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1. INTRODUCTION

The slope-deflection method was first proposed by W. Wilson in 1915, and
has been widely used for the analysis of rigid frames. It usually ignores
the member elongation, and only the bending behavior is transmitted through
nodal points by assuming the rigid connection. This is sufficiently correct
for simple structures such as portal frames, but complex structures with
many bays or stories should call for further scrutiny.

The prevailing procedure of the method is first to exhibit a system of
equilibrium moment, and shear equations, the order of which increases with
the number of bays or stories. F. Takabeya gave a systematic tabulation of
the simultaneous equations which is widely adopted for use in Japan. In
order to solve it, however, the iterative procedure has been usually recom-
mended, so that time and labor rapidly increases with complexity in
structures.

The present paper shows an operational procedure for topological configu-
ration of structures by introducing the concept of sections or units, wherein a
recurrence formula can be derived and no simultaneous equations are neces-
sary. This can be attained merely by a due rearrangement of rows and
columns of the large size coefficient matrix of simultaneous equations, which
results in a tridiagonal matrix. However, no exhibition of the tridiagonal
matrix is necessary, and hence it will be not given herein. The approach
proposed then will result in saving time and labor for treating rigid frames
consisting of many bays or stories. It is to be added here that the orthodox
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operational procedure, allowing the member elongation, as well as its flexure,
can be formulated directly for rigid frames by beginning with general solutions

for governing differential equations.

2. BASIC CONCEPTS

A part of a plane rigid frame is shown in Fig. 1, wherein several symbols
of physical quantities to be adopted for use in the subsequent discussions
and the forces at member ends and their positive directions are illustrated.
By the usual assumption of inextensibility for members, the prevailing slope-

deflection equations?® are as follows:
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For the vertical member (j’” B
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In these equations, the following symbols are used:

b = fg e = )

Kl = ]1, K= /[1 K, = § ®)

or—1,s = 2EKOr1,s, ors = 2EKolrs,  @r, 541 = 2EK by, 541, (7)
dr = —6EK,Ry. ®)

Here k", kY, = the rigidity ratios, K%, K@ = the member rigidities, X,

= the standard rigidity, 7 ,’.’3, I}, = the moments of inertia, /s, h, = the member
lengths, E = Young’s modulus, fr—1,s, 0Ors, 0rs+1 = the slope angles, R, = the
member rotation angle, M%, M”, M2, M!. = the end moments, S%, S

rsy

Sy, St =the end shears, C!, CI, C?, C! =the load terms for end

rs?
moments, and V 2, VI, VI, VU =the load terms for shearing forces,
provided the primed quantities represent end x = /; or k-, and the unprimed
quantities end x = 0.

3. EQUILIBRIUM CONDITIONS

A three-span multistory rigid frame will for example be treated. In Fig. 2
is shown a part of such a system. The concept of the unit will be introduced
in the subsequent discussions, which is composed of nodal points on the hori-
zontal line, intervening horizontal members between these points, and vertical
members connecting their lower ends with these nodal points. The moment
equations at nodal points of the (r-1)-th unit, and the shear equation for the
upper portion of the structure cut out by the »-th plane can be put into the
following matrix equation:
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Here, the following constants and matrices are to be defined:
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Nodal constant:

Jr= 2Z(rigidity ratios of members connected at the #-th node).
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Story constant:

2
fi= Ez(rigidity ratios of vertical members of the »-th unit). (12)

Load-matrix:

- Cllio+ Cf-l—1,o + Cro— Myr—1,0 7
Cffl—l,o + Crin + C£—1,1 + Cr — My—1,1
Cf/—l,l + Cilne+ Cf-l—l,z + Cra— Mr—1.2

Ky—1 = (13>
C?lf—l,Z + Cro1,3+ Crs — Dyoy,3
1
-g[(Co +Co+Ci4C1+Co+ Ca+ Cs+ Cla)y
- — (Vo + Vi+ Va+ Va)y + hPr] -
Eigenmatrix:
Xo={o ¢ @2 @5 ¢}r (14)

4. SHIFT FORMULAS

In virtue of Eq. 9 or 10, the eigenmatrix of the 7-th unit can be repre-
sented by the eigenmatrices of the two lower units as follows:

Xy = Lr—2Xy_2 + My—1Xr—1 + FrKr_1, (15)

in which Ly,—2 and M,—-1 are designated as the “shift operators,” and Fr as the
feed operator to the eigenmatrix X,, since the eigenmatrices X,.z and X,—1
are to be shifted to X, by the shift operators, and the load-matrix K,-1 is
to be fed to X, by the feed operator, respectively. They are given as follows:

L—z=— N7'L._,, (16)
M1 =—N‘M _,, (17)
Fr= — N, . (18)

Here the matrix N;' is square and nonsingular, and its inverse is given by
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In this way, the above operators can be evaluated.

5. LOWER BOUNDARY CONDITION.

The lower boundary condition is given by the shear equation at the first
unit. Assuming that all the lower ends of vertical members of the first

unit are built in a rigid foundation, the shear equation of this unit becomes

Lko 1 k2 ks fli{oco o1 ¢z @3 ¢h
+L0 0 0 0 1]Ko=0, (20)

provided the load-matrix Ko is in this case given by
1
Ko = {O 0 0 0 ~3—[(Co +C0+ C1+ C'y 4+ Co + Clat C3+ Ca)

— (Vo + Vi+ Vot Va)] + hlPlj}. (21)

Then the order of the eigenmatrix X; can be degraded to 4-by-1 as follows:

X1 = U1 2 + FiKo, (22)
in which
S f 0 0o o o 000 0 0 o0
o
0 f 0 0 0O 0 0o 0 0
1 o1
Uy = 0 0 f 0 , 8 = , Fi=10 0 0 0 0
i @2
0 0 0 I 0O 0 0 0O 0
[Lesla 1
_—ke —k1 —ks —ks_|1 0 0 0 0 —7_1
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Here £ is designated as the “current-matrix,” which will become current
to all the units of the structure considered.

6. SHIFT OPERATIONS

Eq. 15 holds for three arbitrary consecutive units in a structure, and is
called the “recurrence formula,” or the “shift formula.” By the recurrent use
of this equation, all the eigenmatrices of the structure can be completely
represented by the current-matrix £ as follows:

X1 = U182 + FiKo, (24)

X2 = MiU1 2 - MF1Ko -+ F2Ky = U + | Vo Vi]o{Ko Ki}, (25)

X, = [:L,_zur_g -+ Mr-xur~1] 2
+ [Lr-2Vr—2,0 + My—1Vr-1,0 |[Ko + [Lr—2Vr—2,1 + My_1V,—1,1 K1 + -
+ [lr—2v7—2,7—3 + Mr—lvr——l,r—3] Kr—3+ MyaVy1,r—2Kr—2 + FrKr—1

=U2 + Vo Vi-Vroa], {Ko Ki-Kr-1}, (26)
xm—l = unz—lng + LVO Vl Vm—Z,Jm—l{KO Ky - an—Z}, (27)
xm B Um.Q + LVO Vl vnz—Z vm——l_!m{KO Ky - Kip—2 Km—l}- (28)

7. UPPER BOUNDARY CONDITIONS

The upper boundary conditions of the present system are given by moment
equations at the top nodal points, (m,0), (m, 1), (m,2), and (m,3), which can
be put into one matrix equation

- - ‘(‘DO‘ - 3 poo— ——900-
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C%O + C)I:IO - 93}7;20
C fiz’o + C Zzll -+ Cﬁzl - mtml

” o 5 =0, (29)
Cir+ Cmz -+ Cmz — Mz
Cz + Cliz — Mg
or
L1 1 + M 5 X + Ky = 0. (30)

Substituting from Egs. 27 and 28 into Eq. 30, the current-matrix £ can be
determined as follows:

sQ = [L,m-—lum—l + Mlmunz] -1 X [L’m~—1 LVO Vl Vm—Z O O_Jm~1
+M'mLVO Vi Vi1 O_J??Z+ LO 0 - E_]]
X {KO Ki--Kn-2 Kn- Km}, (31}
or
;Q = LGO Gy Gm—z Gin—1 Gm_‘
X {KO Ki--Kp—-2 Kp-1 Kﬂl}y (32>
or
2=161{K} (33)

The first factor on the right side of Eq. 33 is called the “geometry matrix,”
which can be evaluated from the geometrical configuration and material
properties of the structure. Thus, the solution can be obtained in the.desirable
form in which the load-matrix is separated from the geometry matrix.

For the practical application of this method, it will be recommended to
consolidate the solution of the system considered in the form of Eq. 33,
since the evaluation of physical quantities can at once be obtained from the

geometry matrix.
8. MODIFIED SHEAR EQUATION

Taking the portion near the nodal points of the (#~1)-th unit as shown in

Fig. 3, the shear equation is given by the form

2

3
§=0

3 ’
[Ss17 — DIISsTr—1 + pr—1 =0, (34)
s=0

in which pr—1 = the summation of the horizontal loads applied at the (r-1)-

th nodal points.
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Fig. 3. Portion Near the (r-1)-th Nodal Points,

The equilibrium conditions of the (#-1)-th unit can also be consolidated in
one matrix equation which is similar to Eq. 9, from which the shift formula
will be derived. The inverse which is necessary in this case is given below:

-1 _

"k 0 0 0 k|’ B f v
1— = 1 1 1 —h
0 & 0 0 A 2ko f
1 1—= 1 1 —h
0 0 k 0 k| __ 2 2k (35)
I B 1 1-Z2 1 —n|
0 0 0 k ks ' 2k ¢
1 1 1 1—= —
o Bk ks S 2ks
kR h R h . —1 —1 -1 -1 Rk |

9. APPLICATION

As a simple application of the above discussions, the analysis of a rigid
frame consisting of three spans and four stories will be treated. The configu-
ration and the loading conditions are illustrated in Fig. 4. Referring to this
figure, it can be seen that the entire deformation of the frame becomes
antisymmetric, and hence sixteen unknown slope angles at the nodal points
can be reduced to eight. Consequently, the eigenmatrix of each unit is
reduced to an angle of member rotation and two slope angles. Therefore,
the upward shift operation is performed by a 3-by-3 shift operator, and the
final treatment of the problem requires only a 2-by-2 inverse.

In Table 1 are shown the results obtained from both the operational method
and the prevailing iterative method.® In the latter procedure, computation
was carried out six times repeatedly. From Table 2, it can be observed
that the operational method gives accurate results with much less time and

labor.
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Fig. 4. Three Span Four Story Rigid Frame.
Table 1. Results Obtained.
(A) By Iterative (B) By Operational (C) By Operational
Unknowns Method Method
Method (Two Decimals) (Three Decimals)
©1p 10, 20 10. 27 10,274
@ = 6.35 6.38 6.385
¢y = —34.05 —34.16 —34.160
@2 8.10 8.11 8.107
0oy = 5,563 5. 56 5. 559
do = —38.40 —38.57 —38.575
o 4,71 4,70 4,700
Qg = 3.12 3.12 3.117
&ds = —28.20 ~28.18 —28,183
o5 = 1.83 1.82 1.822
0 = 1.07 1.07 1.068
¢y = —13.10 —13.07 -13. 065
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Table 2, Errors in Check Calculation,

1 (A) By Iterative (B) By Operational (C) By Operational
Equations | Method Method

! Method (Two Decimals) (Three Decimals)
Shear (1st): 0.06 —0.02 -0, 002
Moment (1,0): —0.26 —0.03 —0.002
Moment (1,1): —0.17 —0.05 —0.005
Shear (2nd): 0,11 0.00 0. 000
Moment (2,0): 0.04 0.02 0. 000
Moment (2,1): —0.04 0.02 0.003
Shear (3rd): —0,05 0.01 0.000
Moment (3,0): 0.01 0.00 —0.002
Moment (3,1): —0.04 . 0.03 0.002
Shear (4th): —0.02 0. 00 0.001
Moment (4,0): 0.00 —0.02 —0.009
Moment (4,1): —0.02 0.00 —0.009

10. CONCLUSIONS

In the proposed operational procedure for the slope-deflection equations,
the following notes are to be given:

1. For the rigid frame analysis, the concept of the constituent unit is
introduced. In virtue of the equilibrium conditions in a wunit, the shift
formula for three consecutive units is obtained.

2. By the recurrent use of the shift formula, all the unknowns of slope
and member rotation of the system can he represented by the current-matrix
which consists of the elements of the first unit eigenmatrix degraded by the
lower boundary condition.

3. 'The lower boundary condition is given by the shear equation of the
first unit, which results in the formation of the current-matrix from the
first unit.

4. 'The upper boundary conditions are given by the moment equations of
the top nodal points of the system. The current-matrix is determined by
these conditions. Therefore, the order of inverse necessary for the final
step of the operation is given by the number of the top nodal conditions.

5. The number of unknowns in the rigid frame analysis can be extremely
decreased by this method, and in addition, accurate results are obtained
with less time and labor.
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APPENDIX. —NOTATION

The following symbols have been adopted for use in this paper:

C =load term for slope-deflection method, see Egs. 1 through 4;
E = Young’s modulus;

F = feed operator, see Eq. 18;

f = story constant, see Eq. 12;

G = geometry matrix, see Eq. 32;

= length of vertical-like member;

= moment of inertia;

nodal constant, see Eq. 11;

I

member rigidity, see Eq. 6;

I

load-matrix, see Eq. 13;

TR RS o~
Il

= rigidity ratio, see Eqgs. 5;

L = shift operator, see Eq. 16;

! = length of horizontal member;

M = end moment of member, see Egs. 1 and 3;

M = shift operator, see Eq. 17;

M = external nodal moment, see Fig. 2;

m = order number of the top nodal points of frame;

N = operational matrix, see Egs. 9 and 10;

P, = summation of horizontal loads above the 7-th plane, see Fig. 2;

pr—1 = summation of horizontal loads applied at the (#-1)-th nodes;

R = angle of rotation of member, see Eq. 8;

v = symbol representing the story order;

S = end shearing force of member, see Eqs. 2 and 4;
s = symbol representing the column or span order;
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U = consolidated operator for current-matrix, see Egs. 23 through 28;
V =load term for the end shear, see Egs. 2 and 4;
V = consolidated operator for load-matrix, see Egs. 25 through 28;
X, = eigenmatrix of the »-th unit, see Eq. 14;
# = slope angle;
¢ = modified slope angle, see Egs. 7;
¢ = modified angle of rotation of member, see Eq. 8;
2 = current-matrix, see Eq. 23;
L ] =row vector; and
{ 3} = column vector.



