination of (R-R span) and (R-P span) = Set RRP. (33)

In such combinations, Set PPP is an unstable or impossible system so that
it is omitted from the tables. The singularity will occur in the first step of
derivation of operators for this set.

It should be noted here that the rightward operation for Set RPP and
the leftward operation for Set PPR are impossible because of the singularity
as noted in the case of Set PPP. That is to say, pin joint couplings in a
continuous beam must be treated as a particular case in shift operations.

Referring to Fig.6, the load P,_; causes the deflection on the (»—1)-th and the »-th
spans, but can not arrive at the (r+1)-th span by the reason of physical properties of
the pin joint. Similarly, the load P,;, can not bring about any deflection on the (r—1)-
th span. Contrarily, the load on the »-th P-P span causes the deflection on both

consecutive spans.

e “{r+41)-th span _,,__,){

possible

impossible impossible
[ oo ———————— W -«_ S —————

Fig. 6. Physical Property of Pin Joint Coupling.

Thus, it can be concluded that the outward operation from the P-P span is possible,
but the inward operation for the P-P gpan is prohibited. Therefore, the operation must
be started from the P-P span of a continuous beam.

If there are no loads on a span considered, then the load term vanishes.
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Table III.

Rightward Operators.

No.

Rightward Shift Formula

A, =8.A, +FK,y+ TK,

~ {r- Ts-th span ~-

Cr -l span.

.

MM

s K,
Set Shiftor Shifting Feeder Self-Feeder
T
Ar-’l Ar F
RRR
3/3 1‘(9)0 ﬂl 5)3 % 0 0 o-
e | Sl Iy /
c —2f gl Tt o —£o1 —25 -3
C 1 [4¢ « _Ct’ [44 o -—-'—1 —]— _1 _1_
Lo fllp_
RRY
6 5 -3 0 3 LFo 0 0 o-
— - - [£¢ — 43 3 .
C B "‘3*5 Sl 0 0 '—E —_ 3_0 0 -1 '—‘3_
 D_{||.D_| - -
PRR
? ) 0 0/) ; l‘o 0 0 o0-
- B C —3f_3 0 -2 —gf 1 323
] B ‘ ¢ 49 _ R o a a —_1 -1 -1 ‘—1_.
_p]llD.
PRD
B sl o s 6l of il_oooo"
A - - o —_ [24 24
B } B -1 3al 0 0 -1 _0 0 —1 —3_
|_D|ll_D_
RPR
8 4 4 4
LAY R B A I=1-1-1
i m e ad ad o ad
Bl B 1 Lo 0o 0o 1 -0 0 0 0.
Lol
RPD
- g _A_.l impossible impossible impossible
PPR _
a,a
K — —17 g|-3-3 -2 0 1 -1 1 ~17
Poogs
0_ 3% 0 0 @ —— _0 0 0 o_

20




Operational Method for Continuous Beams.

Table IV, Leftward Operators.

13

Leftward Shift Formula el r—1)-th span—mt=—-_(r)- th span-——s{
— H ;
’ 1
A, =S, A +F.K,+TK,_, . S A
F, K
KHDT,‘
Set . s
Shiftor Shifting Feeder Self-Feeder
s F! T
A,y A,
RRR RO o
—3——2 —3— . -1 -
B ] ol =3 -3 -3 —3]\ 3 o -1 0
[4¢ ]
CI C S « BL1 1 1 1]{L-1 0o o -1
ol |lp. _B g
RRP m . -
55 6 "0 0 2 673 0 -1 o0
[4% [44
“C7 | [T BT _a g _0 0 -1 -3}|l.-1 0 o0 -1
_D || |D] - P ~
PRR - -
e A _3P 3 _3
P a «f -1 -1 -1 -171{10 -3 -3 07
"B l‘C‘ 38 B 0 Bi_o o o o_f[3.0 o0 -1 -3_
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PRP _ -
o %— 3 0 0o 3 97lifo -3 —3 o-
l‘B‘ B 0 —a 3o o0 -1 —-3{|3L.0 o0 -1 -3
_D.| | |_D,|
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g M%f _g;JrZ w1 -1 -1 —1" !-~1 -1 0 0~
| = e /
lB B 0 1 BlLo o o odilLo o o —1_
_D_| | LD,
RPP
——— w1 07 o o -2 ——6"] i__l -1 0 07
“B7 | " A 8] 0 0| 3o o -1 -3f|lLo o o0 -1
‘_D_ . B -
PPR
mmw ) S
- a7 B impossible impossible impossible
j_B.! J }_D.i
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SHIFTING PROCEDURES.

Ordinary Procedure.
Usually, the operation can be carried out in either direction unless the
pin joint coupling is involved in a continuous beam. The typical procedures

are shown in Figs. 7a, 7b, and 7c.

: 7 8,
) iy i3 i iy ’ ¢
[=o
5 s:« S, 8 S_L i *
T, F, T, F Y
(a) Rightward Operation
6 7
AN
5]
. D s
. L |
— S; =0 |
\ 5 S, 8 Sh <5 .
o2(By) F, F T, T, - (8],

(b) Leftward Operation

)
N
ol
R Y——
(o]
-~
ow

3
: B ° B
<= Bl s & & s A(F])

/ i —
T (o= |

(¢c) Combined Operation
Fig. 7. Shifting Procedures of Continuous Beam (Ordinary Case).

In Fig. 7a is shown the rightward operation. First, the unkown ele-
ments of the first span are reduced to D; by means of the extreme left
boundary conditions. Secondly, using the rightward operators §,, F,, and T,
the eigenmatrices of respective spans can be represented as functions of D,
and the eigenmatrix of the extreme right span will be represented by # (D).
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In this case, the shiftors 8§, are used at all connection points to shift
the current-elements of each span, while the feeders F, and T, are referred
to corresponding to the loading conditions at both adjacent spans of a
connection point.

Finally, D, can be determined by the extreme right boundary condition.
Therefore, the present system has been solved.

In Fig. 7b is shown the leftward operation. The procedure is quite
similar to the above case except the direction of operation.

In Fig. 7c, the operation is started from an arbitrary span to both
opposite directions. For instance, taking the third span as standard, the
unknown elements of this span can be shifted up to both extreme spans.
The corresponding operators are also shown with arrows in the figure.
Then, at both extremities, the corresponding eigenmatrices are represented
by o7 ({B, D}) and & ({B, D}s) as shown in the figure.

In virtue of the extreme left boundary condition, the above eigenmatrices
will be transformed to the reduced forms 77 (D,) and 7' (Dy).

Then the residual unknown element D; can be determined by the extreme
right boundary condition.

In a similar manner, we can compose various operational procedures.
Note that there appear no simultaneous equations in the analysis of con-
tinuous beams. Besides, the check calculation for the result obtained can

be provided by means of other procedures.

Pin Joint Coupling.

A constituent span with pin joint coupling at its ends rejects the inward
operation as shown in Fig. 6, so that the operation must be started from
the P-P span. For example, taking the case of Fig. 8 the direction of
operation should be taken as shown by arrows. The starting shiftors of the
intermediate P-P spans are given by Tables III and IV as follows:

For the 4-th span:

"1 07 -1 -1
5,4 = (/f’4 , 55 == Py (34)
n 0._ _ 0  0_
For the 8-th span:
1 0 1 —17
S's = ¢ , 8= @9 (35)
_ 0_ _ 0 0._

Here, for simplicity,
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al‘a :Br
(/J — —3 (9] Bk (36)
r ﬁr r “r3
1 ‘ 2~ 3 4 5 6 ; {ML‘Z 8 9 10 ; 11y
( o/
‘ T(A,) == et <»=['g}q?» »/'qg])
4 =4 X ’ A
¢ B = (A== “[gJ - = d’?L)
8
M, =0 L / 7B,
Y.
1 — [0,=0
¥ _ -+
A, determined B,,4,:determined B, :determined

Fig, 8. Operational Procedure for Continuous Beam Involving
Several Pin Joint Couplings,

Because of the property of the leftward shiftor given by Eq. 34 or 35,
the element which can be shifted leftwards from the P-P span is only the
A, element (r =4 or 8). Then the semi-eigenmatrix in each leftward span
is represented by this element A,. Proceeding operations on, the semi-eigen-
matrices of the first and sixth spans become

e
A = C(A) =538y |A+ §:[8:(FKy+ T Ky
+ F3Ks + T'35Ks |+ F oKy + T'3K,, (37)
and
e
As =7 (As) = 84 |As+ §o(FsKs + T'sKq) + F K7 + T'1Ke. (38)

In the rightward operation, all the elements of the P-P span can be shifted,

so that the semi-eigenmatrices A and A, become

AT "1 177 A7
Ag = F | ( = — 8¢5
_D_ls _ 0_llLB_s
+ Se(FsKy + T5Ks) + Foly + TeKG, (39)
and
A 1 17 A7
Ay,=9 = — 81009 + S0 (FolCs + ToKo) + FioKg - ToKyo.  (40)
_B_|s - 0_ll_B_ls
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Next, in virtue of the extreme left boundary condition, the shifted element
Ay in Eq. 37 is determined, so that the eigenmatrices of the first, second,

and third spans are readily obtained. The solution for A, becomes as
follows:

-1

P4
L1 OJ[S,‘J (85 (F 4K + T'4K3)

As= —| [1 0J8:8

+ F3Ks + T3] + FoKs + T'0K, | (41)

At the sixth intermediate span, A is expressed by Eq. 38 or 39

ud.

Since
A, has been determined, the remaining unknowns B, and Ag are evaluated

by equating both equations. The result is as follows:

B, - ey o
@5 &g 5
=18 , § — 8¢ Ay + 8¢ (FoKy -+ T:K:)
A _ 0 _ 0 .0
{18, » "
+ FoKs + TgKe — §'; (FsKs + T'sK,) — F'. K, — TKs |. (42)

Then the unknown elements of the last span are reduced to Bg,

which
is determined by the extreme right boundary condition as follows:
- e ~ _
P9 -
By =1 215 L1 24 Sy Ag + S16FoKs + 810ToKy
+ Fiollg + TioKip | -1 —1 0 1 2Ky |. (43)

Thus the present system can be solved providing the inverses of Egs. 41,
42, and 43 exist. In our practical cases this condition is always satisfied.

In this case, the passing-through operation is impossible at the pin joint
coupling. However, the other procedures are quite similar to the ordinary
procedure, so that we can compose an arbitrary shifting procedure in a
group of constituent spans bounded by P-P spans.

Therefore, the check for the result obtained can also be performed by any



18 N. Yosmizawa and B. Tawnimoro. No. 20

other procedure.

Continuous Plate-Girder Systems.

After several preliminary treatments are carried out, the continuous plate-
girder systems can be analyzed by a manner similar to the preceding
articles. In this case, the constituent span is taken as shown in Fig. 9.

The connection conditions at a cross-section with abrupt change become
CVr{N,r—l Nr} = Oa (44)

in which N',_; and N, are given by Egs. 14 and €y, is the connection-
matrix to be derived from the continuity condition of physical quantities
at this point. Eq. 44 yields the shift formulas

Nr = er’r-—la
(45)
Nlr—-l = v,rer
in which V, or V', is the rightward or leftward shiftor given by
BB BB
ad a? a? a?
8 g 8
v.=| % & Za al, (46)
1 3
0 0 — —
(44 (44
_0 0 0 1.4
o o 1 -
po— [ERUDR—— a pu—
B 8
“2
Vi.=1|0 -[—3— —2x¢ 3 |. (47)
0 0 @ —3
_0 0 0 1

constituent gfoup

Fig. 9. Constituent Group of Continuous Plate-Girder Systems.
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At the point of abrupt change in cross-section, all the elements of
eigenmatrix in a constituent span are shifted to the adjacent one by the
above shiftors. However, at the rigid support or pin joint, the connection
conditions are insufficient to shift all the above elements. Therefore the
preliminary treatement must be introduced. Let us designate a set of
constituent spans between rigid support or pin joint as the “constituent
group.” In the preliminary operation for a constituent group, the number
of unknown elements can be reduced to two. For example, the group
shown in Fig. 9 is treated preliminarily as follows.

In virtue of the boundary condition at the left-hand pin joint, the eigen-
matrix in the (*—2)-th span becomes

N,_,={A B 0 D} (48)
Shifting M,_. rightwards, the conjugate N, of the (#+42)-th span becomes
Noe= V. V..V, {A B 0 D}
+ Vo[ Vi [VAV oK o+ Kpm) + K Ko ] Koo
=V, {A B 0 D}s+Ku (49)

in which V. is a 4-by-4 aggregate shiftor, and K, is a 4-by-1 aggregate feeder
of this group.
Introducing the boundary condition at the right rigid support, we obtain

- ST © [0 0°
0 1 04" B”
A,._.Q - - [_1 1 1 1_]V,1 Ll 1 1 1_} VA + KA
0 0 0 _D..r—2
. _0_I L0 1 -
=—lu v] —k11 1 1 1]Ku (50)
— =2

in which #, v, and %k are mere numbers.
Then, the eigenmatrices N,_, and N’ are reduced to the forms

T etf 0 —k —k -k —k”
1 0 |[[B” 0 0 0 0
Nr_.g = + KA; (51)
0 0 LD 0 0 0 0
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- —v7 “1—k -k —k —Fk7

In virtue of the above preliminary operation, the eigenmatrix of the
constituent group can be reduced to the semi-eigenmatrix form. Egs. 51
and 52 are of quite similar form to those previously given by Eqgs. 20 and
Table II.

In the second step, we can derive the shift formula between the reduced
semi-eigenmatrices of two adjacent groups using the connection equation
given by Eq. 24 or 25.

Thus, the present system can be solved. A practical application is given
in the following.

APPLICATION.

As a simple application of the preceding discussion, let us take the five-
span continuous plate-girder bridge shown in Fig. 10. The constituent spans
and groups are taken as shown in the figure, and the operational procedures
are shown by arrows. The preliminary operations are performed for the
respective groups 1 and 2. Then the reduced semi-eigenmatrix can be
shifted to the rightward spans by the connection conditions at the rigid
supports 4 and 7. These procedures are as follows.

Load Terms.

The load terms of each constituent spans can be obtained by Eq. 13 and
are summarized in Table V.

Table V. Load Terms (fon). (K3 = Ky = Kg = 0)
K, K K, K K Ko
~—5.767] ~—0.57 -1 7 - 3.75 7 " —1.875" ~—5.767
24 2 3.75 -15 11.25 24
—36 -3 -5 15 —22.5 —36
_ 20 _ 2 _ 2.5 _| _ 0 _ _ 15 _ _ 20 _

Operators.

The necessary operators for the present system are obtained from Table
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15¢ )
10t 10t 10t 10t
1.25&6t/m
20tm
052~ VLos o4y {08
[ 5 657 8 9 210
=3
I 0.817 1 0.87  0.8710.87 I
e Bm e 10m 5m == 4m 8m 4 S e 1
e g, Tmonie span 2 §.3 ~mte-g 4—re——span H—r=-g.6-<-g T —m<~8.8 ~>rr—5.9 -~
group 1 omac group 2
Preliminary operation
A A
B B
(o} C
D 1 D,\(
R e, M=0
M=0 8
B 5 | |& 5
7 ==t 7
[DJ; - ZEZ[DL Lc) “:> =T D, Final
3 g condition
w=( w'=_Q
A C i N h o
@{HDL ~— f]

T (D) D, Y i D VoS D)7 (D) 27 (D)

N

Complete operation

Fig. 10. Continuous Plate-Girder Bridge and Its Operation Chart.

111 and Eq. 46. The ratios «, and B, at each connection point are summarized
in Table VL

Table VI. Span Ratios and Flexural Rigidity Ratios.

’ 2 3 4 5 6 7 8 9
ar 2 0.5 | 0.8 2 0.5 1 1 1.25
B, .25 | 0.8 | o8 | 1.25] o.8 } 1 { 1 1.25

Referring to the operation chart (Fig.10), the following operators are
evaluated.

The rightward shiftors at the cross-sections with abrupt change (Eq. 46):
"0.15625 0.15625 0.15625 0.156 257
0 0.3125 0.625 0.9375
V= V;= (53)
0 0 0.5 1.5

_ 0 0 0 1
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6.4 6.4 6.4 6.4
0 3.2 6.4 9.6

The rightward operators at the pin joint 8 and the rigid support 9 (Table
I10):

-1 1 —1 —1 0 17
SB = 3 FS - »
_ 0 1] _ 0 0 0 1
i (55)
i 0 2.47 ] 0 0 0 07
Sg = ‘ y Tg) =1 ‘
|.—0.8 —4.8] -1 -1 —1 —1]
The connection-matrices at the rigid support 4 and 7 (Eq. 27):
0 1 2 37 0080 07
C4 = ’ - ) (56>
0 0 1 3_ _0 0 0.8 0_
0 1 2 3- 0 1 0 07]
C7 - 5 - (57)
0 0 1 3_ 0 0 1 o0_
Preliminary Operations.
— First Group, —
The extreme left boundary conditions are given by the equation
"1 0 0 07
f{A B C D}=0, (58)
_0 0 1 -
from which MN{ becomes
N={0 B 0 Dl (59)

Shifting the above elements rightwards, the conjugate eigenmatrix of the
third span is expressed by

3 237 234, 24~
1 222 B 287.2 "B
N’y = V3V (N 4 Ky) + V3K, = } + = 1‘ . (60)
9 - D__;l 150 : _ D_ 1
.0 1 _ _ 22 _{({tom)

The boundary condition at the right end of the third span is given by
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{1 1 1 1]Ny=0, . (61)
from which
B, = —13.8D,; — 173. 36 (ton). (62)
Then Eq. 60 becomes
T—18.47 ~—285. 847
8.4 113. 84
Ny = Dy + = .7 D). (63)
9 150
1 _ 22 _|(ton)

This is the reduced semi-eigenmatrix of the first group before connection.

Second Group., —————

At the left end of the fourth span, no deflection takes place, so that M,
becomes

Shifting rightwards, we obtain

3 82 237 "30.57
- B - B
1 5.2 22.2 18. 25
N’ = VeV (Ng + Ky) - Ko = ch+ =) C|. (65
0 1 9 32.5
_D__4— _D,_4
_0 0 1 _ _ 2.5 _|{ton)

At the right end of the sixth span, the deflection vanishes, and then we

obtain
By = —3.6C, — 13. 8Dy — 20. 9375 (fon). (66)

Therefore, the reduced forms of N, and N'g become

-0 0 7 a 0 N
—3.6 —13.8|C7 —20.9375 ~CT
Ny = + = 3 ’ (67)
1 O __D_4 O __D_4
.0 1 . _ 0 | (ton)
—2.6 —18.47 " —32.31257]
1.6 8.4 CT —2.6875 “CT
N'g = + =2y |. (68
1 9 |Lpl 32.5 D,
.0 1 _ 2.5 _|(fon)
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Complete Operations
— Support 4. ——n—

By the connection conditions at the rigid support 4, the unknown elements
in the first group can be shifted to the second group. Substituting from Egs.
56, 63, and 67 into Eq. 26, we obtain after rearrangement the following

shift formula:

~CT - 15 - B 270 ]
- D, + =<, (Dy). (69)
| D], |.—6.576087_ | —115. 415 761_| (fon)
Then Eq. 68 becomes
T82.000001 ~—2 857. 962 502
—31. 239131 1 398. 804 892
N'g = D, + = &5 (Dy). (70)
—44, 184 783 1341. 241 849
_ —6.576 087_ _ 117.915761_|(ton)

— Support 7. —o
First, using Eq. 20a and Table II, the semi-eigenmatrix of the seventh

span becomes

0 0~ -0
1 0 0
N7 = A7 + . (71)
0 -3 —22.5
0 1_ _ 0 _|(ton)

Secondly, substituting from Eqgs. 57, 70, and 71 into Eq. 26, it follows that

~—139. 336 958 ~ ~4435.035 873"
= 57 (D). (72)

A 7 =
(tom)

+
21. 304 348 _ _—572. 496 377_

Rightward Operations, ——

From the pin joint 8, we can use the rightward shift formula given by
Eq. 31. Using Eqgs. 55 and Table V, we obtain

~160. 641 3067 ~—5001. 907 2507

Ag = S3A; + FK; = D, + I =_7(Dy), (73)
_ 21.304 348_ _ —557. 496 377_|(ton)
- 51.1304357 ~—1337. 991 3057

Ag == S{)As + TQKQ = | . (74)
_—230. 773 915 _ 6 675. 268 410_|(fon)




No. 20 Operational Method for Continuous Beams. 25

The conjugate of the last span N’y becomes by Eq. 20b and Table II as
follows:

B 0 ~ 3 ~b, 76 h
179. 643 480 ~5 315. 517 105
ng — D1 - = 7 (Dl) (75)
51. 130 435 —11373. 991 305
_ —230. 773 915 _| _ 6695. 268 410_| (fon)

The extreme right boundary condition is given by
0 0 1 3]Ny=0, (76)
from which the final solution is obtained as follows:
D, = 29. 182 888 (fon). (77)

Using this result, we can evaluate the eigenmatrix and the semi-eigenmatrix
of each constituent span as shown in Table VIL

Table VII. Eigenmatrix of Each Constituent Span (fon).

N, N, N. Ny
AT B 0 N ~—85.103 2767 ~ —822.805 1397
B —576. 083 854 —148.917 247 358.976 259
C 0 55,774 332 412. 645992
_D_jr . 29.182888_ _ 49.182888_ _ 51.182 888_
N, N, N, No
T AT B 0 7 = 323.896 8747 3 778.585050”
B 1672, 271 686 677.197 905 —1436.828 270
c 707.743 320 —105. 865 855 —2040. 681 770
_Dlr  _307.325010_| | |.—304.825010 | | | —304.825010_
A, Aq Ag Ay
BT [TCT ~368. 781 034_‘ ~—313.930 009’1 T 154,142 4537
_D_ 1”’ _D_ir . 49.226 025_ \ 64.226 025_ _ —59.380905_|
N, N, N, N,
A7 B 0 7 ~ 249.703 9847 = 0 ~
B 368.781 034 —313.930 009 —97.001 548
C —170.178 075 0 154.142 453
_D _Ir . 49.226 025_| _ 64.226 025_ _ —59.380905_|
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Check Calculation.

The results above obtained can be checked by other operation. For
instance, using the leftward operation from the extreme right span, A,
and Ag are checked as follows:

Los =6 —377 154.142 453
Ag = 5'9A9 + F’s Ky = ——
311 o_llL—59. 380905_
-1 1 1 17 ~ —313.930 001"
—1.95 (—5.76 24 —36 20} = , (78)
_0 0 0 O._ 64. 226 022_
~—313. 930 0017 368, 781 0227
n = s,s -}“ T’gxq == . O. K
64. 226 021_ | 49. 226 022_
CONCLUSIONS.

In conclusion, the following notes are given:

1. All physical properties of each constituent span of a continuous beam
are expressed by the eigenmatrix.

2. The connection conditions, the support conditions, and the boundary
conditions are expressed by the corresponding matrices.

3. The eigenmatrices of two adjacent spans are interconnected with the
shiftors and the feeders.

4. The eigenmatrices of respective spans can be expressed by the current-
matrix of an arbitrary span.

5. The pin joint coupling shows a peculiar property which necessitates
a particular treatment.

6. The analysis of continuous plate-girder bridge can be performed by
this procedure after a certain preliminary operation.

7. A typical application is added, which shows the readiness in obtain-
ing solution.
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APPENDIX. —NOTATION.,

The following symbols have been adopted for use in this paper:
A = semi-eigenmatrix consisting of 2-by-1 elements, see

Eq. 22;
A, B, C, D = elements of the eigenmatrix, see Egs. 3a, 8a, and
) 11a;
B, B' = extreme left or right boundary-matrix, see Eqs. 17
and Table I;

B, B'; = independent boundary-matrix at the left or right
support of a constituent span, see Egs. 16 and Table
L
C, = connection-matrix at the #-th support, see Eqgs. 27
and 28;
Cy, = connection-matrix at the 7-th point of abrupt change
in cross-section of plate-girder bridge, see Eq. 44;
E = modulus of elasticity;
F. F,=rightward or leftward shifting feed operator, or
briefly the shifting feeder at the 7-th support, see
Eq. 31 or 32, and Table III or 1IV;
T, &, 57, 7, 7 = function of the eigenmatrix of a span expressed by
the current-matrix;

S

| = integer representing the domain number;
I = moment of inertia;
K, = 4-by-1 aggregate feeder, see Eq. 49;
K, = load-matrix at loaded point of external concentrated
moment, see Egs. 11;
K, = load-matrix at loaded point of concentrated load,
see Eq.7;
Kq = load-matrix at loaded point of partially distributed
load see Eqgs. 9;
K, = load term of the r-th span, see Eq. 13;
k = mere constant, see Egs. 50, 51, and 52;
L = 4-hy-2 related matrix, see Eq. 21 and Table II;
[ = span length;
M = bending moment;
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M = external concentrated moment;
N, = eigenmatrix of normal domain of the »-th span;

2
!

eigenmatrix of the i-th domain of the 7-th span;
N’ = eigenmatrix of conjugate domain of the r-th span;

P = 4-by-4 related matrix, see Eq. 23a and Table IJ;

P = external concentrated load;

P = symbol representing the pin joint;

Q = 4-by-4 related matrix, see Eq. 23b and Table II;

q = intensity of distributed load;
r = order of constituent span or connection point;
R = symbol representing the rigid support;
$,, §', = right or leftward shift operator, or briefly the shiftor
at the 7-th support;
S = shearing force;
T, T, = right or leftward self-feed operator, or briefly the
self-feeder, see Eq. 31 or 32 and Table III or 1V,
u, v = mere constants, see Egs. 50, 51, and 52;

V4 = 4-by-4 aggregate shiftor, see Eq. 49;

V,, V', =right or leftward shift operator at a cross-section
with abrupt change, see Eq. 46 or 47,

w, = beam deflection of normal domain of the 7-th span;
wi, = beam deflection of the i-th domain of the #-th span;
w', = beam deflection of conjugate domain of the 7-th

span;

x = current abscissa;

« = span ratio, see Eq. 29;
8 = flexural rigidity ratio, see Eq. 30;
» = non-dimensional abscissa of a point under partially
distributed load, see Fig. 2;
9 = slope angle;
& = non-dimensional load abscissa, see Eq. 5;
2, ¢ = non-dimensional abscissa of lower or upper boundary

of partially distributed load, see Fig. 2;

& = load abscissa;
o = non-dimensional current abscissa, see Eq. 2;
Z = summation;

¢ = ratio, see Eq. 36b;

¢.= ratio, see Eq. 36a;
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S = integration;

_| = row vector; and

} = column vector.
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