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                             SYNOPSIS.

                                              1)  A further development of ehe eigenmatrix method is presented for con-

tinttotts beams involving pin joints as well as rigid supports. The approach

of the paper is based on the perfect classification of physical quantities, so

tkat the behavior of the beams can be completely represented by the eigen-

matrix.

  The analysis is carried out by systematic shift operation of 2-by-2 or

4-by-4 operatioRal matrices. The concept of such as statically indeterminate

system or simultaneous equations is eliminated in the present procedure, and

hence the necessary analytical computation can be facilitated.

                         INTRODUCTION.

  IVbtation. The symbols adopted for use in this paper are defined where

they first appear and are arranged alphabetically in the Appendix.

  The fundamental procedures for solving hY'perstatic structures have
                               1)2)3)
been proposed by the junior author aBd the present paper is a further

development for the analysis of continuous beams witk rigid support involving

some pin joints, such as Gerber-girder bridges and more complicated systems,

provided there tal<es place no defiection at the rigid support or no bending

moment at tke pin joint.

 The physica} qutantities of constituent span can be represented by the

eigenmatrix consistiBg of 4-by-1 elements which should be determined by

                 tt t t ttttt tt   tt tt ttttt .t.
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g'iven conditions.

  Introducing bouRdary conditions at each end o'f a constituent span, the

above elements caR be reduced to the semi-eigenmatrix consisting of 2-by-1

colttmn elements.

  There exist two connectioR conditions between consecutive constituent

spans of the continiious beam. In virtue of these conditions, the right or

Ieftward shift formula for various combinations of constituent spans is

obtained. In the pin joint cottpliRg, a pecttliar property which rejects

the erdinary shift operatioit appears.

  For the continuous plate-girder bridge, a preliminary treatment must be

made at pointsof cross-sectioR with abrupt change before the use of con-

nection equatons. A practical example will be given as an illustration.

  Using the shift fonnula, all constituent spans can be expressed by the

cttrrent semi-eigenmatrix of any span, so that we can compose various

shifting procedures for tke analysis of continuous beam dispensing witk

simultaneotts equatioi}s. Check calculations for results obtained can be

provided by the similar manner.

                         BASgC EQYATIONS.

  Dofnition. The span ord.ers are denoted by subscripts. The terminology

"domain" refers to portioRs separated by loaded points of a constituent span.

The dornain orders are counted from the extreme left domain of the span,

and represented by superscripts. The first domain is taken as the norrnal

clomain where the superscript is omitted, while the last domain is tal<en

as the conjLigate domain where the prime (') is used instead of superscript.
                        .  When a beam is bent by a lateral concentrated load, the fiexural defiec-

tion is given by the equation

                      ev l3 N 2)                      .r =`' /(lilEifl/'Ll P P2 P3J N,' (1)

The parallel lines denote the correspondence of w to N, and w' to N', respec-

tively. In the above equation, zv is the defiection, l the span length, El the

fiexural rigidity, and p the non-dimensional current abscissa defined by

                                   x                               P=7' (2)
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N and N' are the eigenmatrices giveB by

    ･ :, 'L {,2 B.SD.il.l

The dimension of the elements of the above eigenma'trices

that of the concentrated load.

                           LOAD-MATRICES.

  Concentrated Lead.

                                    P               E-                                 ttttt/ttt.ttv

                                         'x

               -''･1/1""" ' " 'g'""               I

               i,i"Il"v ...

               I / I･
               IN               I

               l -v
               i' '""""""""""'

 At the loaded point of the

conditions can be written

           (1 sll S-l--p2-b £'i,

in which P is the

abscissa defined by

  In virtue of Eq. 1, Eq. 4

contlnulty eqttatlon:

in which Kp is designated as

and tal<es the form

                      Kp =:

                - ;v -･

            f}                     x

                  =lpmbe
                   Kp

            '' "'i

        Fig.1. Concentrated

            external lateral

           }            (W - zvt)
                   p==rc

   concentrated load,

                    g
                re=7

           yields after

              rw, =N-l- Kp,

             the "load-matrix"

            ,Ii){-rc3 3K2

are the same

 3

(3)

as

       Pl                """'i

       [ XN･
                 i'

                 i

""""'nvww"""""""""'-' >l

    Load.

                          '

     load P in Fig. 1, the continuity

==i
 (o oo2nt',3 ], (4)

and rc is the rion-dimensional load

some rearrangements the following

                                '

                               (6)

         of the concentrated load

 -3rc l}. (7)
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Distributed Lead.
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Fig.2. Partially Distributed Load.

  Referring to Fig. 2, the load-matrix for tke partially distributed load

can be derived by integration of the elementary load dP, iR which case the

eigenmatrices of normal, intermediate, and conjugate domains are given by

the equations

                        tw =: {A B C D},

                           Ni -- N+ Kiq, (8)
                           N' = N mY Kg,

respectively. The eigenma£rix for the dom3in with distributed load will
take another form. If the non-dimensional abscissa rp=tt' is introduced

to represent tkis domain, then the load-matriees of an arbitrary point and

the conjugate domain become

                 Kig == S"lq(rc){-M3 3rc2 -3rc l}drc,

                       a
                                                                   (9)
                       it                  Kq = S lq (rc){-rc3 3rc2 -3rc                                            1 }drc,

                       A

in which q(rc) is the intensity of the distributied load.

  External Concentrated Moeneemt.

  In this case, the continuity conditions at the loaded point become

         (i d-dp SS'i, ddp3,](w-tv'),...==[o o -E,iEii]/i2 oi. ao)
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                  Fig. 3. External Concentrated Moment.

Substituting Eq. 1 into Eq.10, the following equation and load-matrjx are

obtained:

                          Nt := N+Kln,                   Km=?Wt{m2 -2rc 1 o}.l (11)

  Generalized Forinula.

  For the combined action of various external loads, the defiection caR be

obtained by superposition of the effects caused by respective loading con-

ditions. TakiRg the general case shown in Fig. 4, tke deflection of each

domain of the r-th span is given as follows:

         zvi =61ar'3.Ll p p2 p3JN+te.,(Kf, a-!1`dKp+Km)･ (12)

       normal domain conjugate domain                           (i)-th                               domain pt "       --                            ltL-r
       ro-Xu'-'IR "iy/i lp, F l ER l

           ..tttN
   ･×

   tVr,Nr

 Fig. 4.

        / /･

          I
      tVi Ni        tr       1.

'uu""""r-"""'" t ""'"'"""'            r

Combined Action of

 on the r-th Constituent

Lv;, N; I
E

Various External

    Span.
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Tke parallel lines denote the correspondence of respective rows on both sides.

The second aRd the third rows on the right side of Eq. 12 represent the

eigenmatrices of the i-th intermediate and the conjugate domains respec-

tively. They are given by superposing the successive load-matrices at the

loaded points of the left portion of the span.

  For Iater convenience, the "load term" of the i-th span is defined as

                           i                     Kr "=: ;.....,(Kp+!ltdscp f' sc,n>r･ (l3)

Then the eigenmatrices of Rormal and conjugate domains of the r-th span

are given as follows:

                        rw" k'f.A-- S. nSK.P}" l `'4'

                       BOUNDARY CONDITIeNS.

 Intermediate Suppert.

 The intermediate rigid support or pin joint in a coRtinttous beam has an

independent boundary condkion each, that is to say,

                 w. :=O for the rigid support, or
                                                l

                  dd2pW," ==o for the pin joint. i (i5)

In virtue of Eq. 1, the above equations can be written in the forms

            :Jtbl.r,.--.O,o fOfr.,th,eh,le,f;gfi:d,.OdfS.Pfa,"i,.alidl (16)

in which BJ and B'J are the "iRdependent boundary-matrices" and are glven

for respective cases as shown in Table I.

  Both Extremities.

  After the independent boundary coRdition has been treated, the boundary

coRdkions at both extremities must be dealt with. They take the forms
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providing that the

  Tke "extreme
together with the

  Operational Method for Continuotis Beams.

grvdi,:l?, for,g?e,itft,,zx,t,r%m.i'iins,yf )

 continuous beam consists of n spans.

boundary-matrices" B and B' are shown in

corresponding independent boundary-matJices.

  7

(17)

Table I,

Table I. BouRdary-Matrices.
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                        SEMI-EIGENMATRICES.

  Initially, the eigenmatrix at each constituent span o'f a continuotts beam

has four ttnknown elements as shown in Eq. 3a. These can be reduced to

a 2-by-1 semi-eigenmatrix by independent boundary conditions attached

to both ends of the span. For example, a constituent span between pin

joint and rigid support is briefiy referred 'to as the "P-R span" shown in

Fig. 5, and then, referring to Table I and Eqs. 16, the independent boundary

conditions of the span become

             'O O 1 O- -O O O O-
                            Nr+ Kr :='r O, (18)
              11 11 11 11
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A =: -B
 r r -Dr- Ll 1 1 lj Kr (19)

Then the eigenmatrix

the following redttced

for normal

form:

or con]ttgate domain can be represented by

[
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Fig.5. Constituent Span of
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Continuous Beam (P-R span).

Nr :=:: tAr + PKr or Nt =  r
SAr + QKr, (20)

iR which
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Eq. 22 is

factors in

coRstkttent

the reduced semi-eigenmatrix of the present span. Values

Eqs. 20 are given in Table II for all possible configurations of

 span.

 of

the
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Table II. Semi-Eigenmatrices aRd Related Matrices.

Configuration
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                    CONNECTION CONDITIONS.

 The continuous beam is composed of the connection of constituent spans.

For connection conditions between spans, the rigid support and tke pin

joiRt will be considered in the sttbsequent discussion. Taking the r-th inter-

mediate connection point, the physical coRditlons are written for the rigid

support :

and for the

   1

  -o   l

      EI
  o ')i'

pin joint:

r-i

!lm

dp
drmt

dp2

Wf r-1 =

p-mu1

1

l

o

o

EI
l2

r

mdww
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¢,

dp2

zVr,

p=.-O

(24)
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             -'1 OM Ml- -1 O-- -1-
                  EI d3 W'r-iM- EI d3 Wr･ (25)
              o -- rm o -- -             - l3 -.-1-dP3 -..p==1 ,.- l3 -..,- dP3 -. p-.o

In virtue of Eq. 12, the above conditions can be written after some rear-

rangements in the following form:

                           Cr{N'r+i rwr} =: O, (26)

in which C. is designated as the "connection-matrix" at the r-th support

and is giveR by

                                          a2
                    O 1 2 3 O - O O             c.= ,- P (27)
                   ,-o o 1 3- mO O ev O...

for the rigid support, and

                                      a3
                     l l l l - O O O             Cr -m ,rmP (28)
                   M.o o o 1-. -.o o o 1-.

for the pin joint, provided that for shortness

                                   lr
                             cr･' == 7;-,' (29)

                                   El'r
                             P' ==TV EI..,' (30)

                OPERATORS (SffIFTORS AND FEEDERS).

  Referring to Eqs. 20 aRd Table II, Eq. 26 yields the following shift formulas:

  The rightward shift formula:

                     Arr$rAr-+ptrKr-l ml" TrKr･ (31)

  The leftward shift formula:

                    Ar-i =: $'rptr+F'rKr mi- T'rKr-i･ (32)

IB these equations S. or S'. is the right or leftward shift operator, or briefly

the "shiftor, " since tke semi-eigenmatrix of an arbitrary span can be shifted

to the adjacent span.
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  Similarly, F. and T. or F', aR(l T'. are the right or leftward feed operators

or briefiy the "feeders," since with these all the load terms concerned are

fed into the shift formula. The Ioad term of its own span isfed by T.

or T'., while that of the other spar} by F. or F',. The former T. or T'. will

be referred to as the feeder of its own span or the "self-feeder," while the

laeter F. or F'. the "shifting feeder," respectively.

  Combining the constituent spans shown in Table II, the above operators

can beobtained forpossible cases as shown iR Tables III aRd IV, in which

the sets are referred to, for instance, as follows:

         Combination of (R-R span) and (R-P span)=Set RRP. (33)

  In such combinations, Set PPP is an unstable or impossible system so that

it is omltted from the tables. The singttlarity will occur in the first step of

derivation of operators for this set.

  It should be noted here that the rightward operation for Set RPP and

the leftward operation for Set PPR are impossible because of the singttlarity

as noted in the case of Set PPP. Tltat is to say, pin joint cottpiings in a

continuous beam must be treated as a particular case in shift operations.

  Referring to Fig.6, the load P.ndi causes the deflection on the (r-1)-th and the r-th

spans, but can not arrive at the (r+1,>-th span by the reason of physical properties of

the pin joint. Similarly, the load .l'..n can not bring about any deflectiQn on the (r-1>-

th span. Contrarily, the load on the r-th P-P span causes the deflection on both

consecutlve spans.

I Rigid
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}
{
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i
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･ / tti       i l'":-<r"i)'tii span''-fl,' {r)-t}} si}an ,11i--･(r +･ i)-th spun ------S I

                                                         '
                                        vossihle                        pessible
                      -=L..rm..=..=::t=:,t=:･=:t =.=..:T...nv==/･.....--#eeectw-

                     ti2ttLIL.(un'giibLiE.,..,,..i,... ...,,,,g iini)()srrs2i)le

                Fig. 6. Physical Property of Pin Joint Coupling.

  Thus, it can be concluded that the outward operation from the P-P span is possible,

but the inward operation for the P-P span is prohibited. Therefore, the operation must

be started from the P-P span of a continuous beam.

  If there are no loads on a span coRsidered, then the load term vanishes.
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Table III. Rightward Operators.

No. 20

Rightward Shift Formula
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  Table IV. Leftward Operators.

l3

Leftward Shift Formula
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                      Sg-gXffTING PXeCEDUR,ecS.

 0rdinary Procedure.

 Usually, the operation can be carried ottt in either direction

pin joint coupling is involved in a continuoti･s beam. The typical

are shown in Flgs. 7a, 7b, and 7c.

nRless the

procedures
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    Fig. 7.

     (c)

Shifting
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    ge4

 Combined

Procedures

$.5 $l;
u===estuto=t cr===tx==twtu.
Ts /geL

Operation

of Continuous Beam

 S7
 mp

(Ordinary

-?--
([B1,,)

   ･
.7-(D3)

   ,

Mg =o

Case>.

 In Fig. 7a is shown the riglitward operation. First, the ttnkown ele-

ments of the first span are reduced to Di by means o'£ the extreme left
boundary conditions. Second}y, using the rightward operators S., ge. aRd Y.

the eigenmatrices of respective spans can be represented as functions of Di,

and the eigenmatrix of the extreme right span will be represented by g(Di).
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  In this case, the shiftors S. are ttsed at all connection points to shift

the current-elements of each span, while the feeders F. and T. are referred

to corresponding to the loading coRditions at both adjaceRt spans of a

connectlon polnt.

  Finally, Di can be deterrnined by the extrerne right boundary conditioR.

Therefore, the present system has beeR solved.

  In Fig. 7b is shown the leftward operation. The procedure is quite

similar to the above case except the direction of operation.

  In Fig. 7c, the operation is started from an arbitrary span to both

opposite directions. For instance, taking the third span as staRdard, the

uRknowii elements of this span caR be shi'fted up to both extreme spans.

The corresponding operators are also shown with arrows in the figure.

Then, at both extremities, the correspondiiig eigenrnatrices are represented

by .7f({B, D}3) and Y({B, D}3) as skowk in the figttre.

  In virtue of the extreme left boundary coBdition, the above eigenrnatrices

will be transformed to the redttced forms ,;ft '(D3) and Y' (D3).

  Then the residual unl<nown elemeRt D3 can be determined by the extreme

right boundary condition.

  In a similar manner, we can compose various operational procedures.

Note that there appear no simultaneotis equations in the analysis of con-

tinttous beams. Besides, the check calculatioii for the result obtained ean

be provided by means of other procedures.

  Pin Joint Coup}ing.

  A constituent span with pin joint coupling at its ends rejects the iltward

operation as skown in Fig. 6, so that the operation must be started 'from

the P-P span. For example, eaking the case of Fig. 8, the direction of

operation should be taken as shown by arrows. The starting shiftors of the

intermediate P-P spaRs are given by Tables III and IV as follows:

For the 4.-th span:

                    Ml O- --1 -1-
             S'4 == ¢,4 , Ss ==- gs . (34)                     oo oo

For the 8-th span:

                     1O -1 -1
             $'s=gbs ,$f) k' g)g . (35)
                     oo oo
Here, for simplicity,
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                 Operational
                   Several

  Because of the property

the element which can be

A. element (r ==4 or 8).

is represented by this element

matrices of the first and

     Ai = El7(Ag) = S'2S'3

and

     A, =,;2"t A,) == S'7

 In the rightward operation

so that tke semi-eigenmatnces

     A, ,. y･(IAB[)= -s,g,

and

Aio =f(IABi            s) = -SIOpag

                                         z

Zl,,as "=i'X.,li/i)2..,,,,..,.. -[g],==e-･- =="'t'-([41u)

                                    '

     Procedure for Continuous Beam Involvjng

    Pin Joint Couplings.

   of the leftward shiftor given by Eq. 34 or 35,

  shifted leftwards from the P-P span is only the

 TheR the semi-eigenmatrix in each leftward span

      A.. Proceeding operations on, the semi-eigen-

 sixth spans become

-¢!4-"

    Aa A- S'2[S'3(F'4K4 -i- T'4K3)

". om

       + Ft3K3 + Tt3K2]+ get2K2 + Tr2Kb (37)

¢8-

  ess --P S'7(F'sKs + TtsK7)+ F'7K7 A- Tt7K6. (38)
om

   , all the elements of the P-Pspan can be shifted,

  ' A6 and Aio becorne

    Ml 1- -AH

    -o o- -B-,

       + S6(FsK4 {- rsKs) + F6Ks + T6K6, (39)

-i 1- -A-
            + Sio (FgKs + TgKg) + ffieKg + TioKie･ (40)
.- o o- -.B.s
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  Next, in virtue of the extreme left boundary condition, the shifted elemeRt

A4 in Eq. 37 is determiRed, so that the ei.ffeRmatrices of the first, second,

and third spans are readily obtained. The solution for A4 becomes as

foliows:

      A, .. -I- Ll ojst,st, -'{[l4-lll oj[st,[st,(Ft,K, ml- T,,K,)

             l- -- -                            -.l

                                  + F'3Ks + Tt3K2] + Fr2K2 + Tt2Ki] . (41)

  At the sixth intermediate span, A6 is expressed by Eq. 38 or 39. Since

Aza has been determiRed, the remaining unknowns B4 and As are evalttated

by equating both equations. The resuit is as follows:

    M"B4"- .,. rs6-gs-, s,7-`ips-1-tl-" -s6 -9i A4 + s6 (FsK4 + TsKs)

    -A,-- L -O-- -.O-..I L -o-

                  -l- F6Ks -F T6K6 - Sr7(F'sKs + TtsK7) - F'7K, - T,7K61 (42)

                                                            -}

  Then the ttnknown elements of the last span are reduced to Bs, which

is determined by tke extreme right boundary condition as follows:

       B, .. i-Ll 2j s,, '99--"-Ll 2j'sio-pt99-` As + sioFgKs -i- SioTgKg

                      oo           l-
                     -- -- --                   +FioKg-+ 'T'ieKio- mi- L-1 0 1 21 Kio -"i (43)

                                "- -.l

  Thus the preseBt system can be solved providing the inverses of Eqs. 41,

 42, and 43 exist. In our practical cases this condition is always satisfied.

  In this case, the passing-through operation is impossible at the pifi joint

 coupling. However, the other procedures are quite similar to the ordinary

 procedure, so that we can compose an arbitrary shifting procedure in a

 group of constituent spaBs bouRde(l by P-P spans.

   There'fore, the check for the result obtained can also be performed by any
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other procedure.

  Comtinuous Plate-Girder Systems.

  After several preliminary treatmeRts are carried out, the continuous plate-

girder systems can be analyzed by a manRer similar to the preceding

articles. In this case, the constituent span is taken as shown in Fig. 9.

  The connection conditions at a cross-section with abrupt change become

                           Cvr{N'r-i Nr} =:: O, (44)

in which N'.Hi and N. are given by Eqs. 14 and Cv. is the connection-

matrix to l)e derived from ehe continuity condition of physical quantities

at this point. Eq. 44 yields the shift formulas

                            :1,:.YrVII-Nj.,1 (4s)

in which V. or V', is the rightward or leftward shiftor given by

                            BPBP
                            av3 cr3 cr3 a3

                                 PB                      y.==O .-, 2i, 3anvB2, (46)

                                       13
                            oo
                                       ev cr
                            OOOI                           nt -r
                            ev3 cr2
                               -- ev -1
                            BB
                                a2
                     v'. =- o - -2ct 3. (47)                                 p

                            O O ev -3

                            oo o lm.

        ''r-2 r-} r 'r+1 r+2 r+3 r+4
+

l

Elr-2

rm'XTr'lr-2-
EJr i

-tt trt.l t'tTtt

I
.l..ww- tr ""Mrm

Elr  EIr+]
'"- t

constltuent gioup

 Group of

r--1-''nyc-･･--

EI
 l

r+2
r+2 TTm-

I
P
1

m

      l
 Efr,3 l
-t , ., 3--.i+-

 '

E

Fig. 9. Constituent Continuous Plate-Girder Systems.
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  At the point of abrupt ckaBge in cross-section, al! the elements of

eigenmatrix ln a constituent span are shifted to the adjacent one by the

above shiftors. However, at the rigid support or pin joint, the connection

conditions are insuff}cient to shift all the above elements. There£ore the

preliminary treatement must be introduced. Let us designate a set of

constituent spans between rigid sttpport or pin joint as the "constituent

group." In the preliminary operation for a constituent group, the number

o£ unknown elements can be reduced to two. For example, the greup
shown in Fig. 9 is treated preliminarily as follows.

  In virtue of the boundary condition ae the left-hand piR joint, the eigen-

matrix in the (r-2)-th span becomes

                         Nr-2 == {A BO D}r-2･ (48)

Shifting N.-2 rightwards, the conjugate N'.+2 of the (r+2)-th span becomes

      N'r+2":Vr+2Vr+IYrVr-1{A B O D}r-2

             + Vr+2[Vr+1 [Vr(Vr--IKr-". ÷ Kr--1) rF Kr] + Kr÷1] -" Kr+2

           =VA {A BO D}.-2 -i- KA, (49)
 in wkich VA isa4-by-4 aggregate shiftor, and KA is a4-by-1aggregate feeder

 of this group.

  Introducing the bouRdary condition at the right rigid support, we obtain

            - -1---i -" 'O O- -
   A.-,- -- p i i ijvA g v i i u vA 5g IIDBI.t,KA

            - -O ..- - .O l. ..
                                 - B-'
                       =-Lu vj -kLl l1 11KA, (50)
                                 - D-. r-2

 in which zt, v, and le are mere numbers.

   Then, the eigenmatrices N.-2 and N'.+2 are reduced to the forms

                  ---zt -v- '-le -le Hfe wwle-

                            .- B"-                                       oooo                     10
            Nr-2 =: + KA, (51)                            -D-..-, o o o o                     oo

                                       oooo                     Ol
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                     --zc -v- -1-fe -fe -le -kM

                       1O ""B- O1OO
            N'r+2 == YA mi- Kxt･ (52)
                       o o -D-. .-, o o 1. o

                       Ol OOOI
  In virtue of the above preliminary operation, the eigenmatrix of the

constituent group can be reduced to the semi-eigenmatrix form. Eqs. 51

and 52 are of quite similar form to those previously given by Eqs. 20 and

Table lL .
  In the second step, we can derive the shift formula between the reduced

semi-eigeRmatrices of two adjacent groups ttsing the connection equation

given by Eq. 24 or 25.

  Tkus, the present system can be solved. A practical application is given

in the following.

                            APPLICATION.

  As a simple application of the preceding discttssion, let us take tlte five-

span contiRuous plate-girder bridge shown in Fig. 10. The constituent spans

and groups are taken as shewn in the figure, and the operational procedures

are showR by arrows. The preliminary operations are performed for the

respective groups 1 and 2. Then the reduced semi-eigenmatrix can be

shifted to tke rightward spans by tke connection conditions at the rigid

supports 4 and 7. These procedures are as follows.

  Load Terms.

  The load terms of each cons£itueRt spans can be obtained by Eq. 13 and
are summarized ifl Table V.

                      Table V. Lead Terms (ton>. (K3 =Ks= Ks =O)

Kl

-- 5. 76-

   24

 -36

T. 20 -

K2

-' -O.5-"

   2

  -3

   2

K4

-- 1 -"

 3. 75

 -5

- 2.5 -

Ka

" 3.75 ""

 -15

   15

   o

K7

-" -1.875'

 11.25

-22.5

- iE -

Kg

-- 5. 76-

   24

 -36

   20

eperators.

The necessary operators for the present system are obtained from Table
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and Eq. 46.

Table VI.

      A

      D,, i
                                M'=.- e    Iiililil

ffi;[fi l,l t-sz gl, i F,,,i

                          l conclition
                          i wf=o ee l
    2iilB Yi[S,
     f
siE (D )opff(D,)ptfrf(D,)-.su(n) etpf:(D,) ce..,rCP,)

                    Complete operation

10. Continuous Plate-Girder Bridge and Its Operation Chart.

 The ratios a. and P. at each connection point are summarized

Table VI. Span Ratios and Flexural Rlgidlty Raties.

r

ar

Pr

2

2

1.25

3

O.5

O.8

4

O.8

O.8

5

2

1.25

6 7

e.s

O.8

1

1

8

1

1

9

1.25

1. 25

  Referring to the operation

evaluated.

  The rightward shiftors at the

                     -O. I56 25

                'o
            V2 =V5 ==
                         o

                         o

chart (Fig. 10), the

 cross-sections with

e. 156 25

O. 312 5

   o

   o

O. 156 25

 O. 625

  O. 5

  o

following operators are

abrupt change (Eq. 46):

O. 156 25-

O. 937 5

        , (53)
  L5

  l
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                              6.4 6.4 6.4 6.4

                               O 3.2 6.4 9.6
                   V3 == vg= .
                               0026

                               OOOI

  The riglatward operators at the pin joint 8 and tlie rigid stipport 9 (Table

III):

                -11 -1 -1 O1           $8= , fi8 == ,                 ol. oeo1                                                                  (55)
               '- O 2.4- -"O O O O'-
           Sg= -o.s -4..s , T9 == l nv1 Ml -1 -1 '

  'lrhe connection-matrices at the rigid support 4 and 7 CEq.27):

             c, =-- i""-g g i i"", --'g Oli ,P, gMl, (s6>

                 t- -                 ,- - "- -l
             .,.,.l--g gi :-', mu-g ,i ? gHl ,,,,

                 L-- -                                      - nt -l

  Preliminary Operations.

                         -- First GroptP.

  The extreme left boundary conditions are given by the ecluation

                   -1 O O O-"
                                 {A BC D}, =- O, (58)
                    O O I O

from which Ni becomes

                         ew, -- {O BO D},. (59)
  Shifting the above elements righewards, the conjugate eigenmatrix of the

third span is expressed by

                           -3 23 -" -234. 24-

                            1 22.2 '--B'- 287.2 '-"B"-
N'3 =:= V3 V2 (Ni + Ki) + Y3K2 == o g -D-.., + lso . =" Y'ir- i D-., (60)

                           -.O 1- - 22 -(ton)

The boundary condition at the right end of the tkird span is .criven by

No. 20

(54)
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                       Ll 11 1llNr3=O, (61)
from which

                    B) =: -13. 8Di-173. 36 (ton). (62)

Then Eq. 60 becomes

                     --18. 4- --285. 84-"

                       8.4 ll3. 84
               N', =- Di -i- =SPV ,(D,). (63)
                       9 1.50
                     -. 1 - M 22 -(ton)

This is the reduced semi-eigenmatrix of the first group before connec8ion.

                          Second GrouP.-

  At tke left end of the fourth span, no defiection tal<es p13ce, so that N4

becomes

                       N4 == {O BC D},. (64)
Shifting rightwards, we obtaiR

                       -"3 8.2 23- -30.5'"
                                    -" B- -' B-
                         1 5.2 22.2 18.25
 Nt6 =:= V,Vs(N, -l-･ K,) -- ec,= C + =: Y, C . (65)
                         Ol9                                            32. 5
                                    -D-, D,
                       -O O 1- -. 2.5 -. (ton)

  At the right eRd of the sixth span, the deflection vanishes, and then we

obtain

                 B4 :-3. 6C4 - 13. 8D4 - 20. 9375(ton). (66)

Therefore, the reduced forms of N4 and N'6 become

               -o o- -" o-
                -3.6 -13.8 '"C- -20.9375 -C-

           N4 ==: ÷ == E4, , (67)                 1 O -D-, e -D-,
               -O 1- - O ... (ton)
                                   ---32. 312 5-               --2. 6 -18. 4-

                            -C- -2. 6875 -C-                1.6 8.4
          N'6== + =Elf', , (68)                 1 9 -D-, 32.5 -D-,
               -O IH .. 2.5 -(ton)
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  Complete Operations

                             Support 4.

  By the connection conditions at the rigid support 4, the unknown elements

in the first group can be shifted to the second group. Substituting from Eqs.

56, 63, and 67 into Eq. 26, we obtain after rearrangement the following

shift formula:

          -C- ww 15 - - 270 -
              ==: D, -l- =EIZ (D,). (69)
         -.D-4 --6. 576 087d --115. 415 761.- (ton)

  Then Eq. 68 becomes

                  82. 000 001 --2857. 962 502-

                 -3L 239 131 1398. 804 892
           N', == D,+ cr S7,(D,). (70)
                 -44. l84 783 1341. 241 849

                -. -6. 576 087- - 11Z 915 761. (ton)

                      -- SuPPort 7.

  First, using Eq. 20a and Table II, the semi-eigenmatrix of the seventh

span becomes

                       oo -o-
                       10 O
                N,= pt7+ . (71)                       O -3 -22.5

                     .-O 1- - O -(ton)

Secondly, substituting from Eqs. 57, 70, and 71 into Eq.26, it follows that

               -'-139. 336 958- -4 435. 035 873-

          A, =: Di+ =: tiflf (D,). (72)
               - 21. 304 348 -. --572. 496 377-. (ton)

                        Rightward OPerations.

 From the pin joint 8, we caR use the rightward shift formula given by

Eq. 31. Using Eqs.55 and Table V, we obtain

                   -160. 641 306- --5001. 907 250-

  A,=S,A,÷F,K,= D,+ ==Y(D,), (73)                   - 21. 304 348- - -55Z 496 377- (ton)

                   - 51. 130 435'                                    --1 337. 991 305-

  A,=S,A,+T,K, == D, -l- . (74)                   ..-230. 773 915- -. 6675. 268410- (ton)
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The conjugate of the last span rw'e becomes by Eq. 20b and Table II as

follows:

                      O -' -5. 76 -
                  179. 643 480 -5 315. 517 105

          Nt,: D,-i- ==Y(D,). (75)                   51. 130 435 -1 373. 991 305

               m. -230. 773915- " 6695. 268410- (ton)

The extreme rlg'ht boundary condition is giveii by

                       I.-O O 1 3-I Nt, =: O, (76)
frorn which the final solution is obtained as fol!ows:

                         Di == 29. 182 8. 88 (ton). (77)

  Using this result, we can evalttate tke eigenmatrix and the semi-eigenmatrix

of each constituent span as showR in Table VII.

            Tab!e VII. EigeRmatrlx of Each Constitu.eRt Span (ton).

Nr

-AH
 B
 c
-. D- r

Nr

- A-`

B
C
-D-

Nl

-O "-
-576. 083 854

    o
  29.182 888

N4

r

Ar

-B-

-D- r
'

-c'

- D- r

Nr

A
B
c
D r

   o
1 672. 271 686

 707. 743 320

-30Z 325 OIO

A7

-368. 781 034-

 49. 226 025

N7

-' o -  368. 781 034

- 170. 178 075

   49. 226 025

NL} N3

'- 85. 103 276-

-148. 917 247

  55. 774 332

  49. 182 888

Ns

l

- 323.896874'"

  677. 197 905

 -105. 865 855

 -304. 825 OIO

As

-" -313.930O09-

   64.226 025

Ns

- 249.703984-

-313. 930 O09

    o
  64. 226 025

-' -822. 805 139-

  358. 976 259

  412. 645 992

   51.182 888

N6

- 3778.585050-
 -1 436. 828 270

 -2 040. 681 770

  - 304. 825 OIO

A{}

- 154.142453"

 - 59. 380 905

Ng

-o -"
 -97. 001 548

  154. 142 453

 - 59. 380 905
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  Check Calculation. '
  The results above obtained can be checked by other operation. For

iRstaRce, using the leftward operatioR from tlie extreme right span, A7

aBd As are checked as follows:

                   L25--6 -3"- "' 154. 142453-
A, =St,A, l-･ pt'g Kg =::: umM

ide 1 o rmsg. 380 905

           -1 11 1- --313. 930 001'
     -L25 {-5.76, 24 -36 20}= , (78)            OOOO 64. 226 022
       -"-313. 930 001- -368. 781 022-
AT =:: SiB -l- TtBK7 =:T. . O. K.
           64. 226 021 49. 226 022

                            CONCLUSgONS.

  In coRclusion, the following notes are gi'ven:

  L AII physical properties of each constituent span of a continuous beam

are expressed by the eigenniatrix.

  2. The connection condi£ions, the support conditions, and the boundary
conditions are expressed by the corresponding matrices.

  3. The eigenmatrices of two adjaceRt spans are interconnected with the

shiftors and the feeders.

  4. The eigenrnatrices of respective spans can be expressed by the current-

matrix of an arbitrary span.

  5. The pin joint cottpling shows a peculiar property which necessitates

a particular treatment.

  6. The analysis of continuous plate-girder bridge can be performed by

this procedure after a certain preliminary operation.

  7. A typical application is added, which shows the readiness ln obtaiR-

ing solution.
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               APPENDIX. - NOTATION.

following symbols have been adopted for use in this paper:

          A = semi-eigenmatrix consisting of 2-l)y-1 elements, see

              Eq. 22;

   A, B, C, D= elements of the eigenmatrix, see Eqs. 3a, 8a, and

           . 11a;
        B, B' =: extreme left or right boundary-matrix, see Eqs. 17

              and Table I'
                        '
       BbB't pt independent boundary-matrix at the left or right

              support of a constituent span, see Eqs. 16 and Table

              I;

          C. == connection-matrix at the r-th support, see Eqs. 27

              and 28;

         Cv. = connection-matrix at the r-th point of abrupt change

              in cross-section of plate-girder bridge, see Eq. 44;

          E m= modulus of elasticity;

        F.,F'.=:rightward or leftward shifting feed operator, or

              briefiy the shifting feeder at the r-th support, see

              Eq. 31 or 32, and Table III or IV;

fY, .ft , -, Y== function of the eigenmatrix of a span expressed by

              the current-matrix;

           i -- integer representing the domain number;

           f =: moment of inertia'
                              )
          KA= 4-by-1 aggregate feeder, see Eq. 49;

         K., =: load-matrix at loaded point of external concentrated

              moment, see Eqs. 11;

          Kp =' load-matrix at loaded point of coRcentrated load,

              see Eq. 7;

          Kq = load-matrix at loaded poiRt of partially distribttted

              load see Eqs. 9;

          K. == !oad term of the r-th span, see Eq. 13;

           le == mere conseant, see Eqs. 50, 51, and 52;

           L=.- 4-by-2 related matrix, see Eq. 21 and Table II;

           l = span length;

          M= bendiRg moinent;
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   MZ =: external concentrated moment;

   N. :=: eigenrnatrix of normal domain of the r-th span;

   Ni, == eigenmatrix of the i-th domain of the r-th span;

   N'. == eigenmatrix of conjugate domain of the r-th span;

    P=:4-by-4 related matrix, see Eq. 23a and Table II;

    P =: external coRcentrated load'
                                '
    P == symbol representing tke pin joint;

    Q= 4-by-4 related matrix, see Eq. 23b and Table II;

    q == intensity of distributed load;

    r == order of constituent span or connection point;

    R = symbol representiRg the rigid support;

S., S'. = right or leftward shift operator, or brie'fiy ehe shiftor

        at the r-th support;

    S =: shearing force;

 T.,T', =:= right or leftwar(l self-fee(l operator, or briefly the

        self-feeder, see Eq. 31 or 32 aRd Table III or IV;

 u, v= mere constants, see Eqs. 50, 51, and 52;

   YA =:4-by-4 aggregate shiftor, see Eq. 49;

v., V'. =r right or leftwar(l shift operator at a cross-sectioR

        with abrupt change, see Eq. 46 or 47;

   w. == beam defiection of normal domaiR of the r-th span;

   tvi. = beam defiection of the i-th domain of the r-th span;

  w'.==beam deflection of conjugate dornain of the r-th

        span;

    x = curreRt abscissa;

    ev := span ratio, see Eq. 29;

    P :flexural rigidity ratio, see Eq. 30;

    q == non-dimensional abscissa of a point under partially

        distributed load, see Fig. 2;

    0 = slope angle;

    ti -- non-dimensional Ioad abscissa, see Eq. 5;

  R, ,ct =: non-dimensional abscissa of lower or upper boundary

        o'f partially distributed Ioad, see Fig. 2;

    g == load abscissa;

    p == non-dimensional current abscissa, see Eq. 2;

   X = summation;

    g=ratio, see Eq. 36b;

    ¢:=ratio, see Eq. 36a;
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! =: integration;

-l = row vector; and

} == cohrmn vector.
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