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                         1. INTRODUCTION

 An approach to the analysis of Vierendeel trussesiJ is presented in this paper.

The operational procedttres2),3) have been applied to the displacement analysis

of structures.4) In order to describe behaviors of aconstituent member, the

prevailing slope-deflection formu!a5) and Hooke's law will be adopted for

use, which may be put into one matrix equation. This equation shows the

relationship between two kinds of physical matrices of size 3-by-1: the

memberforce-matrix, consistingofthe axial force, the shearing force and

the bending moment of a member, and the member displacement-matrix,

consisting of the longitudiRal and lateral displacements apd the slope angle

at the member end.

   For the displacement analysis of structures, the nodal displacement-matrix

of size 3-by-1 is to be defined, whose elementsare the horizontal and vertical

displacements and the slope angle at this point. Treating befo,rehand the

corripatibility conditions between the displacement-matrices of member ends

and those of nodal points, the member force-matrices can be represented by

two corresponding nodal displacement-matrices. After these treatments,

all the member force-matrices of a structure can be reduced to the nodal

displacement-matrices. Then the unknowns in the structure are ruduced to

the nodal displacements only. As skown in Table I, the nodal equilibrium

conditions are equal to the above unknowns in number, and therefore, the

system can be solved completely by simple treatment of the nodal equilibrium

conditions.
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  In Vierendeel trusses, the unit is selected as a couple of upper and lower

nodes, and the eigenmatrix is defined by the assemblage of the displacement-

matrices at both nodes. Treating the nodal equilibrlum conditions at both

nodes in a unit, the shift formula between three eigenmatrices of the system

can at once be obtained. Bythe recurrent use of the shift formula, the first

eigenmatrix of the first unit, which is of size 6-by-1, will become current to

all the other units. Putting the equilibrium conditions at two consecutive

units into one matrix equation, the complete shift formula for a group,

consisting of adjacent eigenmatrices, can be obtained. Such a procedure will

be shown in the subsequent discussions.

  The boundary conditions will, ln a broad sense, consist of two parts: the

given support conditions, and the shifting of eigenmatrix to the boundary

unit from the adjacent regular unit. In this treatment, an inverse calculation

of the size ranging from 1-by-1 to 6-by-6 appears corresponding to the

boundary configuration of the structure.

  The current-matrix, the first eigenmatrix, is determined by nodal equi-

librium conditions of the last regular unit in shift operation. In this case, an

inverse calculation of size 6-by-6 appears. Thus the system can be solved.

The sizes of operational matrices requisite for the present analysis are

shown inclusively in Conclusions.

 Introducing several modifications of the basic equation of vertical members,

this method can be extended to the analysis of rib arches, Lohse trusses,

and other structural systems.

                        2. BASIC CONCEPTS

   Vierendeel trusses, or frames, will be treated herein, provided the elastic

deformation of a member is composed of both fiexural deflection and axial

elongation in a plane. A pare of the network systems is shown in Fig. 1

wherein the positive directions of member coordinates, nodal displacements,

forces at member ends, and external loads are illustrated.

  For tke subsequent discussions, the "force-matrix" at member end, and

the "displacement-matrix" at nodal point are to be defined. Referring tQ

Fig. I, these matrices are given as follows:

   Force-matrices:

Member AB:
     NAB =: {F S M}AB (at A), NBA := {F S M}BA (at B). (1)
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horizontal displacement of nodal point,

vertical displacement of nodal point,

slope angle,

axial force at mernber end,

shearing force at member end,

bending moment at member end.

A Part of Plane Network Systems.

Member A'A:

      NAtA={,F" S M},i,A(at A'), NAA,=:{F S

  Displacement-matrices:

     Xri == {IU V 0}A, XB=:{U V 0}B,

  Using the slope-deflection equation for the

Hooke's law for the member extensibility, the

force-matrices and displacement-matrices can

Fig. 2 and Egs. 4 through 7, wherein only the

figuration of members is to be considered.

M}AA.･ (at A>. (2)

XA, =={u v 0}Ai. (3)

 member flexibility and the

 relations between the above

be consolidated as shown in

 case of the orthogona! con-
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         [F. M. ] =:: Force-matrix,

         [D. M. ] =:= Displacement-

                         Fig.

Here the "operational matrix"

They are given as follows:

  Operational matrices:

                        --f

                  HAB == O

                        -o

                   ,,...Fg

                        Le

                        M20,

                 Xt.arA == --
                          l
                        -rf･

                        -r O
                           27'
                  Lt.4,.4 == --
                           l

                        -s
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          Censolidated Formulas

NB.4 == LL HIB.a{XA XB} -l- KBA. (4)

N.B:=::LH L-IAB{XA XB}+K... (5)

N.A,=: LLt HtJ.",{XAt XA}+KAA,. (6)

NA,.4= LM' t'J.4,A{XA, Xn}+KA,A. (7)

v' N--w-m/- v[F. M.] =: [O. M.] × [D. M.] + [L. M.]

   [O. M. ] == Operational matrix,

 mat'rix, [L. M. ] =k- Load- matrix.

2. Consolidation.

and the "load-matrix" are to be defined.

  o o'-
  2ti .
 7 1 , HBA ==-LH.,BR', (s)
 -7' 2fe-.4B

Miiil/;j 2t ],., kBA == L.4BRt, (g>

 f 0m

 O 7' , HkA,=:Hl,,.,Rt, (10)
 O 2k.-Ar.4

  -f o'

  O 7' , Lt.4.4t=tt.4,.4Rr, (11)

  O le A'A
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                    EA 2EI 6EI                f=""wwi, le=l, 7'=- l2-, (12)

                             -1 O O

                       Rt -- O -1 O, (13)
                             OOI
Em Young's modulus, A =the cross-sectional area, I =: the moment of

inertia, l = the member length, and R == the rearrangement-matrix.

 Load-matrices:

         IXLiB--zl.,7, (CAB+CBri> , XBA ; IlhA- l..(CAB -l- CBA) .  KAB =:

               CAB CBA
                                                             (14)

       -- O -- - {}At.d '                11 KAtA= V14,A- l.,.,(CA'A+CA.4') , KAri' = V)4A' "z.-'Jr."'(CA'A+CAA') ,

                CA,A CAri,
                                                             (!5>

in which V::-L the load term for shearing force in slope-deflection method,

C=the load term for end moment in slope-deflection method, and ew m= the

summation of axial loads acting on a member.

                      3. NOPAL CONDITIeNS

 AII the possible states of nodal points in a Vierendeel truss system are

                    Table I. States of Nedal Peints.

 Kinds ef
nodal points

Point I
.

7;$:ww

± pt

;l>r'

 Po{nt II.

-'ri'6'i"fiE' I'l'i.

    r

    L

;il;ny :;l,i.

R
rrT::fel

  Unknown
displacements

[0]

[
:
]

  Known
displacements

[:]-o

'
I

l
.I

[v]=O

z{

v

0

llOlle

Equilibrium
conditions

X[M] ==o

=[ ]-o

x

-ll--

 V

-M.

== o
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classified as shown in Table I, wherein the perfect correspondence between

the number of unknown displacements and that of equilibrium conditions is

to be noticed.

 In this system, the total number of nodal unknown displacements and that

of nodal equilibrium conditions are always equal, and therefore, the system

can be solved completely by due treatment of the equilibrium conditions at

respective nodal points. Referring to Fig. 3, the equilibrium conditions at

the nodal points (r, 1) and (r, 2) are given by the following forms:

 For upper node (r, 1):

--cosa -sincv O'" -F-' -cosa sina O- -F-

  sinev -coscr O S + -sina cosa O S
- O O 1-r-m-M-. r-1,1 M O O 1-. rl "..M- rl
                             -O -1 O--F-t --p--

                           +1 O O S +Q == O, (16)
                             -O O 1--M-.r3 -R-ri

or

               P'r-mN'r-m mF PrlNrt+RN'r3 ml- Qrl == O･ <17>

                      . [,ZR,].i!.Aiiiiili2 , ki .,,1 [i] ,

                    [i']M3,i,ySE24ii' S2 [:']r2

         [Zl' r･2 M.
         LMIr-L2 F;-i,2]'`etZ s;ndi,2 Yt £IIii

                                 S Qr, 2J

                 Fig. 3. Force States at Nodal

ar.2 ..;ilssPpt Fr.2

     ,2

     [ZR]r2

    Points.
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 For lower node (r, 2):

--cosa -sina O" -F"' -' cosct sina O- -F'-

  sinat -cosa O S + -sincr cosa O S
- O O 1-r--1,2-M. r-lt2 . 0 O 1-. r2 -M- r2
                             -"O 1 O--F" ""P"-

                           + -1 O O S +Q == O, (18)

                             -O O 1-.M- r3 "R-r2

or

               P'r-1, 2N'r-1.2+ Pr2Nr2÷RNr3 -i- Qr2 = O･ (19>

In the above equations, the matrices P and P' are designated as the "projection

matrices," and Q 's as the "nodal load-matrices."

                       4. SHIFT OPERATORS

  A part of Vierendeel truss is shown in Fig. 4, wherein the letter symbols

of nodal points, constituent members, and physical matrices, and the positive

directions of member abscissa, member inclination, and defiection are

illustrated. The matrices at member end x===lare primed, while those at

member end x=Oare unprimed. The nodal displacement-matrix is in
this case composed of horizontal and verticai displacements, and slope angle

at this point. For the subsequent diseussions, it may be recommended to

rewrite the key equations to the present system in the following forms:

  For upper and Iower chord rnernbers (i = 1, 21:

              Nri ua- LH tJridiag[P P]ri{Xri Xr+ui} -i- Kri, <20)

           N'ri--LL Hjridiag[R'P R'P]ri{Xri Xr+i,i}+K'ri, (21)

                    --fo ony -f o o-
                        2]. 27.              Hri nv- O77, Lri=O ww7 ], (22>
                    -O H7' 2k..ri ..O 7' le-ri

                       o - -g -
                     11           Kri -ww V- 7(C+C') , K'rt = V' ww 7(C+C') . (23)

                .. C -ri .. C' -,ri
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 For vertical members:

              Nr3 == LH LJr3diag[R R]{X2 Xi}r ui- Kr3,

             N'r3 =LL MJr3diag[R R]{X2 Xi}r+K'r3,

in which H.3 and L.3 are given by Eqs. 22 provided i -nv 3, and

are as follows:

               -o- -&-          '1                                            1
          Kr3 == V- -z-<C +C') , X'r3 == V' - 7(C + C') ･

           '- C -r3 - C' -r3
Here the following matrices are to be defined:

  Rearrangement matrices:

            o -le "-o 1 o- --1 o
      R= 1 O O R= -1 O O R' ]= O -1                     1t
            OOI OOI OO
 Projection matrices:

                         cosa -sma O

                   P.i rm- sina cosev O =: P.ihi,

                          OO 1･                        - -n
in which cv.i = the inclination of member (r, i).

  By substitution from these equations to Eqs. 17and 19, the

Kr3

o

o

1

No. 22

and

(24)

(25>

Krr3

(26)

(27)

(28)

equilibrium



No. 22 Operational Method for Displacement Analysis 35

･conditions at nodal points (r, 1) and (r, 2) are consolidated into one matrix

equation as follows:

           A'r-iZr-1 -i- B'rZr + 6'r+IZr+1 + C'r-IFr-1 " D'rFr = O. (29)

Here,

             Z"hi=:[j[l].-; Z"=[l[l].' Zr"i==[ll[i]..; (30)

which are designated as the "eigenmatrices" of the (r - 1)-, (r)-,and (?' + 1)-

th units, and the other symbols are given by

               Fr =:{Kl K'1 K2 K'2 K3 K'3 Ql QL)}" (31)

                   A'.-i=[(P't:'P)' (p,iOR,p),].-; (32)

         B'r =: [`:'.r,:',"?,'] k"i ,`;,Y-,: ':,' t, R.",r:E, '. lm.R.`::]･ (33>

                   G'r+' :[(P toP)' (p LO -p),].' (34)

              ct.-, =-[g "6i s ,g, ggg g].-, (3s)

                D'r=[Po' Oo pO, g R9 (l g EO]. (36)

  Eq. 29 yields the recurrence or shift formula

               Zr+1=Ar-IZr-1+BrZr+Cr-IFr-1+PrFr･ (37)

Here A.-i and B. are the "shift-operators" or briefly "shiftors," and C.-i

and P. are the "feed-operators" or "feeders." They are given as follows:

                      -"Ar-i- -Ar-i""'

                      Br ,-I Br
                           ="-Gr-Fi ' ' (38)
                      Cr-1                                    Cr-1

                      -Dr - -Dr .-

The matrix G'..F"s square and nonsingular, aRd therefore, the above oper-

ators can be evaluated.
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  Eq. 37 is the shift formu!a between three eigenmatrices Z..i, Z., and Z.+i.

In virtue of the recurrent use of the above shlft formula, all thedisplace-

ments ofeach unit of the system can be represented by the displacements

of an arbitra･ry unit, called the "current-matrlx." Treatingboundary con-

ditions of a given system, the current-matrix is determined, and therefore,

the sytem can be solved completely.

                     5. TABULAR TREATMENT

  The size of the above shiftors is 6-by-6 square, and that of the feeders

6-by-24 rectangttlar. These may be treated with manual operation because

of their bearable sizes. In this case, it may be recommended to carry out

the operation by tabular form. The following notes are given.

Table II. Nedal Equilibrium Conditiens.

Formula: LAr--1 Br Gr+IJt{Zr-1 Zr Zr+i}+LCr" Drjt{Fr-1 Fr}=:Od

Nodal
 unit

r-2

r-1

r

r+1

t
r+2

Displacement-matrices

Zr-3

Alr-3

Zr--a Zr--1,

B'r-2IG'r-i

   j

Zr Zr+r

f
l

Arr.2
Btr--il Gtr

AIr-1 Blr

Atr

elr+1

Btr+1

Atr÷1

Zr+2 Zr+3

GIr+2

Btr+2[Gtr+3

Load-rnatrices

Fr-3

Ctr-3

Fr-2

Dtr-2

Ctr-2

Fr-1

DIr-1

Cfr-1

Fr Fr+1

Dtr

Ctr Dtr+1

Fr+2

R. S.

l=o

c'r+il5'r+2

== o

=:o

=o

rc o

Table III. Shift Formulas.

Formula: Zr+i= LAr-i Br]{Zr-i Zr}+LCr-i Pr]{Fr--i Fr}･

Nodal
 unit

r-2

r-1

r

r+1

r+2

Displacement-matrices

Zr-3

Ar-3

Zr-2

Br-2

Ar-2

Zr-･1

E

Br-t

Ar-1

Zr

E

Br

Ar

Zr+!

E

Br+k

Ar+1

Zr+2

E

Br+"-

Zr+3

E

Load-matrices

Fr-3

Cr--3

Fr-2

Dr-2

Fr-1

   I
Cr-2IDr-i

Cr-1

Fr Fr+1 Fr÷2

Dr

Cr Dr+1

Cr+1 Dr+2
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  1. The nodal equilibrium conditions are written up by recurrent use of

Eq. 29 as shown in Table II.

 2. The premultiplication by -[G'.i]-i yields the shift formula as shown in

Table III.

                  6. COMPLETE SHIFT FORMULA

  It is roundabout to carry out the analysis of Vierendeei trusses with many

panels by recurrent use of Eq. 37, because the eigenmatrices of three units

always appear in this equation. In such a case, the foliowing procedure may

be preferable. Taking two rows from Table III out, the equilibrium con-

ditions at nodal points of the r-th and (r+1>-th units are written as

     [A6-' :l][ZE]i]'[Erii -2][;111]

                     .[Cs-i2r,][Fp.-i]+[.P.,g][Iill]==o. (3g)

Then we obtain

     [:"rll] == ["Jhe.+iBY"+ A.][ZE]i]

                "[BfllGr-i B.+iD.P;c.][";Ji]'[.P., g][l'.ll.] (4o)

This is the complete shif# formula. Eigenmatrices of the (r-1>-th and

r-th units are at once shifted to adjacent (r+1)-th and (r+2)-th units.

A!though no additional treatments are herein necessary, the size of the

shiftor is 12-by-12 and that of feeders is 12-by-48. This formula would be

recommended when computers are available.

                        7. BOUNDARYCONPMONS

 In genera!, at the supports of a structural system, the nodal displacements

in the direction of support are externally restrained, and then these displace-

ments become known quantities or are represented by the given support

conditions. Contrary to this, equilibrium conditions of forces in the direction

of support can not be used for determination of the unknown nodal displace-

ments in the structure. They can only contribute to the determination of
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corresponding suppore reactions. ･

  From the viewpoint of shift operation between three units of regular form

presented in the previous articles, boundary conditions are considered as one

of branched treatments. As an illustration, the boundary conditions 'of

Vierendeel truss in question are taken as shown in Fig. 5. The left end

of the system is supported with hinge, and the right end with roiler,

respectively. They can be treated as follows.

                                                               '

                              -+ar

                                                               2)

     [te vh2 == O
                                                          vn2 == O

           (a) Left Boundary. (b) Right Boundary.
                     Fig. 5. Boundary Conditions.

 7.1. Left Boundary Conditioms.

  The boundary conditions at the extreme left end consist of the following

(Fig. 5a):

  (i) One equilibrium condition of bending moment at the lower node (l, 2).

  (ii) Two support conditions at the lower node (1, 2), which are expressed

by the equation

                            Ui2 := Vi2 == O. (41)
 (iii) Three force equilibrium conditions of horizontal forces, vertical forces,

and bending moments at the upper node (1, 1).

 Taking the suPport conditions given by Eq. 41 into account, the force

equilibrium conditions, (i> and (iii), can be put into one matrix equation as

follows:

                   'i3 O le, 2(k, + k,)-

                    (p Hp), + (R H fi ),ndol'3 [:,i] ,

                   - k3 .-1

(1,1) N
N

(2,1)

s
t
-
Nll
Ni3

'Nl3 +arm

<l,2) .s
s,

N12

'

'
(2,2)

(n-1,1)'
N
{n,1

N

Nii
N-i
k･
,'

Nn3
Nh-1,2.tt

'(nT

<n-1,2)
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       =-[O(pOL -p9, oO i62 ko2],z2 -[p,Ck",++:3xli-,R--2Q,],･ (42>

The 4-by-4 square matrix on the left side of this eqttation is nonsingular,

and then, the extreme left nodal displacements Z'i can be reduced to the

second eigenmatrix z2 as foliows:

                     Z'1 r[Xel] 1= A"2Z2+C"IFI. (43)

  7.2. Right Boundary Conditions.

  At the extreme right nodal points <n, 1) and (n, 2), shown in Fig. 5b, the

following boundary conditions are to be given:

  (i) One support condition at the lower node (n, 2), which is expressed by

the equation

                             v.2 -- O. <44)
  <ii> Two force equilibrium conditions of horizontal forces and bending

moments at the lower node (n, 2).

  <iii) Three force equilibrium conditions of horizonta! forces, vertical forces,

and bending moments at the upper node (n, 1).

 Considering the support condition given by Eq. 44, the above force equi-

librium conditions, (ii) and (iiO, can be expressed by the followlng matrix

equatlon:

   -g g 2"t,,,R, ..Hfcosfr,ai.'.-2i7'si"2a l ilti'j 2'le ., x,

                                                               U2

                                                               02 n   [<P' NR' P )n-i,i + (R Hn3R )],

ooo
ooo
prLR'P

1

'

    -lsma               +
       2k -. n--1,2

       21.
     -7 -1
      oo
    - -jl' le - ,,B

-cosa -sincr O

  O OI
  o oo
  o oo
  o oo

(LRrP>2

2

Zn-1

n-1
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 'O O O -cosa2 -sina2 O"" -

              O OI  ooo              o o o [lil] 1,-,

     p'1 e oo
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 -O 1 O O O O O O O 1 O
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  o e o l o o o l o o o

 -.O OOOO1OO1OO
square matrix on the left side of Eq. 45

right nodal displacements Z'. can be

 eigenmatrix Z.hi of the form

        -Xi

   Ztn = U2 = B'tn-IZn-1 + Cttn-IPn-1 + DttnFn.

        .-(72 - n

            8. SHIFTOPERATIONS

to Eq. 43 and Table III, the shift formulas

units at the left end of the structure are

       Table IV. Shift Formulas at Left End.

o

1

o

o

o

K3

Kt3

Ql

-Q2

.

No. 22

  is nonsingular, and

represented as a function

  between the

summarized in

  (45)

then,

   of

  (46)

elgen-

Table

Nodal unit

1

2

3

Displacement-matrices

Ztl t
l

Z2

E

Al

An2

Z3

B2 [
    i

E

l4

Load-matrices

A, I B3

Fl

C ttl

Cl

E

F2

D2

C2

F
3

l
1
i

i
'

l
l

1
1
i
,

D3

 From this table,

elgenmatrlx Z2 can

which the currency

the

be

 of

rightward shift

written dewn as

the Z2 matrix to

operation starting from the second

 shown in the equations below, in

the succeeding eigenmatrices is ob-
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served. Then the Z2 matrix is ca!led as the "current-matrix" in the present

shift operation, and will be represented by 2.

           Z3=U3Z2+LY, Y,12{F, F,} == U,2+LVJ,{F},, <47)

       Z4 = U`Z2 + LY, Y, V,J ,{F, F, F,} == U,2 + LVJ,{F},. (48)

Here the following symbols have been used:

                   U3=AIA"2+B2, U4=A,)÷B3U3, (49)
                     Y21 =: AIC"1+Cl, V22 == D2, (50)

                LYi V2 V,J,= LB,V,, B,V,,+C,. D,j. (51)

Thus the generalized form of shift operation of the current-matrlx 2 to the

r-th unit is given as follows:

            Zr =Ur2+ l-Vi V2 ''' Vr-･iJr-i{Fi F2 ''' Fr-i}

              =Ur2+LVJr-i{F}r-i･ (52)
This is tlte desired recurrence formu}a for the present structure.

  By the recurrent use of this equation, the eigenmatrix Z.-i, adjacent to the

extreme right unit of the structure, is given as follows:

        Zn-i -ww Un-i2 + LVi Y2 ''' Vn-21 n-2{Fi F2 ''' Fn-2}･ (53)

  The equilibriurn conditions at nodal polnts at the right end of the structure

is summarized in Table V.

            Table V. Nodal Equilibrium Conditions at Right End.

Nodal unit

n-1
7t

Displacement-rnatrices

zn-"" ll zn-i Zttl

Load-rnatrices

Aln-2 Btn--1

BtSn--1

E Fn--2

etn

-E

CIn--2

Fn-1

Dtn-1

Ctln-･1

Fn

R.S.

=o
Drtn
f
I
== o

 Referring to this table and

Z'. are given by the form

     Z'n :": B'tn-1[Un-12 + LVI

Eq. 53,

v

 the

n-2Jn-2

    +

extreme

{Fi '''

LcrfnHl

left nodal

Fn-'")}]

P"nJ{Fn-i

displacements

Fn}} (54)
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or

          Z'. =zU'n9+LVi Y2 "' YnJ'n{IFi F2 '" Fn}'

Then the equilibrium conditions at the (n-1)-th nodal points can be

    [Atrt-2Un-2 + Btn-IUn-1 + GtnVtn]2

     -i- [A'n-2LVI V2 ''' Yn-3 O O Ojn-3

       -i'B'n-LYi V2 ''' Vn-2 O OJn-2-i-G'nLVi V2 ''' VnJ'n

         +LO O "' O C'n-2 D'n-i Ol]{Fi F2 ''' Fn}=O,

or

           Un2+LVi V2 ''' VnJn{Fi F2 ''' Fn}=:O･

            '
From this equation, the current-matrix a is determined as follows:

             £==-Un-ILYI V2 ''' Ynjn{Fl F2 ''' Fn},

and hence the present system can be solved.

No. 22

   (55>

wrltten

(56)

(57>

(58>

                   9. EXTENDEDAPPLICATION

  The preceding discussions can also be extended to the analysis of the rib

arches or Lohse trusses, whose upper and lower chords are subjected to both

the axial and bending stresses, while the vertical members can experience

only the axial force. A part of suchasystem is shown in Fig. 6, whereln

the physical matrices to be treated in the subsequent discussions are ilius-

trated. In this case, the physical matrices of upper and lower chord members

are also given by Eqs. 20 through 23. 0n the other hand, the force-matrices

of vertical member (r, 3) are given as follows:

              nr3={I7 O O}r3, n'r3 nt-{F O O}'r3 (59>

Referring to Eqs. 24 and 25, Eqs. 59 become

              n.3:= SLH iJr3diag[R R]{X2 Xi}r+SKr3

                    ofoo -fo
                 ==: oooooo [lil]., (60>

                    oooooo .3

             n'.3=SLL rejr3diag[R R]{X2 Xi}r+SK'r3
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                             Xr-1-1,1,Qr+1,1

           Xrl.Qrl rl'1,1
                      'r                           t
      X"mMi,;Ll.?;'{"i･keEE}iitS}li?i" N'"

                N;----l,1.K;----1,.1 tt

          n..' -.b'
           't          :- #           1E           L pt          --- E          tr- N l･･-1. 2. Kr -1.2
           E･
           E
                           /
               niemhe}'(r''1,2'} it

                            7'       x'r i['S,'6"r2 i.2 (

                        member
             direetion of
             clefl(tetion {}r
             litterl loads

              Fig. 6.

                 -o foo

               =oooo
                  oooo
Kere, S is designated as the

which takes the form

                          -1

                       s== o

                          -o

Then the previous nodal equilib'

rewritten in the forms

                  Jl

                   17-

     meraher(r･D
1,
"'
XNY'IiT"K,,

                 tr.t             - cr:                 ri-
                 +      nl-3.K;･3' ts
                 ll

      n,3,Kr3 {

      Nr2.Kr2

N, mernbev(?'.2)
 N                 7' 'i'

            membet'

                7'

      a'r-1

-f o- -&-o o [.X,2].+ o

 o o-., .- o -.
   operator or briefly

 o o"lh

 oo.
 oo
 conditions, Eqs. 17

       rr)
r r r"] .

t
s
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                                 L2
              ' Xr･:' 1,2,Qr !'1,2
           Xt'2,Qr2

             ul).seissa ang]e '
                                       a' r'

     Part of Rib Arclt and Lohse Truss.

                                  . (61>

                                 r3

          selection the "selector,"

                                           (62>

           rium and 19, must be

P'r-1 iN'r-11+ PriNri + RSN' 3+Qi=O (63>

P' r-1 2N'r-1 "+ Pr2N 2 -i- RSN 3+Q gS == O (64>
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In virtue of these equilibrium conditions, the shift formula between the

eigenmatrices at the (r-1)-, (r>-, and (r+1)-th units can be obtained in

the following form:

                Zr+i "= Ar-iXr-i+brZr+Cr-iFr-i+Cl}Fr･ <65)

Here, the operators A,wwi and C.-i are the same as those of Eq. 38, while the

operators b. and ¢ take the form

                        [ts,].== -G'rM"'i[:]1･ (66)

in which

             b･.-=[if,'r.:e'rlva,f.e,eft"#,:S.!.;3.5L.B,S:;!:], (67)

                 d'r=[Poi Oo pO, g R-Os RoS Eo EO].' (68)

Therefore, the shift operation of the present system can also be carried out

by the recurrent use of Eq. 65.

  The boundary conditions and the determination of the current-matrix wili

be treated in a similar manner.

                    10. ILLUSTRATIVE EXAMPLE

 As an illustration of the preceding analyses, the three panel orthogonal

trusses of Vierendeel type and of Lohse type will be referred to, as shown in

Flg. 7. In this case, both trusses have the same geometry, every member of

which has the dimension 10cm × 10cm × 200cm. For simplicity, the vertical
loads Q's are applied symmetrically at the nodal points (2, 2) and (3, 2). The

solutions of these trusses are summarized in Table VI, wherein the symmetry

of nodal displacements in each truss is to be observed, and the magnitudes

of corresponding nodal displacements ln both trusses are to be compared with.
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 <1,l) (2,1)
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   (3,1) (4,l} (1,l) (2,1)
r
E
e
oopaJ
.<1,2) (2,2) {3,2)(4,2)

Q Q

L ------  6OO crn
  (a) Vierendeel truss

      Fig. 7. Three Panel

Table VI. Nodal DisplacemeRts of

          ( ×Q(nodal

(1,2) <2,2)

l
,

     Orthegonal Rigid

load)/E(Young's

             600 cm

         (b) Lohse

          Trusses.

Vierendeel and Lokse

   modulus)).

<3,1)

(3,2)
I
Q
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(4,l)

(4,2)

truss

Trusses

Vierendeel truss

u

3. 674612

2. 707634

O. 966978

e. oooooe

o. ooeooo

O. 966978

2. 707634

3. 674612

v

O. 999205

750. 8389

750. 8389

O. 999205

o. oooooo

751. 8381

751. 8381

o. oooooo

0 l

Node

1. 948241
'

1. 553336

- 1. 553336

- 1. 948241

11

21

31

41

1. 956416 I
i
12

l. 558786
j
22

-1. 558786

-1. 956416

I
I
/

i-

i

32

42

Lohse truss

u

3. 597302

2. 398201

1. 199101

o. oooooo

o. oooooo

1. 199101

2. 398201

3. 597302

v

O. 999375

1122. 158

1122. 158

O. 999375

o. eooooo

1123. 158

1123. 158

o. ooooeo

0

2. 412440

4. 801648

-4. 801648

]
L

-2. 412440

2. 419936
'

l
l
,

4. 809144

-4. 8e9144

-2. 419936

I
i
1

                          11. CONCLUSIONS

  In the present approach to the analysis of Vierendeel truss systems, the

fol!owing notes are to be given:

  1. The fiexural and axial behavior of a constituent member are given by

the prevailing slope-defiection formula aRd Hooke's law, respectively.

  2. ,The physical quantities of a member are represented by two kinds of

3-by-1 matrices: the force-matrix and thedisplacement-matrix. The force-

matrix of a member shows the perfect dependency on the displacement-

matrices at member ends.

  3. The single shift forrnula between the displacement-matrices for three
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consecutive units can be obtained from nodal equilibrium conditions at the

middle unit. The complete shift formula for groupconsisting of two adjacent

units can also be derived from assembling two single shift formulas.

  4. In practical systems of Vierendeel truss type, the number of nodal

displacement components is always equal to that of nodal equilibrium con-

ditions, and therefore, the system can be analyzed completely by recurrent

use of the shift formula and treatment of given boundary conditions.

  5. The sizes of operational matrices are as follows:

The current-matrix: 6-by-1. The shiftors: 6-by-6 for single shifting, and

12-by-12 for compelte shifting. The feeders: 6-by-24 for single shifting,

and 12-by-48 for complete shifting. Inverse matrix for the boundary treat-

rnent: from !-by-1 to 6-by-6. Inverse matrix for determination of the

current-matrix : 6-by-6.

  6. In vlrtue of a little modification, the procedures for the Vierendeel

truss analysis can at once be extended to the analysis of the rib arch, Lohse

truss, and other similar structures.
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                        APPENDIX. -NOTATION

  The following symbols have been used in this paper;

       A =cross-sectional area'
                             '
       A =r shift operator in single shifting;

       B == shift operator in single shifting;

       b =:: shift operator of rib arch systems ;

       C =: load term of the slope-defiectioR rnethod, see Eqs. I4 and 15 ;

       C =: feed operator in single shifting;
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       D == feed operator in single sh}fting;

       d =: feed operator of rib arch systems;

       E == Young's Modulus ;

       E == unit matrix'
                      '
       F = axial force'
                      '
       W == external axial load;

       F. == load-matrix of the r-th unit ;

       f = member stiffness, see Eq. 12;

       H =: operational matrix, see Eqs. 8 and 10;

        I == moment of inertia'
                             '
        1' -- member stiffness, see Eq. I2;

       K == member load-matrix, see Eqs. 14 and 15;

       le x member stiffness, see Eq. 12;

        L == operational matrix, see Eqs. 9 and 11;

        l = member length;

       M == bending moment ;

       N=force-matrix, see Eqs. 1 and 2;

        n = force-matrlx of vertical member of rib arch systems;

       P =horizontal nodal Ioad, see Fig. 3;

  P, P',pa =projection matrices, see Eqs. 17, 19 and 28;

       Q =: vertical nodal load, see Fig. 3;

       Q =nodal load-matrix;

       R = external nodal moment, see Fig. 3;

  R, R', Rin -- rearrangement-matrices, see Eqs. 27;

        pt =integer denoting the order of node, member or unit;

       S == shearing force;

       S == selection matrix, see Eq. 62;

       U == operational matrix, see Eqs. 49;

        u =horizontal displacement of nodai point;

       Y r load-term of the slope-defiection method, see Eqs. 14 and

       V =operational matrix, see Eqs. 50,

        v == vertical displacement of nodal poine ;

       X == displacement-matrix, see Eqs. 3;

       Z. =: eigenmatrix of the r-tk unit ;

        av == angle of membe'r incliRation;

        e =: slope angle at member end ;

       2 = current-matrix;

   L j:=row vector; aRd
   { }-- column vector.
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