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1. INTRODUCTION

An approach to the analysis of Vierendeel trusses? is presented in this paper.
The operational procedures?»® have been applied to the displacement analysis
of structures.® In order to describe behaviors of a constituent member, the
prevailing slope-deflection formula® and Hooke’s law will be adopted for
use, which may be put into one matrix equation. This equation shows the
relationship between two kinds of physical matrices of size 3-by-1: the
member force-matrix, consisting of the axial force, the shearing force and
the bending moment of a member, and the member displacement-matrix,
consisting of the longitudinal and lateral displacements and the slope angle
at the member end.

For the displacement analysis of structures, the nodal displacement-matrix
of size 3-by-1 is to be defined, whose elements are the horizontal and vertical
displacements and the slope angle at this point. Treating beforehand the
compatibility conditions between the displacement-matrices of member ends
and those of nodal points, the member force-matrices can be represented by
two corresponding nodal displacement-matrices. After these treatments,
all the member force-matrices of a structure can be reduced to the nodal
displacement-matrices. Then the unknowns in the structure are ruduced to
the nodal displacements only. As shown in Table I, the nodal equilibrium
conditions are equal to the above unknowns in number, and therefore, the
system can be solved completely by simple treatment of the nodal equilibrium
conditions.
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In Vierendeel trusses, the unit is selected as a couple of upper and lower
nodes, and the eigenmatrix is defined by the assemblage of the displacement-
matrices at both nodes. Treating the nodal equilibrium conditions at both
nodes in a unit, the shift formula between three eigenmatrices of the system
can at once be obtained. By the recurrent use of the shift formula, the first
eigenmatrix of the first unit, which is of size 6-by-1, will become current to
all the other units. Putting the equilibrium conditions at two consecutive
units into one matrix equation, the complete shift formula for a group,
consisting of adjacent eigenmatrices, can be obtained. Such a procedure will
be shown in the subsequent discussions.

The boundary conditions will, in a broad sense, consist of two parts: the
given support conditions, and the shifting of eigenmatrix to the boundary
unit from the adjacent regular unit. In this treatment, an inverse calculation
of the size ranging from 1-by-1 to 6-by-6 appears corresponding to the
boundary configuration of the structure.

The current-matrix, the first eigenmatrix, is determined by nodal equi-
librium conditions of the last regular unit in shift operation. In thiscase, an
inverse calculation of size 6-by-6 appears. Thus the system can be solved.
The sizes of operational matrices requisite for the present analysis are

shown inclusively in Conclusions.

Introducing several modifications of the basic equation of vertical members,
this method can be extended to the analysis of rib arches, Lohse trusses,

and other structural systems.

2. BASIC CONCEPTS

Vierendeel trusses, or frames, will be treated herein, provided the elastic
deformation of a member is composed of both flexural deflection and axial
elongation in a plane. A part of the network systems is shown in Fig. 1
wherein the positive directions of member coordinates, nodal displacements,
forces at member ends, and external loads are illustrated.

For the subsequent discussions, the “force-matrix” at member end, and
the “displacement-matrix” at nodal point are to be defined. Referring to
Fig. 1, these matrices are given as follows:

Force-matrices:

Member AB:
Ny ={F S M}z (at A), Nps={F S M}z, (at B). (1)
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u = the horizontal displacement of nodal point,
v = the vertical displacement of nodal point,
¢ = the slope angle,
F = the axial force at member end,
S = the shearing force at member end,
M = the bending moment at member end.
Fig. 1. A Part of Plane Network Systems.
Member A'A:
Ny s = {F S M}A/A (at Al), N = {F S M}AA.' (at A). (2)
Displacement-matrices:
Xo=f{u v 0%}, Xg={u v 0}tz Xie={u v 03 (3)

Using the slope-deflection equation for the member flexibility and the
Hooke’s law for the member extensibility, the relations between the above
force-matrices and displacement-matrices can he consolidated as shown in
Fig. 2 and Eqgs. 4 through 7, wherein only the case of the orthogonal con-
figuration of members is to be considered.
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TR member 4 B Y Consolidated Formulas
- N
Npa= L Hlpd{X, Xz}+ Kpa. (4)
Nas=1H L J{Xa Xz} Kip. (5)
member 4"4 member B'B
Nao = [ H Ja0{X4 X+ Kyg. (6)
’t\/ P Nyo= [H LUl Xi}+ Kaa. (7)
A M member A’ B’ ,/ B’ — ——
/ % [F.M.]=[0.M.] x[D.M.] + [L.M.]

[F.M.] = Force-matrix,
[D. M. ] = Displacement-matrix,

[O. M. ] = Operational matrix,
[L.M.] = Load-matrix.
Fig. 2. Consolidation,

Here the “operational matrix” and the “load-matrix” are to be defined.

They are given as follows:

Operational matrices:

—f 0 0-
27
Hip = 0 7 7 , Hp,y = HABR’, (8)
0 —7 2k_|ap
¥ 0 0
2j .
Lig =1 0 7 7 s Lps = LagR', 9)
Lo 7k JAB
0 f 0
27 .
H 44 = 5 0o 7 , H' 440 = H' 4R, (10)
_”‘j 0 2/3_4’44
-0 —f 07
27 .
L'Af_/; == -—7 7 R L’AA' —_ L'A/AR’, (11)
7 0 B _jara

in which
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f=— k=T T=E (12)
—1 0 07

RR=| 0 —1 0|, (13)
0 0 1

E = Young's modulus, A = the cross-sectional area, I = the moment of
inertia, [/ = the member length, and R = the rearrangement-matrix.
Load-matrices:

B 0 N B —&an -
1 1
Kip=| Vap——(Cus+ Cps) 1|, Kpas =] Vs — ——(Cap + Cga)
L lag
_ Cas _ _ Cpa _
(14)
~ 0 7] B %A’A ~
1 1
Kig=] Vaiyg— (Cara + Caar) |, Kaw=| Vi — -—(Caa+ Cyur) |,
laa lara
. Cara | » Cua _
(15)

in which V = the load term for shearing force in slope-deflection method,
C = the load term for end moment in slope-deflection method, and % = the
summation of axial loads acting on a member.

3. NODAL CONDITIONS

All the possible states of nodal points in a Vierendeel truss system are

Table I. States of Nodal Points,

Kinds of Unknown } Known ‘ Equilibrium
nodal points displacements displacements conditions
Point I,
u -
[21 =0 M) =0
v
Point 11,
u ") [~ H
Lv]=0 2 =0
) 0 LM
7 .
Poni’t_I_II. - -
E _1 v none S Vi]=o0
| S 0. M
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classified as shown in Table I, wherein the perfect correspondence between
the number of unknown displacements and that of equilibrium conditions is

to be noticed.

In this system, the total number of nodal unknown displacements and that
of nodal equilibrium conditions are always equal, and therefore, the system
can be solved completely by due treatment of the equilibrium conditions at
respective nodal points. Referring to Fig. 3, the equilibrium conditions at
the nodal points (#, 1) and (7, 2) are given by the following forms:

For upper node (7, 1):

~—cosa —sina 07 FT " cosa sina 07 [[F7
sine  —cosa 0 S 4| —sina cosa 0 S
0 0 1 _|eptl Mo I O 0 1 LM
"0 —1 0T FY “P”
+l1 0 0l S| +|Q| =0 (16)
_0 0 1 |LMJ|. [LR_:

or

P,r—l;lNlr-—l,l + Prler + RN/rS + er = 0. (17)

Fig, 3. Force States at Nodal Points,
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For lower node (r, 2):

“—cosa —sina Q7 Wik " cosa  sina 07| [TF7
sine  —cosa 0 S +| —sina cosa 0 S
0 0 1 el Mlye I O 0 1 )2 lM ),
~0 1 Oo°|F” " P~
+1—1 0 O S +1 @ =0, (18)
0 0 1_IMij,s _R |,

or
P,r—ly 2~,r—1»2 + Pr2Nr2 + ENrI& + Qr‘l = 0. (19>

In the above equations, the matrices P and P’ are designated as the “projection
matrices,” and Q ’s as the “nodal load-matrices.”

4. SHIFT OPERATORS

A part of Vierendeel truss is shown in Fig. 4, wherein the letter symbols
of nodal points, constituent members, and physical matrices, and the positive
directions of member abscissa, member inclination, and deflection are
illustrated. The matrices at member end x =/ are primed, while those at
member end x =0 are unprimed. The nodal displacement-matrix is in
this case composed of horizontal and vertical displacements, and slope angle
at this point. For the subsequent discussions, it may be recommended to
rewrite the key equations to the present system in the following forms:

For upper and lower chord members (i = 1, 2):

N,=L|H L |, diag[P PLIX, X,.;}+K,. (20)
N/ri = L L H_lrzdlag[R,F R,F]ri{xri xr+1.i} + K’r,', (21)
—f 0 07 “f 0 07
2j . 2j
Hri = 0 _ZZ J b "ri = 0 m_lz j ? (22)
Lo —jekl. Lo i okl
_ 0 - - — 5 -
1 1
K.,=|V~— T(C +C) |, K=V — ”l‘(c +C) | (23)
e C —lri e o4 —iri
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Fig. 4. Vierendeel Truss with Inclined Chords,
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For vertical members:

Nr3 = LH L Jr3dlag[k R ]{xl xl}r + Kr3y (24>

N,r3 - L L H_Ir3d1ag[—k E ]{XZ xl}r + K’r3y (25)

in which H,; and L,; are given by Egs. 22 provided i = 3, and K,; and K',5
are as follows:

0 N " T i
1 1
Ks=|V— 7<C +C) |, K=V - T(C +C) . (26)
— C ir8 _ C’ -l 78
Here the following matrices are to be defined:
Rearrangement matrices:
0 —1 07 "0 1 07 ——1 0 07
R=|1 0 0, R={—-1 0 0], RR=[0 -1 0 (27)
0 0 1] _ 0 0 1 0 0 1
Projection matrices:
“cosa —sina 07
P, =|sina cosa 0| =P, (28)
0 0 1

— —ri

in which «,; = the inclination of member (r, i).

By substitution from these equations to Egs. 17 and 19, the equilibrium
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conditions at nodal points (#, 1) and (#, 2) are consolidated into one matrix
equation as follows:

A’r—lzr—l -+ B,rzr -+ G/r+lzr+l -+ C/r-—IFr*l + D,rFr =0 (29)

X1 X1 X,
z, = , Z,= y Lppy = y (30)
D C P X i, KXo {ri1

which are designated as the “eigenmatrices” of the (r — 1)-, (#)-,and (r + 1)-

Here,

th units, and the other symbols are given by

F,.={K, K'i Ky K3 K; K'3 Q Q}, (31)
(PLR'P), 0
A,r-l = ‘ — ) (32)
0 (P LR Pyl
(PPHR'P),;,1+ (PHP). + RH4R, RLsR
B', =] _ _ - _ , (33)
R,L,R, (PHR'P)_1,2+(PHP),+ RH4R
(PLP), 0
G,r+1 = — ’ (34>
0 (P Lp )2 r
o P, 0 0 0 0 0 O
Clr_l - > (35)
0 0 0P, 0 0 0 01,
p, 0O 0 0O 0O R E O
b, = _ . (36)
0O 0 P, O R O O E._|,
Edq. 29 yields the recurrence or shift formula
zr—H = Ar—lzr—l + B;-zr + cr-—lFr-—l -‘]“ DrFr' (37)

Here A,_, and B, are the “shift-operators” or briefly “shiftors,” and €,_;

”

and D, are the “feed-operators” or “feeders.” They are given as follows:

A A,
B, 1| B
:‘—Gr—}-l : ’ (38)
cr—l Cr—l
D, _ D,

The matrix 6’,,; is square and nonsingular, and therefore, the above oper-
ators can be evaluated.
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Eq. 37 is the shift formula between three eigenmatrices Z,_;, Z,, and Z ...
In virtue of the recurrent use of the above shift formula, all the displace-
ments of each unit of the system can be represented by the displacements
of an arbitrary unit, called the “current-matrix.” Treating boundary con-
ditions of a given system, the current-matrix is determined, and therefore,
the sytem can be solved completely.

5. TABULAR TREATMENT

The size of the above shiftors is 6-by-6 square, and that of the feeders
6-by-24 rectangular. These may be treated with manual operation because
of their bearable sizes. In this case, it may be recommended to carry out
the operation by tabular form. The following notes are given.

Table II, Nodal Equilibrium Conditions,

Formula: LA.; B, G.l{Z,., Z, Z,u}+ 1€,y D J{F._, E.}=0.
Nodal Dispvlicemenbmatrices Load-matrices RS
wit ty z,.]z, 0| 2o (2| Zos | Zews| Fos| Fra| Foc| By [ Fpat| Frae|
r—2 (Al 5B 4G, { Lty » L =0
r—1 Al._o B4 G, oL - LSS} =0
” : Al B 164 Clyf DI, =0
r+1 . Al Bl G iy [ | L =0
r+ 2 Al Bl oG s ClouD!pyeg =0

Table III, Shift Formulas,

Formula: zZ,.,=1A., B HZ,y Z,}+[€C,0y D I{F,, F.}.
Nodal Displacement - matrices Load-matrices
unit Z, 3 | Zpo | Zpoy| Z, | Zpyy | Zpyo | Zpsg |Frg|Fro| Fry| Fr [Fryy | Fruo
¥—2 | Arg| B2 E ) Cr3|Dr2
r—1 A,z | By E 1 Crs [ D,
¥ A, | B, E C.1| D,
7+ 1 A, } B | E €, Dyt
rrz | | o | At | Bruo| E Crut | Drae
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1. The nodal equilibrium conditions are written up by recurrent use of
Eq. 29 as shown in Table II.

2. The premultiplication by —[6G’,;]7! yields the shift formula as shown in
Table IIL

6. COMPLETE SHIFT FORMULA

It is roundabout to carry out the analysis of Vierendeel trusses with many
panels by recurrent use of Eq. 37, because the eigenmatrices of three units
always appear in this equation. In such a case, the following procedure may
be preferable. Taking two rows from Table III out, the equilibrium con-
ditions at nodal points of the #-th and (r + 1)-th units are written as

Ar—l Br Zr—l —E 0 zr+1
+
0 Ar zr Br+1 —E Z, o
Cr—l Dr F'r—l 0 0 Fr+1
¥ + = 0. (39)
0 CALF, D..i O_ILFr4
Then we obtain

[zr+1] [ Ar—l Br ][zr—l]
Zr+2 Br+1Ar—1 Br—HBr + Ar zr
€1 D, | - 0 0 M Frts
+ + . (40
Br—Hcr—l Br+IDr + €, F, D,y 0 Fr+2

This is the complete shift formula. Eigenmatrices of the (» — 1)-th and
r-th units are at once shifted to adjacent (» + 1)-th and (v + 2)-th units.
Although no additional treatments are herein necessary, the size of the
shiftor is 12-by-12 and that of feeders is 12-by-48. This formula would be
recommended when computers are available.

7. BOUNDARY CONDITIONS

In general, at the supports of a structural system, the nodal displacements
in the direction of support are externally restrained, and then these displace-
ments become known quantities or are represented by the given support
conditions. Contrary to this, equilibrium conditions of forces in the direction
of support can not be used for determination of the unknown nodal displace-
ments in the structure. They can only contribute to the determination of
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corresponding support reactions.

From the viewpoint of shift operation between three units of regular form
presented in the previous articles, boundary conditions are considered as one
of branched treatments. As an illustration, the boundary conditions of
Vierendeel truss in question are taken as shown in Fig. 5. The left end
of the system is supported with hinge, and the right end with roller,
respectively. They can be treated as follows.

(n—1.1) ;s .

/\\ (n,1)

. A

er-1,l/
N.;

NnS

@N (n,2)
& |

(n—1,2

" Y a,
+0(,~——1,\

Tng =0
(a) Left Boundary, (b) Right Boundary.
Fig. 5. Boundary Conditions,

7.1. Left Boundary Conditions.

The boundary conditions at the extreme left end consist of the following
(Fig. 5a):

(i) One equilibrium condition of bending moment at the lower node (1, 2).

(ii) Two support conditions at the lower node (1, 2), which are expressed
by the eguation

Uy = vz = 0. (41

(iii) Three force equilibrium conditions of horizontal forces, vertical forces,
and bending moments at the upper node (1, 1).

Taking the support conditions given by Eg. 41 into account, the force
equilibrium conditions, (i) and (iii), can be put into one matrix equation as
follows:

oo 0 Ry 2k + k)"

73 [xl]
(PHP),+(RHR); 0 8y 1,
ky |y
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0 0 0 0 Jj2 Kk Co+ Cy + Ry
I _ Z, — . (42)
(PLP)y O 0 0 PK; +RK's + Qy |,
The 4-by-4 square matrix on the left side of this equation is nonsingular,

and then, the extreme left nodal displacements Zz’; can be reduced to the
second eigenmatrix Z, as follows:

X,
Zi=| | = A € (43)
201

7.2. Right Boundary Conditions.

At the extreme right nodal points (%, 1) and (#, 2), shown in Fig. 5b, the
following boundary conditions are to be given:
(i) One support condition at the lower node (7, 2), which is expressed by
the equation
Ve = 0. (44)

(ii) Two force equilibrium conditions of horizontal forces and bending
moments at the lower node (%, 2).

(iii) Three force equilibrium conditions of horizontal forces, vertical forces,
and bending moments at the upper node (x, 1).

Considering the support condition given by Eq. 44, the above force equi-
librium conditions, (il) and (iii), can be expressed by the following matrix

equation:
"0 1 07 B 27 - B 7
_ . 2., 2] .
LR, feosta + Jsin'a —jsina |7 7
_0 0 1_ n Jsina 2k |aene LL—7 2k4.s |7
- C2f _' Uy
_ — -7 7
[(P'HR'P), ;1 + (RH,sR)], 0 0 Oz L
= . Mj k_ n3 —
70 0 07 [[—cosa —sina 07 -
0 0 0 0 0 1
= |0 0 0 (LR'P), |Z,,
PLR'P 0 0 0
[y R % I G O O 0_2 i P
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0 0 0 -—cosa; —sinay 07
0 0 0 0 0 1
K.’
+ 0 0 0
KZ n—1
P, 0 0 0
_ 0 0 0}
"0 1 0 O 0O O O O O 1 0 07 _  _7
K;
O 0o 1 0 0 0 0o 0 0 0 0 1
K's
+{0 0 0 0 —1 0 1 0 0 0 0 O (45)
Q
o 0o o 1 o O O 1 O O 0 O
_QZ_n
.0 0 0 0 0 1 0 0 1 0 0 0_ i

The 5-by-5 square matrix on the left side of Eq. 45 is nonsingular, and then,
the extreme right nodal displacements Z', can be represented as a function of
the adjacent eigenmatrix Z,.; of the form

X,
z,n = | Uz = B”n-—lzn—-l + C”n—-IFn—l + D”nFn- (46)

Os |

- 2

8. SHIFT OPERATIONS

Referring to Eq. 43 and Table III, the shift formulas between the eigen-

matrices of units at the left end of the structure are summarized in Table
1V.

Table IV. Shift Formulas at Left End.

Displacement-matrices Load-matrices }
Nodal unit |
Zz, Z, Z; z, Fy Fs l Fy ;
i
1 E Ay c, } ;,
P |
i
2 A, B, E C, D, *
3 A, | By E C. ] D, ‘

From this table, the rightward shift operation starting from the second
eigenmatrix Z, can be written down as shown in the equations below, in
which the currency of the Z, matrix to the succeeding eigenmatrices is ob-
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served. Then the Z, matrix is called as the “current-matrix” in the present
shift operation, and will be represented by 2.

Z; =UsZy + LV, VolofFi F}=Us2 + LV i{F ], (47)
Z4 = U422 + LVI Vz Vg_] 3{':1 Fg Fg} = U4Q + Lv_!g{F }3. (48)

Here the following symbols have been used:

Uy = AA"; + By, Ug= A; + BgUs, (49)
Vo = ACT + Cy, Va2 = Dy, (50)
LV: V. Vils=|BVy By +C; Dyl (61)

Thus the generalized form of shift operation of the current-matrix £ to the
7-th unit is given as follows:

Z=U82+ |V, Vy - V_ |, {F F - F._i}
= Urg + Lv__‘r——l{‘: }r"l' (52)

This is the desired recurrence formula for the present structure.

By the recurrent use of this equation, the eigenmatrix Z,_, adjacent to the
extreme right unit of the structure, is given as follows:

zn—l == un—l‘g -+ |_v1 v2 vn—-Z_I n—Z{Fl FZ Fn—?}~ (53)
The equilibrium conditions at nodal points at the right end of the structure

is summarized in Table V.

Table V. Nodal Equilibrium Conditions at Right End,

Displacement-matrices Load-matrices
Nodal unit R.S.
zn—‘l zn-l | z/n Fn—2 Fﬂ~1 ; Fn
n—1 Aln~2 Bln~1 G/n c’n«2 D,nﬂl i =0
n ; B”n—l —E ’ c”n—l { D”n ! =0

Referring to this table and Eq. 53, the extreme left nodal displacements
Z', are given by the form
Zln = Blln——l [un-—lg + Lvl vn—z_ln—:"{Fl Fn—'l}]
+ [_C”n—l D~”71J{Frz-1 Fn}) (54)
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or

z,n = u/n‘Q + Lvl Ve - vn.J/n{_Fl Fy - F/r}' (55)

Then the equilibrium conditions at the (#-1)-th nodal points can be written

[A/n~2un-—‘l + B,n—-lun—l + G’nU,n]‘Q

-+ [A,n—ZLvl vE vn—3 00 0 Jn—~3
+ Bln—ll_vl v2 vn—2 0 0 .Jn—Z + G,nLvl v2 e vn_l’n
+ LO 0 - 0 c,n—-ﬁ DIn’l O_I]{Fl Fy - Fn} :O, (56)
or
UnQ + I_VI VQ A V,,J,I{Fl Fg Fn} = O. (57)

From this equation, the current-matrix £ is determined as follows:

‘Q = _un_l Lvl v2 A vn_.l n{‘:l Fy - Fn}; (58>

and hence the present system can be solved.

9. EXTENDED APPLICATION

The preceding discussions can also be extended to the analysis of the rib
arches or Lohse trusses, whose upper and lower chords are subjected to both
the axial and bending stresses, while the vertical members can experience
only the axial force. A part of such a system is shown in Fig. 6, wherein
the physical matrices to be treated in the subsequent discussions are illus-
trated. In this case, the physical matrices of upper and lower chord members
are also given by Egs. 20 through 23. On the other hand, the force-matrices
of vertical member (r, 3) are given as follows:

n.g = {F O 0 }r37 n,r3 = {F 0 0 }/rS (59)
Referring to Egs. 24 and 25, Eqgs. 59 become
n. = 5 LH L _]r3d1ag[k R ]{XZ xl}r + § Kr3

0 f 0 0 —f 0

X
o 0 0 0 0 O , (60)
xlr

0 0 0 0 0 0.3

f

n,=S8LL H].diag[R RI{X: X3} + SK';
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Xo+1,1,Q041,1
r+1,1
X,1.Q.1 pember(r 1)
xr“Ll Q, \
\ 1. K1
R | N VO R
- _‘é £
] 2 n3 K3 g
== N K
= r 2.0 2
% ! ! N2 Ky
=
member(7.2)
r+1.2
ri1,2,Q 11,2
member abscissa memherV
direction of . )a"
deflection or ! !
laterl loads V
G-y
Fig, 6. Part of Rib Arch and Lohse Truss,
0O f 0 0 —f 07 T
X
=0 0 0 0 0 o0 + o |. (61)
Xl r
.0 0 0 0 0 0_,s _ 0 s

Here, § is designated as the selection operator or briefly the

“selector, ”
which takes the form

(62)

Then the previous nodal equilibrium conditions,

Egs. 17 and 19, must be
rewritten in the forms

P'r_1,iN'r_1,1 + PN, + RSN’ ;3 + @,y = 0, (63)

P’r_1,2N,r_1,2 + Pr2~r2 + EsNr3 + Qr‘.’}: 0. (64)
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In virtue of these equilibrium conditions, the shift formula between the
eigenmatrices at the (r — 1)-, ()-, and (r -+ 1)-th units can be obtained in
the following form:

zr+1 = Ar—lzr—l + brzr + Cr—lFr—-l -+ drFr' (65)

Here, the operators A,.; and C,_; are the same as those of Eq. 38, while the
operators b, and d, take the form

b L TeT
} = —G'ri1 . (66)
d], dl,

" [(P’HR’F),_M + (PHP),; + RSH 4R, RSLrgi]

in which

(67)

RSLsR, (P'HR'P)._1,2 + (PHP).; + RSH,sR

P, 0O 0O O O RS E O
d, = _ ) (68)
0O 0O P, O RS 0 O E_|,
Therefore, the shift operation of the present system can also be carried out
by the recurrent use of Eq. 65.

The boundary conditions and the determination of the current-matrix will
be treated in a similar manner.

10. ILLUSTRATIVE EXAMPLE

As an illustration of the preceding analyses, the three panel orthogonal
trusses of Vierendeel type and of Lohse type will be referred to, as shown in
Fig. 7. In this case, both trusses have the same geometry, every member of
which has the dimension 10cm x 10cm X 200cm. For simplicity, the vertical
loads @’s are applied symmetrically at the nodal points (2, 2) and (3, 2). The
solutions of these trusses are summarized in Table VI, wherein the symmetry
of nodal displacements in each truss is to be observed, and the magnitudes
of corresponding nodal displacements in both trusses are to be compared with.
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(1,1 (2,1 (3,1) (4,1) (1,1 (2,1) (3,1) (4.1)

t<——-200 cm ——]

L o]
AH(1,2) (2,2) (3,2) (4.2)4) 21,2 (2,2) (3,2) .24
Q Q Q Q
1
600 cm 600 cm
(a) Vierendeel truss (b) Lohse truss

Fig. 7. Three Panel Orthogonal Rigid Trusses.

Table VI, Nodal Displacements of Vierendeel and Lohse Trusses
(% @Q(nodal load)/E(Young’s modulus)).

Vierendeel truss Lohse truss
Node
u v 7 u v 0
3.674612 0. 999205 1. 948241 11 3.597302 0. 999375 2. 412440
2.707634 750, 8389 1. 553336 21 2.398201 1122, 158 4.801648
0. 966978 750.8389 | —1.553336 31 1. 199101 1122, 158 | —4. 801648
0. 000000 0.999205 | —1,948241 41 0. 000000 0.999375 | —2.412440
0. 600000 0. 000000 1.956416 12 - 0. 000000 0, 000000 2. 419936
0. 966978 751. 8381 1. 558786 22 1. 199101 1123, 158 4. 809144
2.707634 751.8381 | —1.558786 32 2. 398201 1123.158 | —4,809144
3.674612 0.000000 | —1.956416 42 3. 597302 0.000000 | —2, 419936

11. CONCLUSIONS

In the present approach to the analysis of Vierendeel truss systems, the
following notes are to be given:

1. The flexural and axial behavior of a constituent member are given by
the prevailing slope-deflection formula and Hooke’s law, respectively.

2. The physical quantities of a member are represented by two kinds of
3-by-1 matrices: the force-matrix and the displacement-matrix. The force-
matrix of a member shows the perfect dependency on the displacement-
matrices at member ends.

3. The single shift formula between the displacement-matrices for three
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consecutive units can be obtained from nodal equilibrium conditions at the
middle unit. The complete shift formula for group consisting of two adjacent
units can also be derived from assembling two single shift formulas.

4. In practical systems of Vierendeel truss type, the number of nodal
displacement components is always equal to that of nodal equilibrium con-
ditions, and therefore, the system can be analyzed completely by recurrent
use of the shift formula and treatment of given boundary conditions.

5. The sizes of operational matrices are as follows:
The current-matrix: 6-by-1. The shiftors: 6-by-6 for single shifting, and
12-by-12 for compelte shifting. The feeders: 6-by-24 for single shifting,
and 12-by-48 for complete shifting. Inverse matrix for the boundary treat-
ment: from 1-by-1 to 6-by-6. Inverse matrix for determination of the
current-matrix : 6-by-6.

6. In virtue of a little modification, the procedures for the Vierendeel
truss analysis can at once be extended to the analysis of the rib arch, Lohse
truss, and other similar structures.

REFERENCES

1) H. S Tsang, “Analysis of Vierendeel Truss with Inclined Chords,” Proceedings of
the ASCE, Structural Division, Oct., 1966, pp. 147-166.

2) B. Tanmvoro, “Operational Method for Pin-Jointed Trusses,” Proceedings of the
ASCE, Structural Division, June, 1966, pp. 179-198,

3) N. Yosuizawa & B. Tawnnoro, “Operational Method for Clapeyron’s Theorem,”
Journal of the Faculty of Engineering, Shinshu University, Vol. 18, Dec., 1964, pp. 1-

39.
4) E.C. Pester & F, A, Lecxie, “Matrix Methods in Elastomechanics,” Mcoraw-Hire

Boox Co., Inc,, 1963, pp. 240-322,
5) J. 1. Parcer & R. B.B. Moorman, “Analysis of Statically Indeterminate Structures,”
Joun WiLrey & Sons, Inc,, 1955, pp. 206--238.

APPENDIX. —NOTATION
The following symbols have been used in this paper;

A = cross-sectional area;

A = shift operator in single shifting;

B = shift operator in single shifting;

b = shift operator of rib arch systems;

C = load term of the slope-deflection method, see Egs. 14 and 15;
¢ = feed operator in single shifting;
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D = feed operator in s'ingle shifting ;
d = feed operator of rib arch systems;
E = Young’s Modulus ;

E = unit matrix;

F = axial force;

¥ = external axial load;

F, = load-matrix of the #-th unit;

= member stiffness, see Eq. 12

= operational matrix, see Egs. 8 and 10;

= moment of inertia;

= member stiffness, see Eq. 12

= member load-matrix, see Eqs. 14 and 15;
= member stiffness, see Eq. 12;

operational matrix, see Egs. 9 and 11;

I

l

member length ;

l

bending moment ;

force-matrix, see Egs. 1 and 2;
fo

I

orce-matrix of vertical member of rib arch systems;

I

horizontal nodal load, see Fig. 3;

!

)
'D

= projection matrices, see Egs. 17, 19 and 28;
= vertical nodal load, see Fig. 3;

= nodal load-matrix;

= external nodal moment, see Fig. 3;

= rearrangement-matrices, see Eqs. 27;

=
=

= integer denoting the order of node, member or unit;
= shearing force;
= selection matrix, see Eq. 62
= operational matrix, see Egs. 49;
= horizontal displacement of nodal point;
= load-term of the slope-deflection method, see Egs. 14 and 15;
=operational matrix, see Egs. 50,
= vertical displacement of nodal point;

><€<<§CMU)¥=1%D©1!"U=Zgth:ﬁ\}.NI\

= displacement-matrix, see Egs. 3;

Z, = eigenmatrix of the 7-th unit;
a = angle of member inclination;
0 = slope angle at member end;

R = current-matrix;
L ] =row vector; and

{ } = column vector.



