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                          1. INTRODUCTION

  The prevailing key equations to continuous beam-column analyses by the slope-

defiection ;nethod are derived from the eigenmatrix of the operationai method.

The three-slope equation and the three-mornent equation are also derived.

  The eigenmatrixi) is defined by tke assembiage of integration constants of the

general solution of differential equation for a beam-column member arranged in a

4-hy-1 colttmn matrix. Then, in the operational method, tkeproblem isreduced

to attack the eigenmatrix. Treating cornplete!y compatibility conditions of

displacements and equilibrium conditions o£ forces at an intermediate support of

a continuous system, a shift formula between two consecutive eigenmatrices is

obtained. By the recurrent use of the shift formula, the eigenmatrices of the

entire system can be expressed in terms of the eigenmatrix of a span, called

the current-matrix. Finally, the current-matrix is deterrnined by both extreme

boundary conditions. Thus, the system can be solved systematically dispensing

with sirriultaneous equations.

  From such a standpoint, it may be said that the above key equations are the

resttlts obtained from the eigenmatriX after a preliminary treatment. The outlines

are as follows:

   Slope-defle¢tion equations:

    1. The eigenmatrix is specified by end defiections and end slopes of a

  member.

   2. The end moments expressed by this specified eigenmatrix at oRce give

  the desired key equations.

  Three-slope eqttation:

   1. The eigenmatrix is specified by end defiections and end slopes of a
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  member.
    2. Taking two consecutive spans, the slope continuity condition at the

  intermediate support is to be treated preliminarily.

    3. The moment equilibrium condition at the intermediate support gives

  the desired key equation.

  Three-moment equation:

    1. The eigenmatrix is specified by end deflections and end moments of a

  member.

    2. Taking two consectitive spans, the moment equilibrium condition at

  the intermediate siipport is to be treated preliminarily.

    3. The slope continuity condition at the intermediate sttpport gives the

  desired key equation.

  The recurrent procedure in the operational method can be extended to the

prevailing key equations. The application to the three moment equation will be

shown in the subseqttent discussions. The entire course of analysis is carried out

with matrix algebra, and the recurrence formula for the set of two consecutive

support moments will be derived, which can also avoid simultaneous equations.

Although the analysis can be cornposed of the recurrent procedure, it will be

not always most preferable, because of the incomplete classification of data in

the key equations. In fact, as will be seen subsequently, the resulting recurreRce

formulas require a considerable amount of computations and in addition the

elements in the operators become complicated. This ana!ysis can be one of the

operational procedures, but it would be, so to speak, a bad second. Numer-

ical examples are added at the end of tkis paper.

  The fiexural behavior of

by the following differential

Here w := the defiection, x

load, and EI = the flexttral

the form

 2. BASIC CONCEPTS

 a beam-column is governed

 equatlon:

  d4w P d2w
  dx4 + -E'idx2 =: O･

== the current abscissa, P==

rigidity. The general solution

     L3
ZV = EggE"I LI cvK, cos crp sin nvpJN,

under no lateral ioads

                   2)                 (1)

the compressive axial

 of Eq. 1is given by

(2>
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in which L== the member length, cv=VPL2/EI, p= x/L, and N= {A B C
D} =:: the assemblage of integration constants, which is referred to as the "eigen-

matrix" of the member.

  The state vector of a beam-column member is defined by a 4-by-1 column matrix

whose elements are composed of the defiection w, the slope 0, the bending moment

M, and the shearing force S, Based on the deflection given by Eq. 2, the above

state vector is expressed by the form

                 L3
          W cr3Ef O O O 1 crp Cos avp sin cyp A

                    L2
          0 ,.. O ltEz}7 O O O 1 -sin crp cos ap B, (3)

                          L
         M O O -- O O O -cos orp -sin crp C
                          a
         ..S- -O O O -1--O O sincrp -coscvp.- -.D-.

or, symbolically,

                            W(crp)=DP(ctp)N. (4)
 When the beam-column is sttbjected to lateral externai loads, such as the

concentrated load, the arbitrary distributed load, and the concentrated moment,

as shown in Fig. 1, the contlnuity conditlon between two state vectors at a

!oaded point are to be treated. Then, the external loads will be represented by

the corresponding "load-matrix." Referring to Flg. 1, the state vectors at the

cross-sections i and j' are expressed as follows:

                           Wi=PPNi=DPN, <5>

                   Wj -- DPNj -- DP<N+KQ+Kq -Y K.). <6)

P --1eep-

iJ

l
1
L

p

Qtl{x}'
1
Rj

-MILJ
x2L

H3L--
M4L
L

-aj" P

Fig. 1. Loading Conditions.
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 Here KQ, Xq, and K. are tke load-matrices for concentrated ioad, arbitrary

 distributed load, and concentrated moment, respectively. They are given by the

 forms

                     Ke== (?{-evrci 1 sinami -coscrrci}, (7)

                          rc3                   KG =L! q(,c){-cvrc 1 sinctrc -coscrrc}drc, (s)

                          re2

                          evR
                     sc. =T- "'z"{1 O -coscrre4 -sinarc4}. (9)

  In the analysis of the continuous system, the state vector at a member end

is to be interconnected with that of the adjacent member end. The eigenmatrices

at both member ends are to be specined as follows:

           At p::=O: N.={A B C D}.= normal eigenmatrix. (lo)

              At p== 1: N'. == rw.+K. == conjugate eigenmatrix. (11)

Here K. = the "load term" of member r, which is given by the form

                               i
                          Kr= III.llirm,(Ke+Kq -i- Km)r･ (i2)

  Figs. 2a, 2b, and 2c illustrate small portions at the extreme ieft end, the

intermediate support, and the extreme right end of the continuous beam-column.

Assuming the elastic proportionality, all the support conditions are given by the

relationships

                            zu =-= leV, 0=mR, a3>
in which V==- the support reaction, R= the sttpport resisting moment, and k, m

= the spring constants attached to the elastic support. Then the relationships

between the state vectors (Figs. 2> are interconnected with the following equations:

     "<i)i,,,viei MS/,4;i,;l"--J-lv .IItllililliililll]iii4atusm--:,i,,,$,L;?

    (a) Left Bottndary. (b) Intermediate Support. (c) Right Boundary.

                         Fig. 2. Support Conditiens.
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  In virtue of Eq. 3, Eq. 15 yields a shift formula between two eigeRmatrices

of members connected at an intermediate support of the continuous beam-column.

By the recurrent use of the shift formula, the eigenmatrix of a span can become

current to the entire spans. Finaliy, both the extrerne boundary coBditions

given by Eqs. 14 and 16 are used for determination of the ctirrent eigenmatrix,

and then the system can be solved completely. This is the orthodox procedure

of the operational method.3)･4),5) In the subsequent discussions, several key
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equations to prevailing methods will be commented from the operational view-

point and the application of the operational procedure will be shown.

                   3. SLOPE-DEFLECTIONEQUATIONS

  The slope-deflection equation is derived from the key equation, Eq. 3, to the

operational method as a prelirninary treatment of the eigenmatrix.5) That is to

say, taking a member, the nodal displaeements, the defiections and the slopes,

at both member ends are to be imposed on the eigenmatrix Then the end mo-

ments expressed by this eigenmatrix at once give the desired slope-defiectlon

equatioRs. The derivation is given in the following:

  Fig. 3 shows the r-th constituent member of the continuous system, wherein

the displacements of nodal points r and r+ 1, and the end forces of member r

are illustraeed. Referring to the figure, the compatibility conditions between

member end displacemeRts and the nodal displacements are written

                    [7]r=[Z]; [7]1=[7].+i' `i7'

                                                      r -}' 1
                 r

Wr
l'Vr + 1

First, in

Then the

            '     sl ivr rv, e
                  '

         Fig. 3. Censtituent Member and

virtue of Eq. 3, Eq. 17a is written

    (a`i)rlE 2I.[,i 1:?

eigenmatrix N. becomes

r+1
           itl'r
       Kr

End Conditions.

  -A"-

g --[z

  mDm. r

]
r

(18)
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                                               a               -A- --1 O- IzrO
           Nr=: g r= 9 ii [S].+("'7'E2i'). gg[Z];

               -D.r -.O 1-                                             -o O-.
Using Eqs. 3 and 19, Eq. 17b is written

[CISg.1,i'illev.: .[g ."(a:i)rlkIr[: r

             +[,i l-ge.S2V gLl'i],Kr=("";iEi).I-'g ?I.IWel..,'

From this equation, {C D}, is obtained as follows:

[S]. ::= (evi4i2 wo 2cos k - exsin ev).[' l,,C' .OS£' - i gl.C:S `1 .[yiv}V.1,]

      " (cr i2 - 2cos 2 - asin cr). [i ii ",g,Q fl CevO Ssicrn' a, gogiag] , [8.1 ,]

      + ( 2 - 2cos k - a sin a ). [i :sl nO Scrf' iSl- caogaav-C Oi sati 'n a,

                             cosa+aEiLlnaa; 1' Siiiccros-act-COISa],K,

Consequently, the eigenmatrix N. is represented by the end disp}acements

fo}lows :

                                    1-cosa-asintv, i-cosct

     Nr "= (2- 2cosk-.sin.). cri)i!ii iiincocrs' ., ndilllSlnosa. ,

                              .. -. -smnv, sma -

                                     -slna+acosa, -a+slna

                                       1- cos ev, -cosa+1                              a2EI
                               L2 sin ev - cr cos a, nt - sin cv '

                                  -1 - cosa- ev sin cr, cos a- 1 -.

 2i

(19)

(20)

(21)

 as
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-' -1 -Y cos cr,

   sin a,

  1 - cos ev,

- -sm a,
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-sina -F cr cos ev, 1 - cos cu - asin cr,

-1 -F cos ct +asin a, sm a,

 sina-crcoscr, -1+cosa+asina,

1- cos ev - cr sina -sin cr
               17

-slna + cr cos a

  -cosa+1

sm a - a cos ct

   cos ev - 1
r

 Next, takiBg the direction of member end moments clockwise as

the figure, 3nd using Eqs. 3and .O.2, we obtain

[11,I･]. 7rm' (2 - 2cos ;･ - cy sin cv ).[("'2"i'-i). [l I ::l :l I: ::l f], [viCl .I ,]

     + ('9]tEJ"'I). [Sii],evrmrm,iC.9S `,ifI. ct. 1 /; n,.a, ,,] .[ 8.r.,]

 + (k). [i - cos ctl 'cr - sin a, ' i- cos a,' ' 'a - sina         1- cos a sm a-acos cv -1 + COSa+aSlna Sl ll cr rm a COS ev].

   No. 23

- PVr -

 Wr+1

  er '

 (Ei)r+1

-Kr-
     (22)

skown in

Kr
] (23>

                     4. THREE-SLOPEEQUATION

 The three-slope equation for continuotts beam-colurr}ns is obtained from the

followiRg treatments:

  (1) Preliminarily, at each intermediate support, the compatibility conditions

'for defiections and slopes between both spans are to be considered. After this

treatment, taking the r-th sttpport, all the physical qttantities are expressed in

terms of the support settlement W. and the support slope e.. The former, W.,

is in general taken as the given quantity, while the latter, e., as the unknown

quantlty.

  (2) Due support settlements and slopes are to be imposed on the elgenmatrix

of each member, the resulting form of which is the same as Eq. 22.

  (3) Using this eigenmatrix, and in virtue of Eq. 3, the equilibrium condition

of bending moments at the r-th support is to be treated, which results in the

following three-slope equation:

L(.ICIcZ).-i, (fZ}).-i"F(fb>., (.fa).]{er-i er er+i}

     :::: Lpm(eC)r-i, (eC)r-i-(eC)r, (eC)rKW)-i VY} Wr+i}

     +gr-iL-C, -a, uaC, muajr-iKr-i+grLrmC, unb, C-d, -bjrKn (24)

Here, the following symbols have been adopted for use:
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             a cv -1 O-                                                       1
             2 ==' (2- 2cos ai-a sina). 2 5 -- ai sin ev ･ <2s)

                             '                                                    m.cos a- ,
           .-d-.r -O cr O-r
                        [;].==(crii)rl2I. `26'

                              gr=({iL).･ (27)

                    5. TffREE-MOMENTEQUATION

  In the three-moment equation, the sttpport settlements W's are taken as given

quantities, whHe the support mornents MZ's are as ttnknown quantities. Referring

to Fig. 4, the former are the results obtained from the compatibility condition

of member end deflections, while the latter are those from the equilibrium con-

dition between the member end moments at respective supports.

               r-1 r r+1 r+2T{1 "i w ;Vr+1
          lok
                gn.-1

             Fig. 4.

  Taking the r-th span, the

by

                   [il'li] r =='

Treating Eq. 28a together

form of semi-eigenmatrix {B

                     -o

                      1
                Nr :':='um
                      o

                     -o

      gn, Ellr+
Censecutiye SpaRs of Continueus

    deflections and moments

     [K]r' [in']1=:[

   with Eq. 3, the eigenmatrix

      D}. as'follows:

     om -(v3EI mmE!.
                 L3 L
     g[S].{- g ;.,

     1. ･ oo

       Wr+2
        )-eq-L'

       S}lr+2
1

Beam-Column.

  at supports then are defined

ll:] .+i (28)

   ' N. is degraded to the

  [lll(t] .' (29)

.r
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Then in virtue of Eq. 28b, the semi-eigenmatrix is expressed in the form

             tv2EI 1 a2Ef 1
                     L L3 L              L3

                   aa      D O -csccr DZ O --cota EM                   LL     mm -r - -r- -r+1 " -r- ".r
                                  -1 -i o o
                              +a K.. (30)
                                 - O O -cot ct -l...

Thus, the eigenmatrix N. of the r-th span can be expressed as follows:

              -a O aO
     Nr=i k 6i [,I:."IJ"(cr:i).6'g[wW.1,]

           -- cr COt CV CV CSC CU-r .. O O-r

                                        ooo o

                                     1-1 -a O o
                                   'lm- Kn (31)
                                     a. oo O O

                                      -O O -acota -a-.

  Next, at the r-th support of the continuous system, the continuity condition

of slope angle between both spans are to be treated. Referring to Eqs. 3 and 31,

this condition can be written in the following form, which will yield the desired

three-moment equation.

  Li3r-i, rr-i+rr, l3rJ{EIJIr-i Elll'ir E}IYIir+il} ==: L6r-i, -fir-i ww5r, O'rj{Wr-i Wr VYr+i}

  +(ailllli]i).-,L1 O acsccr OjrNiKr-i+(ev3LE2D.t-1 nvcr -acota wwajrKr

                                                                   (32)

Here, the following symbols have been adopted for use:

                      [9]. "= (a/Siiil).[,iu ,-.t`Y.CSrmC `iV]. (33)

    1
o== r    Lr (34)
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     6. 0PERATIONAL PROCEDURE FOR THREE-MOMENT EQUATION

 6. 1. Recurrence Formu}a.

 Taking two sets of three consecutive supports, r-1, r, andr+1, and r,

r+1, and r+2, the three-moment equations can be put into the following

matrlx equatlon:

   [pr6t' r""ii. r"][k'V]'[,.E;,..,, p?.,][gll'illl]

       =L' [fi"6ij -6rHi6]- 6r][Ww']i] + [-a. 6-" bh..,, fiO..,][Iw'V.rll]

           "(a$D..[g g aCS8av g].m,Kr-i

              '(a3iD.[1' ff,a -.a.ggt." M,"].K.

                  "(EESD..,[-Oi -Oa -cvc8t. -O.]..,K"'" `35'

or

   -clr-"ilVlr-1 + Cr+1fillr+1 == Ur-IWr-1 + Vr+IWr+1 + Pr-IKr-1 + qrKr + rr+IKr+1, (36)

providing

     M.-i=[t'lrJi], M.+i= [gg!jll], wr-i =':='rm [Wgv']i], Wr+i=[Wlll] (37>

Here M.igi and M,+i are the support moment matrices which are taken as un-

known quantities, and then, henceforth, they wiil be caHed the eigenmatrices

in this analysis, whi}e W.-i and VV.+i are the sttpport settlement matrices which

are considered as given quantities.

  The matrix c.+Bs square and nonsingular, and then the eigenmatrix M.+i is

expressed as foliows:

             Mr+1 == C ;+![dr-IMr-1 + LUrml Vr+IKWrrm1 Wr+1}

                          +LPr-i qr 'r+J{Kr-i Kr Kr+i}], (38>

or
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             rvir+i =:: Dr+iMr-1 -i- Lesr-1 Vr+d{Wr-1 ISIgr+i}

                          +LPr-i Qr Rr+il{Xr-i Kr Kr+i}･ (39)

This is the desired recurrence formula between two consecutive eigenmatrices of

the continuous beam-column.

  In applying the recurrence formula to the analysis of coRtinuous systems, the

foilowing notes are to be given:

  1. The order of supports is counted from the extreme Ieft support.

  2. The subscript "i" denotes only even numbers (i -- 2, 4, 6, ･･･).

  3. The eigenrnatrix of the system is defined from the extreme !e£t end as
follows:

                      , l.
               Mi==[lli:,ll]･ M3=:[ggIi], ,M,+i--[3i:ll] (4o>

Then the recurrent use of Eq. 39 yields the following equation:

Mi+i == Di+ILi-IMI

    +LDi+ISi-1,1, Di+1$i-1,3, ･･･, swi+ISi-1,i-1+Ui-1, Vi+lj{Wl W3 ･･･ Wi-1 Wi+1}

    + LD-Ti-1･1, Di+ITi-lr2, ''', gei+ITi-1,i-1 -i- Pith Qi, Ri+lj {Kl sc2 ''` Ki-1 Ki Ki+1}

    =£i+IMI+LSI $3 ･･･ S･i-1 $i+1]i+1{Wl WY3 ･ny･ Wi-1 Wi+1}

    -I- LTI T2 ･･･ Ti-1 ri Ti+lji+1{Kl K2 ･･･ Kiwa1 Ki Ki+1}

     :Li+,Mi+LS],.,{W},.i -i- tTj,.,{K},.,, (41)

providing

                             Lsi,Lgiu93' v,], l (42)

                           L7], == Lp, Q, R,J.J

Thus the eigenmatrix Mi becomes current to the entire system and then it may

be ca"ed the current･matrix.

  6.2. Left Boundary Conditiens.

  The bottndary conCiitions at the extreme left end of the contiBuous structure

are treated as follows.

  For the simple,support, the support moment vanishes, and then the boundary

condition is given by taking the first eigenmatrix Mi as follows:
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                      Mi:= tsOeJ=[?]M2, or Mi=BWZ2. (43)

  For the fixed end, the slope angle is zero, and then the boundary condition is

given by taking the terms in Eq. 36 (in this case r= 2) as foliow.s:

                     Mir-[l]EX}IL,, or ivii=BE"lo <44)

                                   Pi2
                          -d, == M7,, ri rrF r2. (4s)
                                - O, PL' -

                   ., .,. fii(l --y lilJi), -fii(1 -F i-il)-o"-) <46)

                             o fi"                        -1 "-             pi- (.,L.2,),Ii -i,' ;9,-' t?; `vesca(i 6", "9cosnv)' t7911, (47)

  After treating the extreme left boundary condition above, and consideying

Eq. 4!, aH the support momeRts are expressed by Mt2 as follows:

                ilvfii+i = ei.,BS)]t2 {- L$Ji.,{WV'}i., -+- LTji+,{sc}i.,. (48)

  6.3. Rigkt Boimdary Conditions.

  The simple support condition is merely given by taking the extreme right

support rnoment equal to zero, while, for the fixed end, the slope angle vanishes,

and then treating this condition, the following relation is obtained piroviding

n represents the extreme right support number.

                    Pn-i                               i)n-'1
                                       mh!j{Wn-i lig'),}            S}]'en == - r.m, 2!IVin-i -l- -?.;,-,L 1

                    +-iJl--,(aSliif)..vSi O `vcsccr oj,t-iKn-i <4g)

  6.4. Final Treatment.

  The eigenmatrix is composed of two consecutive support moments beginning

wlth the extreme left support of the continuous system. After treating the

extreme left boundary condition and considering the recurrence formula, the

second support moment Ml2 becomes current to the entire system. This current

element can be evaluated by due treatment of the extreme right boundary con-

dition, in which case there occurs the 'following four cases regarding the be3m

configuration. Here n denotes the largest even support number of the system.
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  i. Simple support (support number == n).

  2. Simple support (support number :== n + 1).

  3. Fixed end (support number =n).

 4. Fixed end (support number =:n+ 1).

Respective cases are treated iR the following.

 6.4. 1. Simple support (support number == n).

  In virtue of Eq. 48, the eigenmatrix of the last unit is represented as follows:

          M,t-i = [E[l}illl'] = Ln-iBE})t2 + LS]n"i{W}nrmi + LTjn-i{K}n-i' (50)

The support condition is in this case given by

                   LO 1llsun-i=O, Or B'IVIn-i "= O. (51)

Eqs. 50 and 51 yield the final eqttation

            S)]Z2 -- -[B'Ln-iB]MiB'[LS ]n-i{W}n-i + LT ln-i{K}n-i]･ <52)

 6.4.2. Simple support (support number = n + 1).

 In this case, the eigenmatrix M.-i is given by the same form as Eq. 50. Con-

sldering the extreme right end conditlon, EM.+i :=: O, the three moment equation

for the last three supports is written

L13n-i, rn-i + rn]Mn-i == LO"nmi, -On-i - tinlW,Jrmi + O'nWn+i

+(a3LiD.",Ll O crcsca eJn'iKn-t-t-(av3LiD.L-1 -a -crcota -a].K.

                                                                   (53)

Substitution from Eq. 50 into Eq. 53 yields

               B'Ln-iBEEJ}2 -i- LSj'n+i{W}'n+i H- LTJ'n{K}n = O, (54)

in which

                          B' =: LPn-i, rn-i+rnj, (55)

  LSj'n+i{VV}'n+i = B'LS]n-i{W}n-i rl- L-fin-i, 6n-i -i- 5njWn-i il 6nWn+i, (56)
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       LTj'n{K}n = B'LT]n-{K}n-i mF (.fllilD.H,L-1 O 'aCSCa OJn-iKn-i

                               +(.3LE2D.tl cr crcota ajnKn･ (s7)

From Eq. 54, the final equation is obtained as follows:

             EI]l2 == '[B'Ln-iB]Mi[LSj'n+i{W}'n÷i + LTj'n{K}n]･ (58)

 6.4.3. Fixed end (support number = n).

 The last eigenmatrix M.-i is given by the form of Eq. 50. Then the fixed end

condition is given by the equation

               B'Ln-iBE))l2 -- LSj'n-i{WY}n-i +LT]'n-i{K}n- =O, (59)

in whlch

                            B' ==Li3 rl.-i, (60>

            LSJ'n-i{WI}n-i :B'LSIn-i{W}n-i + O"n-it-1 11Wn-i, (61>

    LT]'n-i{K}n-i -nv B'LT]n-i{K}n-i mi- (,,31iiD.-,L-1 O -`YCSCcr Odn-iKn-i･

                                                                   <62)

From Eq. 59, MZ2 is obtained as fol!ows:

             El)t2 -nv ny[B'Ln-iB]-'[LSI'n-i{VY}n-i +LTI',i-i{K}n-i]･ (63)

 6.4.4. Fixed end (support number := n -Y- 1).

 The eigenmatrix iVi.hi can be expressed by Eq. 50. Taking the inoment relation

given by Eq. 49 into account, the extreme right three moment eqttation is

written in the form

                     Pn2
                        IMn-i     LPn-i, rn-i + 7'n -
                     rn

         == Lbn-i, -6n-i - bn(1 + l?. iiL), b' n(1 + l?ili,)1{ Wn-i Wn Wn+i}

            +(creiiD.H,Li o acsca oj.-iK.-i

             + (`vfillli7).tnt(1 + -Erny)' h`V' nv`Y(ii-CSC `V + Cotev)' mu`vj.K" (64)
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Substitution from Eq. 50 into the above equation yields

                B'tn-iBEB't2+ L$ j'n+i{IW}'n÷i + LT I',t{K}n -rm e, <65)

in which

                                         Pn2
                                                                   (66>                      B' == LB.-i, rn-i + 7'n rm man-j'
                                          rn

     LS j'n+i{W}'n+i = B'LS jn-i{W]'n-i

            + L- oC nmi, in-i " o"n(l + /1. l), -o' n(1 + //.)1{ VVn -i YPin V'Vn+i}, (67)

     LT]'.{K},,=B'LTJ.-i{K},t-i+(z",giLi'i),,rm,Lrm1 O -crCSCa Ojn-iKn-i

            + (a3LE2ri).Li ntF -9, `v, a(-e csc ev + cotcr)', al.Kn (6s)

From Eq. 65, t.he final equation for determining the current element Ml2 is ob-

tained as follows:

             El])Z2 == m[B'tn-iee]-i[LSj'n+i{VV}',t+i -i- LTj'n{KI}n]･ (69)

  6.5. Critical Load.

  The critical value of compressive force in the continuous long-column is

obtained from thecondition that the determinant of the right side of Eq. 52,

58, 63, or 69 must vanish, i. e.,

                              IBtL.-iBI=O. <70>

                      7. NUMERICALEXAMPLES

  7.1. Example 1.

  Fig. 5 shows a bar with length L and fiexurai rigidity EL which is subjecetd

to the compressive force P at both extreme ends. In this example, the bar is

laid on several simple supports arranged with equal intervals. For each case, the

                       7t +1 supports (･n spans)

                                  II 1     -iL'-HpmD--ee,ltMveerl,,pti･dptatgas･--`

                                 L, EI

                  Fig. 5. Long-Colunm on Simple Supports.
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critical value of the compressive force of the bar is evalRated and summarized

in Table 2. With the increase of the Buinber of intermediate supports, the

critical value increases very rapidly, which is also shown graphically.

           Table 2. Critical Load. critical load (×li]IfL2)

Number of
  spans

1

2

3

4

5

6

7

8

9

Number of
 supports

2

3

4

5

6

7

8

9

10

Critical load

( × EllL2)
g. ,F 6}'

80.8 6)

l34

204

294

403

532

680

848

                                                     ,       10                                1 035                    11

                                                     123456 .7 89le
                                                      Number of span$
   7. 2. Example 2. 7)

   `:'pm-i!/iMllirrii:1!!!iilffi-kh2:i[pa,iEi-ii4`as`{£':'U'Mpttr/XiJts,-k211ww#--f""pt2"-"

                  {a) tb)
   i-"pt'"-4s"-;t;7""zymmsEi 2m- oEt EJ qe-2Lit'ts' ;t""-ltrzi 2Ei 2Ei EJ -Eo-ZtPL

                     ,,JL;,J L,l,L                                                       2L a- LJ       L-,",L

                  cc} {d)
                  Fig.6. Four Span CeRtinuous Long-Columns.

  In Figs. 6 are ilfustrated four span continuous long-coltimns of various end

support conditions. -The geomeerical dimeRsj,ons and the loading coRditions are

also shown in the figure. The critica} loads for respective cases are evaluated

and summarized in Table 3, wherein the first, second, and third eigenvalues are

given, of which only the smallest compressive forces are of practical importance.

1000

900

800

700

6oe

 seo

 4oe

 300

 200

 1oe
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Table 3. Critical Load (×evL:).

No. 23

I

I
I

III

Case (a)

4. 266

8. 556

12. 943

Case (b)

4. 286

8, 641

l 13.471

Case (c)

5. 052

10. 933

15.364

Case (d)

5. 087

11.197

17.563

                            8. CONCLUSIONS

  In conclusion, the fol}owing notes are given:

  l. The composition of prevailing bending theories for continuous beam-columns

can be commented from the viewpoint of the operational method, which begins

with Eq. 3.

  2. The key equations to respective theories are obtained from due preliminary

treatments of the eigenmatrix. The form of such key equations leads to a com-

plexity in matrix elements. The prevailing key equations to the siope-deflection

method confine themselves the scope of their utilization because of the preliminary

treatments.

  3. The operational procedure can also be extended to other theories. An appli-

cation to the three-moment theory has for example been shown, in which the

aflalysis can be carried out systematically by matrix algebra dispensing with

simultaneous equations.

  4. By the recurrent use of the shift formulas, all the support moments of the

continuous beam-column can be expressed by an arbitrary set of two consecutive

support moments, which is referred to as the current-matrix.

  5. In the statical equilibrium problems, both extreme boundary conditions are

used for determination of the current-matrix. On the other hand, to find the

critical load of the continuous column, the eigenvalue equation is that the

determinant constructed by the coefficient matrix of the final equation vanishes.

  6. The recurrent procedure shown in this paper is a subsidiary operational

methods. Comparing it with the orthodox operational method, it requires con-

siderable amount of computations, besides the elements in the operators become

complicated.
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                         APPENDIX. -NOTATION

  The following symbols are adopted for use in this paper:

     A,B,C,D = elements in eigenmatrix, see Eqs. 2 and 3;

  a, b, c, d, e, 71 g = constants, see Eqs. 25, 26, and 27 ;

            B == bottndary matrix at extreme left end, see Eqs. 43 and 44;

            B' = boundary matrix at extreme right end, see Eqs. 51, 55, 60 and

                 66 ;

            D. == 2-by-2 shift operator, see Eq. 39;

            E = Young's modulus ;

             I == moment of inertia;

             i = even integer representing the support or span order;

             K=' load-rr}atrix, see Eqs. 7, 8, and 9;

          {K}. = load-matrix assembalge, see Eq. 41;

             L == span iength;

            L. == integrated shift operator for support moment, see Eq. 41

            M ;== bending moment ;

            MZ==extemal concentrated moment in load-matrix, or support

                moment in three-moment method ;

           M.= pmZ. swl.+i} == eigenmatrix in the three-moment method, see

                Eq. 37;

             n == even lnteger;

             P= axial compressive force ;

            P. :='nt 2-by-4 matrix for load-matrix, see Eq. 39;

            Q == intensity of concentrated load;

           Q. == 2-by-4 matrix for load-matrix, see Eq. 39;
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    q == intensity of distributed load;

   R.=2-by-4 matrix for load-matrix, see Eq. 39;

    r =: integer represeRting the support or span order;

   S == shearing force;

LS]. = integrated feed operator for support settlement, see Eq. 41;

LS]'. == integrated feed operator of one row, see Eqs. 56, 61 aRd 67;

LT.j =integrated feed operator for load-matrix, see Eq. 41;

LT]'. == integrated feed operator of one row, see Eqs. 57, 62 and 68;

  U. == 2-by-2 matrjx for support settlement, see Eq. 39;

  V, -- .O..-by-2 matrix for support settlement, see Eq. 39;

  va = support settlement ;

  W. = {W. VV.+i} == support settiement matrix, see Eqs. 37;

{W}. m support settlement assembiage, see Eq. 41;

   z" == deflection ;

   ct -- -v'PL2/EI;

   B = (L/cr2EI)(1 - csc a) ;

   r == (L/ev2EI)(a cot a - 1> ;

   6 = 1/L;

   e =: support slope;

   0 -- slope angle ;

   rc == non-dimensional load abscissa;

   p == non-dimensional current abscissa ;

 L j =row vector; and

{ } = column vector.


