Subsidiary Operational Method for Continuous
Beam-Columns

By
Norikazu YosHizawAa* and Bennosuke TANIMOTO**

(Received October 30, 1967)

1. INTRODUCTION

The prevailing key equations to continuous beam-column analyses by the slope-
deflection method are derived from the eigenmatrix of the operational method.
The three-slope equation and the three-moment equation are also derived.

The eigenmatrix? is defined by the assemblage of integration constants of the
general solution of differential equation for a beam-column member arranged in a
4-by-1 column matrix. Then, in the operational method, the problem is reduced
to attack the eigenmatrix. Treating completely compatibility conditions of
displacements and equilibrium conditions of forces at an intermediate support of
a continuous system, a shift formula between two consecutive eigenmatrices is
obtained. By the recurrent use of the shift formula, the eigenmatrices of the
entire system can be expressed in terms of the eigenmatrix of a span, called
the current-matrix. Finally, the current-matrix is determined by both extreme
boundary conditions. Thus, the system can be solved systematically dispensing
with simultaneous equations.

From such a standpoint, it may be said that the above key equations are the
results obtained from the eigenmatrix after a preliminary treatment. The outlines
are as follows:

Slope-deflection equations:

1. The eigenmatrix is specified by end deflections and end slopes of a
member.

2. The end moments expressed by this specified eigenmatrix at once give
the desired key equations.

Three-slope equation:

1. The eigenmatrix is specified by end deflections and end slopes of a
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member.

2. Taking two consecutive spans, the slope continuity condition at the
intermediate support is to be treated preliminarily.

3. The moment equilibrium condition at the intermediate support gives
the desired key equation.

Three-moment equation:

1. The eigenmatrix is specified by end deflections and end moments of a
member.

2. Taking two consecutive spans, the moment equilibrium condition at
the intermediate support is to be treated préliminarily.

3. The slope continuity condition at the intermediate support gives the
desired key equation.

The recurrent procedure in the operational method can be extended to the
prevailing key equations. The application to the three moment equation will be
shown in the subsequent discussions. The entire course of analysis is carried out
with matrix algebra, and the recurrence formula for the set of two consecutive
support moments will be derived, which can also avoid simultaneous equations.
Although the analysis can be composed of the recurrent procedure, it will be
not always most preferable, because of the incomplete classification of data in
the key equations. In fact, as will be seen subsequently, the resulting recurrence
formulas require a considerable amount of computations and in addition the
elements in the operators become complicated. This analysis can be one of the
operational procedures, but it would be, so to speak, a bad second. Numer-
ical examples are added at the end of this paper.

2. BASIC CONCEPTS

The flexural behavior of a beam-column is governed under no lateral loads
by the following differential equation:

d*w P d*w 2)
+ = = 0, (1)

dx* El dx?
Here w = the deflection, x = the current abscissa, P = the compressive axial
load, and EJ = the flexural rigidity. The general solution of Eq. 1 is given by
the form
L3

= ST |1 ap cosap sinaplN, (2)

w
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in which L = the member length, « = +/PLE/EI, p==x/L, and N={A B C
D} = the assemblage of integration constants, which is referred to as the “eigen-
matrix” of the member.

The state vector of a beam-column member is defined by a 4-by-1 column matrix
whose elements are composed of the deflection w, the slope #, the bending moment
M, and the shearing force S. Based on the deflection given by Eq. 2, the above
state vector is expressed by the form

- s S ‘ —- -
w BT 0 0 1 ap <cosap sinap A
L? .
g1_1 0 2EI 0 0 0 1 -—sinap cosap B ’ (3)
L .
M 0 0 — ¢ 0 0 ~—cosap —sinap || C
o
S L0 0 0 —14_0 0 sinap —cosap_||.D_|
or, symbolically,
W (ap) = DP(cp)N. (4)

When the beam-column is subjected to lateral external loads, such as the
concentrated load, the arbitrary distributed load, and the concentrated moment,
as shown in Fig. 1, the continuity condition bhetween two state vectors at a
loaded point are to be treated. Then, the external loads will be represented by
the corresponding “load-matrix.” Referring to Fig. 1, the state vectors at the
cross-sections i and j are expressed as follows:

W, = DPN; = DPN, (5)
W; = DPN; = DP(N + Kq + Ko + K,,). (6)
14 ‘
T @y ‘
!i l \ !j
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Fig. 1, Loading Conditions,
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Here Ko, Kq, and K, are the load-matrices for concentrated load, arbitrary
distributed load, and concentrated moment, respectively. They are given by the

forms
Ko=@&{—ar, 1 sinar, —cosax}, (7)
Ky = LS gef—ax 1 sinar —cosacld, (8)
aR .
K, = "f{ 1 0 —cosary -—sinakg}. (9)

In the analysis of the continuous system, the state vector at a member end
is to be interconnected with that of the adjacent member end. The eigenmatrices
at both member ends are to be specified as follows:

At p=0: N, ={A B C D} =normal eigenmatrix. (10)

At p=1: N, =N, + K, = conjugate eigenmatrix. (11)

Here K, = the “load term” of member #, which is given by the form
1
K, = 21(Kq + K + Kp),. (12)

Figs. 2a, 2b, and 2c illustrate small portions at the extreme left end, the
intermediate support, and the extreme right end of the continuous beam-column.,
Assuming the elastic proportionality, all the support conditions are given by the
relationships

w=£RkV, 0=mR, (13)

in which V = the support reaction, R == the support resisting moment, and &, m
= the spring constants attached to the elastic support. Then the relationships
between the state vectors (Figs. 2) are interconnected with the following equations:

1

298
.

(2
M}.q( é )
) = “Ra
St éV

(a) Left Boundary, (b) Intermediate Support. (c) Right Boundary.

n

Fig. 2. Support Conditions,
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(a) Left boundary conditions (2 conditions)

- - g -
M m

+ = 0. (14)
S v
. ~i1 e k_l

(b) Intermediate support conditions (4 conditions)

" w "w - 0
G 7 0
4wl a2 =0 (15)
m
S S _w
- _ir—-1 — -l — k 7
(c) Right boundary conditions (2 conditions)
- -, -
M| T,
- = 0, (16)
S ZU’n—l
k

-  ln—1 — n o

All the possible kinds of support conditions can be expressed by due values of
k and m in the above equation. Several examples are shown in Table 1.

Table 1. Support Conditions.

wy Ry w, k, ‘ m, ey )
Elastic support m,y ky wy k, ", k,,
Rigid support — —_ ) 0 — —
Hinged end o 0 — — o) 0
Clamped end 0 0 — — 0 0

In virtue of Eq. 3, Eq. 15 yields a shift formula between two eigenmatrices
of members connected at an intermediate support of the continuous beam-column.
By the recurrent use of the shift formula, the eigenmatrix of a span can become
current to the entire spans. Finally, both the extreme boundary conditions
given by Egs. 14 and 16 are used for determination of the current eigenmatrix,
and then the system can be solved completely. This is the orthodox procedure
of the operational method.® 4% In the subsequent discussions, several key
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equations to prevailing methods will be commented from the operational view-
point and the application of the operational procedure will be shown.

3. SLOPE-DEFLECTION EQUATIONS

The slope-deflection equation is derived from the key equation, Eq. 3, to the
operational method as a preliminary treatment of the eigenmatrix.® That is to
say, taking a member, the nodal displacements, the deflections and the slopes,
at both member ends are to be imposed on the eigenmatrix. Then the end mo-
ments expressed by this eigenmatrix at once give the desired slope-deflection
equations. The derivation is given in the following:

Fig. 3 shows the 7-th constituent member of the continuous system, wherein
the displacements of nodal points # and 7 + 1, and the end forces of member 7
are illustrated. Referring to the figure, the compatibility conditions between
member end displacements and the nodal displacements are written

S HEHEHE

Sr )
Is'/,r

Fig., 3. Constituent Member and End Conditions,

First, in virtue of Eq. 3, Eq. 17a is written

-
<L2 >_£ o[t O 1 0B [W]
—| @ = . (18)
a2kl
n_0 1.0 1 0 1] ¢ 0d,
_D |,

Then the eigenmatrix N, becomes
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o

"ATl [[—~1 07 Z o0
B C L i
0 -1 2R
N=| | = [ } + <q~> 0 1 [ ] : (19)
C 1 o LD, L j 0 o1,
Do Lo 1 o o,
Using Eqgs. 3 and 19, Eq. 17b is written
rcosa~1,sma~—a rC‘ 2Bl @ a "‘W
I )L
—sine, cosa— 1 |, D |, 1.0 1,06,
I’l a cosa sin a‘i BT __ff 0- -
+ K=(7 )| L . (20)
LO 1 —sina cosoc_', L0 14,6

From this equation, {C D}, is obtained as follows:
C BET 1 1-—cosa, —1+4 cosa W.
D ~\ L3 2 —2cosa — asin a>r _sina, sine |, W..,
a?ET 1 sin@e — acose, «-—sin« on
+ I p
2—2cosa—asina) | 1 _ cosa —asina, cosa — 1,1 0,4

1 1—cosa, sina— acose,
+ 2 2 1 . .
—eCosa—asina /| —ging, 1-—cosa—asina,

cosa + asina — 1, sina— acosa
K, (21)

—sin «q, cosa — 1

Consequently, the eigenmatrix M, is represented by the end displacements as

follows:
B "1 —cosa — asine, 1—cosa
1 SEI sin «, —sina
N, =
—_ — 1 3 ’
2—2cosa—asina ) | L 1 — cosa, —1+ cosa
. _ —sin «, sin «
—sina + acosa, —a -+ sina’l
?ET 1 — cosa, —cosa -1
Lz . . ’
sina — « cos «, a — sina
1 —cosa —~asing, cosa—1 _
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-w. -
"—1+cose, —sina-+acosa, 1 —cosa—asinw, —sina+ acosa ||
. . R Wr+1
sin a, —1 4+ cosa + asing, sin «, —cos o + 1
0,
1 —cosa, sina—acosa, —1-4cosa+ asine, sina— acosa
. . . @r+1
—sin «, 1—cosa — asinc, —sin «, cosa—1 _| |,
- K
(22)

Next, taking the direction of member end moments clockwise as shown in

the figure, and using Eqgs. 3 and 22, we obtain

M 1 EIN\ 1 —cosa, —1+4 cosa W,
];M’jl, - <2 — 2cosa — asina >,[<’Z2>,L — cosa, —1 -+ cos cv:l,l:Wm:]
aEI\ sina —acosa, a —sina O,
* <L4>,[ « — sina, sina — « cos ajl ,l:@ﬂ,ljl

L 1 —cose, sina—acose, —1 4 cosa + asing, sina — a cos &
+1{—= K, | (23)

a 1—cose, «a—sing, 1 — cosa, a—sina

4. THREE-SLOPE EQUATION

The three-slope equation for continuous beam-columns is obtained from the
following treatments:

(1) Preliminarily, at each intermediate support, the compatibility conditions
for deflections and slopes between both spans are to be considered. After this
treatment, taking the #-th support, all the physical quantities are expressed in
terms of the support settlement W, and the support slope ©,. The former, W,
is in general taken as the given quantity, while the latter, ©,, as the unknown
quantity.

(2) Due support settlements and slopes are to be imposed on the eigenmatrix
of each member, the resulting form of which is the same as Eq. 22.

(38) Using this eigenmatrix, and in virtue of Eq. 3, the equilibrium condition
of bending moments at the 7-th support is to be treated, which results in the

following three-slope equation:

L(fa)r‘ls (fb)r—l -+ (fb>ry (fa)r.]{_@r—l Qr @r+l}
= Lﬁ(ec)r“ly (€C)r_1 - (EC),_, (ec)rJ{Wr—l Wr Wr+l}
-+ gr—lL_C’ —a, —C(, _a..‘r—lkr*-l + gr(__cy “b’ c— d! —bJrKT' (24)

Here, the following symbols have been adopted for use:
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a "o —1 0~
-1 -
b 1 0 1 —«a
— - - sina | . (25)
¢ 2—Z2cosa—asina/ |\ 1 o _—1
_cosa_|,
_d |, 0 a0,
e Bl A
@ o
:<T> | (26)
fd: e

L
«/,

5. THREE-MOMENT EQUATION

In the three-moment equation, the support settlements W’s are taken as given
quantities, while the support moments M’s are as unknown quantities. Referring
to Fig. 4, the former are the results obtained from the compatibility condition
of member end deflections, while the latter are those from the equilibrium con-
dition between the member end moments at respective supports.

r—1 r T+ 1 r+2
; T 7 l
; W
W, W, Wrs1 T2 P
P A )*m-

aw, Wyt

Fig. 4. Consecutive Spans of Continuous Beam-Column,

Taking the r-th span, the deflections and moments at supports then are defined

by
R I M
= , = . (28)
M r SIR r M 4 SIR r+l

Treating Eq. 28a together with Eq. 3, the eigenmatrix N, is degraded to the
form of semi-eigenmatrix {B D3}, as follows:

0 0- "o ET a’l
L+ L
N, = PO [B 00 [W . (29)
0 o |LD], o @ |Lmd,
L
L0 1 0 0
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Then in virtue of Eq. 28b, the semi-eigenmatrix is expressed in the form

~ 7l [TezEr I "~ w2E] 1 _
Bl A\ || T I v
- [24 + ¢4
D 0 —csca m 0 ——cota m
e i — L A rie —lr+1 — L —tri- 7

S 0
-+ a K,. (30)

_ 0 0 —cota —1j,

Thus, the eigenmatrix M, of the r-th span can be expressed as follows:

T —a 0~ Ca 0
1 1 -1 M, weEN | —1 1 W,
- (=)
4 @ 0 9J‘(‘r—i-l r 0 0 Wr+1
_—acota acsca_|, _0 0,
"0 0 0 0°
1} =1 —«a 0 0
+ = K.. (31)
a0 0 0 0
_ 0 0 —acota —a_,

Next, at the 7-th support of the continuous system, the continuity condition
of slope angle between both spans are to be treated. Referring to Egs. 3 and 31,
this condition can be written in the following form, which will yield the desired

three-moment equation.
L‘Br—lr Tr=1 =+ Tr .Brj{gﬁr—l mir SDtr-H} = Lar—ly _(jr—l ”‘5” (3,_‘{W,—~1 Wr Wr+1}

2

L? L
+<a3EI>r—1L1 0 acsca O_}r—lKr—1+<c?Sli,_]> [-1 —a —acota -—alK,.

(32)

Here, the following symbols have been adopted for use:

[ B L 1—acsca )
7 jl - N <“'2Ej>, I:a cota — l:l N



No. 23 Subsidiary Operational Method for Continuous Beam-Columns 25

6. OPERATIONAL PROCEDURE FOR THREE-MOMENT EQUATION

6.1. Recurrence Formula.
Taking two sets of three consecutive supports, r —1, #, and ¥ + 1, and 7,
¥+ 1, and 7 + 2, the three-moment equations can be put into the following

matrix equation:

I:ABr—b 71+ Tr:] [mr—l] N [ Br 0 :“:SJLH:I
0, B8, m, VI ol SRR U | I) LA
Opmt, —0pey — 0, |[Wot d,, 0 Wi
B l: 0, g, ][ W, ] i [—5r — Opt1, 5r+1:|[Wr+2]
L2 1 0 acsca O
" <@_ >,_1[ o0 0 o],_IKH
Le -1 —a —acota —a
- <“3—EI>,[ 1 0 acsca 0 ],Kr
L 0 0 0 0

Moy + Cp My =0 W v W+ P K K K (36)

or

providing

EHer—l SJ'Rr+l Wr-l Wr+1
M, = y M= , W= , Wy = . (37>
m, M, s W, Wt

Here M,_, and M,,, are the support moment matrices which are taken as un-
known quantities, and then, henceforth, they will be called the eigenmatrices
in this analysis, while W,_; and W,,, are the support settlement matrices which
are considered as given quantities.

The matrix ¢,.; is square and nonsingular, and then the eigenmatrix M, is
expressed as follows:

-1
M =c r+l[dr—-1Mr-‘1 + Ly, vr+1.}{_wr~'l Wr+l}
o @ BB K Ko}, (38)

or
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Mr+1 = Dr+1Mr~1 + Lur—l Vr+1_]{wr—1 Wr+1}
+ [Py Q R K.y K. K.} (39)

This is the desired recurrence formula between two consecutive eigenmatrices of

the continuous beam-column.

In applying the recurrence formula to the analysis of continuous systems, the
following notes are to be given:

1. The order of supports is counted from the extreme left support.

2. The subscript “i” denotes only even numbers (i =2, 4, 6, --).

3. The eigenmatrix of the system is defined from the extreme left end as

ml 9)?3 9)%,‘-}-1
Ml _ }, Mg - ], tety Mi+1 = . B (40)
M, My Mo

Then the recurrent use of Eq. 39 yields the following equation:

follows:

M = Dy (L, My

+ [DiriSi—110 DissSi-vs, vy DiriSimy, oy T Upmy, Vi J{W, Wy o W, Wi}
+ Pt Tiory, DiaTige, oy DipiTienin + Pioy, Q Rip ] {K: Ko oo Koy K; Kii}
=L My + S S5 o Sy SprlinWy W oo Wil Wil
+ 1Ty T o Ty T ToadodBe Koo oo Koy K Ko}
= Liy My + 181 Wit + [T )it { KT, (41)
providing
Ly = Dy,
[$]s = LUy Vs, (42)

[Tlh=1LP. Q@ Ryl

Thus the eigenmatrix M; becomes current to the entire system and then it may
be called the current-matrix.

6.2. Left Boundary Conditions.

The boundary conditions at the extreme left end of the continuous structure
are treated as follows.

For the simple support, the support moment vanishes, and then the boundary
condition is given by taking the first eigenmatrix M, as follows:
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0 0
M, = [ ' ] = [ ]5})'&2, or M, = BI.. (43)
M 1

For the fixed end, the slope angle is zero, and then the boundary condition is
given by taking the terms in Eq. 36 (in this case » = 2) as follows:

1
M, = [ ]smg, or M, = BN, (44)
1
- g ) -
—dy = | T TR (45)
- 0, Be
o) o)
ol 1+ —), —ol+—]—ads .
1< ) B\ Ly Y (16)
_ 0, 0y -
(N 1+ BB s 0'<1 1 Leos n>, o (47)
P1= | BET o 7 Ty '
Yoo, o, 0, 0.

After treating the extreme left boundary condition above, and considering
Eq. 41, all the support moments are expressed by i, as follows:

My = LB - (8] dW iy + [T )il K G e (48)

6.3. Right Boundary Conditions.

The simple support condition is merely given by taking the extreme right
support moment equal to zero, while, for the fixed end, the slope angle vanishes,
and then treating this condition, the following relation is obtained providing
n represents the extreme right support number.

M, = Lo e 0 ., w3
'/‘n—-l Va1
1/ L2
-+ 7"—;—1 cm nk—lf_ 1 0 acsca O _f,le,,—q. (49)

6.4. Final Treatment.

The eigenmatrix is composed of two consecutive support moments beginning
with the extreme left support of the continuous system. After treating the
extreme left boundary condition and considering the recurrence formula, the
second support moment I, becomes current to the entire system. This current
element can be evaluated by due treatment of the extreme right boundary con-
dition, in which case there occurs the following four cases regarding the beam
configuration. Here n denotes the largest even support number of the system.
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1. Simple support (support number = 7).

2. Simple support (support number = n + 1).

3. Fixed end (support number = 7).

4. Fixed end (support number = n -+ 1).
Respective cases are treated in the following.

6.4.1. Simple support (support number = #).
In virtue of Eq. 48, the eigenmatrix of the last unit is represented as follows:

M,
Mn-—l = [SDE 1} - Ln—lBg'Rﬂ + Ls _]n—-l{,w}n—l + [.T _]n-'l{K}n-'l- (50)

The support condition is in this case given by

[0 1M, =0, or B'M,_,=0. (51)
Egs. 50 and 51 yield the final equation

Wy = ~ 8L, B8] LS Jyr (Wos + LT s (K |- (52)
6.4.2. Simple support (support number = = + 1).
In this case, the eigenmatrix M,., is given by the same form as Eq. 50. Con-
sidering the extreme right end condition, IM,+; = 0, the three moment equation
for the last three supports is written

Lﬁn—-l: Ta—1 + Tn.]Mn—l = Lan—b ’611—1 - (jnJWN'-l + 571Wn+1

2

L2 L
+ < I> L1 0 acsca 0]1,_K,..+ <~«> |—-1 —a —acota —al.K,.
n—1 n

BPE] E]
(53)
Substitution from Eq. 50 into Eq. 53 yields
B'L, BN, + [S ), W}, 0+ LTV {K}, =0, (54)
in which
B/ = L1871-1v 7’71——1 + TII.J) (55)

LS _],n+1{w},n+1 = B’L s _]n-l{w}n—I + I__(’;n_h 571—-1 + 571.}Wn—1 - 571Wn+ly (56)
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b

L
LT .J,n{K}n = B,LT Jn—l{K}n—-l "“‘ <—*>

BT n»lel 0 —acsca 0],.1K,.1

LZ
+<a3EI>L1 a acota «a]K,. (57)
From Eq. 54, the final equation is obtained as follows:

S):Rg - "—[BILII—*IB]_I[L s .]/n+1{_w}’n+1 'Jr LT _lln{K-\n]- <58)

6.4.3. Tixed end (support number = n).

The last eigenmatrix M,_, is given by the form of Eq. 50. Then the fixed end
condition is given by the equation

B"'n—lBSJJ}‘J + Ls J’n-—l{w}n—l + LT _]/71~‘1{K}n-—1 = 0; (59)
in which
B/ = LAB 7 .ln-—l’ (6O>
LS Jlnwl{w}n—l =B'[S Jn—l{w}n—1 + (7,,—1L—1 1 JWn—l, (51)
! ' LE
LT J n—l{K}n~l =B LT Jn-l{K}n—l + 2;31—_;} n_l[."'“l 0 — @ C8C & 0 _.]n—lKn—l-

(62)

From Eq. 59, M. is obtained as follows:
My = — (B, B LS ) Whoo + LT V(KD | (63)

6.4.4. Fixed end (support number = n -+ I).

The eigenmatrix M,_,; can be expressed by Eq. 50. Taking the moment relation
given by Eq. 49 into account, the extreme right three moment equation is
written in the form

5712

7n

= [571—1’ "”(jn-l - 57z<1 + &>’ 571<1 + %)J{W ~1 Wn Wn+1}
T n

L2
+ <a_3E"‘—I>,,_1L 1 0 acsca 011K,

L 1 i d t K 64
+ BET ) —{ 1+ F , —, — ?csca-lrco a), —a e (64)

L;Bn—ly V=1 + Tn — _'Mn—l
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Substitution from Eq. 50 into the above equation yields
B,l‘n—lsgjaﬂ "*‘ {_s J/71+1{W}/71+1 —Jf' LT JIH{K}n - O: (65)

in which

2
B, = Lﬂn-*l) Tn-1 "I" Tan — ML-J) (66)

7

Ls J’n+1{_w}’n+l = B’LS .Jn—l{w}n—l

+ [-_511—1’ 5n~1 + 5n<1 -+ &>) —571<1 + &>J{Wn—l I/Vn Wn+1}y (67)

”

LT]{K}, = Bl[_T.Jn-—l{K}n-—l + <‘L~> [—1 0 —acsca 0]},.,K,
n—1

: ‘ - (ﬁ |
— 2 . L . 6
+ <a3EI>" 1+ - a, «o TCSCO{ + cota>, a nK,, (68)

N

From Eq. 65, the final equation for determining the current element I, is ob-
tained as follows:

Wy = — (8,181 LS 'yl WYr + LT 10 (KD, | (69)

6.5. Critical Load.

The critical value of compressive force in the continuous long-column is
obtained from the condition that the determinant of the right side of Eq. 52,
58, 63, or 69 must vanish, i. e.,

|B'L,_,B} = 0. {70

7. NUMERICAL EXAMPLES
7.1. Example 1.

Fig. 5 shows a bar with length L and flexural rigidity EI, which is subjecetd
to the compressive force P at both extreme ends. In this example, the bar is
laid on several simple supports arranged with equal intervals. For each case, the

pe———— a4+ 1 supports {(n spans)
P 1 2 3 5 I'l I: E n n +1 r
o Y YR S Y I B Y 5,
L, EI

Fig, 5, Long-Column on Simple Supports.
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critical value of the compressive force of the bar is evaluated and summarized

in Table 2. With the increase of the number of intermediate supports, the

critical value increases very rapidly, which is also shown graphically.

Table 2, Critical Load,

Number of Number of Critical load
spans supports (x EI/L*)
1 2 9.876)
2 3 80.8 6
3 4 134
4 5 204
5 6 294
6 7 403
7 8 532
8 9 680
9 10 848
10 11 1035
7.2. Example 2.7
P L FTL
—— o, e

Critical load (x EI/L2)
1000 7

900 +

800+

700 ¥

600 T

500 T

400 T

300+

200 +

100

¢ s 3

—
—e]

1234560782910

Number of spans

Lo 20

""2
EI 2 op]
Lk

NI 9 .A.E[Q

£l
2L *J« L 4[

(b

»
! P

L
R
LL

- © 2
S 9Er 8 28] 8 g ¥
-L L L 2L ——'-(— LJ
d)

Fig.6. Four Span Continuous Long-Columns,

In Figs. 6 are illustrated four span continuous long-columns of various end

support conditions. - The geometrical dimensions and the loading conditions are

also shown in the figure. The critical loads for respective cases are evaluated

and summarized in Table 3, wherein the first, second, and third eigenvalues are

given, of which only the smallest compressive forces are of practical importance,
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Table 3. Critical Load (x £1/L*).

Case (a) Case (D) Case (c) Case (d)
I 4,266 4,286 5. 0562 5. 087
II 8.556 8,641 10.933 11,197
III . 12.943 l 13.471 15.364 17.563

8. CONCLUSIONS

In conclusion, the following notes are given:

1. The composition of prevailing bending theories for continuous beam-columns
can be commented from the viewpoint of the operational method, which begins
with Eq. 3.

2. The key equations to respective theories are obtained from due preliminary
treatments of the eigenmatrix. The form of such key equations leads to a com-
plexity in matrix elements. The prevailing key equations to the slope-deflection
method confine themselves the scope of their utilization because of the preliminary
treatments.

3. The operational procedure can also be extended to other theories. An appli-
cation to the three-moment theory has for example been shown, in which the
analysis can be carried out systematically by matrix algebra dispensing with
simultaneous equations.

4. By the recurrent use of the shift formulas, all the support moments of the
continuous beam-column can be expressed by an arbitrary set of two consecutive
support moments, which is referred to as the current-matrix.

5. In the statical equilibrium problems, both extreme boundary conditions are
used for determination of the current-matrix. On the other hand, to find the
critical load of the continuous column, the eigenvalue equation is that the
determinant constructed by the coefficient matrix of the final equation vanishes.

6. The recurrent procedure shown in this paper is a subsidiary operational
methods. Comparing it with the orthodox operational method, it requires con-
siderable amount of computations, besides the elements in the operators become

complicated.
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APPENDIX. —NOTATION

The following symbols are adopted for use in this paper:
A, B,C, D = elements in eigenmatrix, see Eqgs. 2 and 3;
a,b, ¢, d, e f, g = constants, see Egs. 25, 26, and 27;
B = boundary matrix at extreme left end, see Egs. 43 and 44;
B' = boundary matrix at extreme right end, see Egs. 51, 55, 60 and
66 ;
D, = 2-by-2 shift operator, see Eq. 39;
E = Young’s modulus;
I = moment of inertia;
¢ = even integer representing the support or span order;
K = load-matrix, see Egs. 7, 8, and 9;
{K}, = load-matrix assembalge, see Eq. 41;
L = span length;
L, = integrated shift operator for support moment, see Eq. 41
M = bending moment;
M = external concentrated moment in load-matrix, or support
moment in three-moment method ;
M, ={M, M} =eigenmatrix in the three-moment method, see
Eq. 37;
7 = even integer;
P = axial compressive force;
P, = 2-by-4 matrix for load-matrix, see Eq. 39;
@ = intensity of concentrated load;
Q, = 2-by-4 matrix for load-matrix, see Eq. 39;
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q = intensity of distributed load ;
R, = 2-by-4 matrix for load-matrix, see Eq. 39;
7 = integer representing the support or span order ;
S = shearing force;
LS |, = integrated feed operator for support settlement, see Eq. 41;
LS |', = integrated feed operator of one row, see Egs.- 56, 61 and 67;
L T,] = integrated feed operator for load-matrix, see Eq. 41;
LT, = integrated feed operator of one row, see Egs. 57, 62 and 68;
U, = 2-by-2 matrix for support settlement, see Eq. 39;
V, = 2-by-2 matrix for support settlement, see Eq. 39;
W = support settlement;
w,={W, W,_.,}=support settlement matrix, see Egs. 37;
{W?3, = support settlement assemblage, see Eq. 41;
w = deflection ;
o= »/PLYET;
B = (L/a?EI)(1 — csca);
7 = (L/a*El)}{acota — 1);
6 =1/L;
© = support slope;
# = slope angle;
£ = non-dimensional load abscissa;
¢ = non-dimensional current abscissa;
L ] =row vector; and
{ 1} = column vector.



