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                          1. INTRODUCTiON

  The purpose of the present paper is to give the operatjonal procedure of the

analysis of continttous beam-columns, in which the intermediate sttpports may

be rigidly or elastically supported. No specific devices or techniques are herein

necessary, bttt the straightforward treatment will lead to the desired solution.

 The governing differential equation for rectilinear beam-colurnns, together

with its general so!ution, has been well known for many years. Basically, the

operational method begins only with the general solution of differential equations,

and hence it has no key equations. If anything, the general solution must be the

key equation, provided that it takes the form of pure and complete classification

of data, that is, tlte form of the product of particular solution assemblage and

that of integration constants by making use of the row-column rule for matrix

multiplication. In this regard, it seems that if as old as in theearlypart of the

eighteenth century Bernoulli or Euler were eventually conscious of the cited

classified form, tke structural analysis might have been developed differently. In

fact, the operational method is the revival of the most classical approach that

begins witk the differential equation.

 A subsidiary purpose of thls paper is to exhibit a typical and rearranged

description of the proposed operational method for rectilinear structural systems,

as the previous publications5)･6) by one of the writers are not well arranged.

                         2. BASICEQUATIONS

  The governing differential equation for the beam-colttmn under no !ateral load is

1) Asst. Prof. of Civ. Engrg., Shinshu Univ., Nagano, Japan.

2) Asst., Dept. of Civ. Engrg., Shinshu Univ., Nagano, Japan.

3) Asst., Dept. of Civ. Engrg., Shinshu Univ., Nagano, japan.

4) Prof. of Civ. Engrg., Shinshu Univ., Nagano, Japan.
5) Tanimoto, B., "Operational Method for Contlnuous Beams," .lbt{rnal of the Strttctttral Div-

 ision, ASCE, Vol. 9e, No. ST6, Proc. Paper 4179, December, 1964.

6) Tanimoto, B., "Some Improvements on Preposed Eigen-Matrix Method,"fournal of the
 Structural Division, ASCE, Vol. 92, No. STI, Proc. Paper 4667, February, 1966.



2

in which w =

 S. NA'ruME, N. YosHizAwA, H. HAMANo,

              d4zv P d2w
                            or o,                  ÷                     EI dx2              dx4

the deflection (Fig. 1>. The generai

P

pt

and B. TANiMoTO

soltttion for Eq.

F
.

Q

x -
p K

/
t
v
,
U
,
r
v

tt'tv,U,re

L

   l)

1 is

No. 23

   (1)

                    Fig. 1. Beam with a Concentrated Load.

                            L3
                       W == ag'ELII cup cos cvp sin cvpj N, <2)

in whichp=x/L, and N={A B C D} which is the assemblage of inte-
gration constants and is called the eigenmatrix. The state vector then becomes

                   L3
           W cv3Ef O O O 1 ctp cosevp sinevp A

                       L2
           0= e atttt-i O O O 1 -sincvp coscvp B, (3)

                            L
           M O O - O O O cos cvp sin cus) C
                            cY
          -S-. -. O O O 1.. -.O O -sincrp cosctpm -D-

or

                             W(ctp) =' DP(ap)N. (4)
  It should be noticed herein that the right side of Eq. 3 or 4 exhibits the com-

plete classificatioR of data, and then attention can be focused only at attacking

the eigenmatrix N. It is added also that the prevailing transfer matrix can, if

desired, be readily obtained from Eq. 4. The transfer matrix method, however,

does not keep the complete classification of data which is of fundamental im-

portance in adopting matrix algebra.

  When the beam is subjected to a laterai conceRtrated load, (?, applied at point

x= 4 or p= rc (Fig. 1>, the continuity conditions at the loaded point are

                      ut(av.) == u(an)-{O O O Q}. (5)
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Eq. 5 then gives in view of Eci. 4 the desired equatien

                             Nt =.N-F K., (6)
in which

                                    O -CVA

                                    O1
                    sc. == -p-i(rrrc)D-'i =.Q . (7)
                                    O sin cvtg

                                  -Q- --cos aN -

The K. matrix is the continuity matrix, or load-matrix, for the concentrated

load. Thus,

                        U'(ap) :='L DP(ap)[N+K.], (8)

which holds for the conjugate domain rc < R < 1.

  For the uniformly distributed load of constant intensity q, Eqs. 8 and 4 may

be integrated over tke entire span by p"ttii3g Q :=qd6. TheB the resuking

equat2on becomes

                        U<ap)=DP(ap)[N+K(ctp)], (9)
in which

                                         1
                                       - rm(aR)2
                                         2
                   K(crR)=!PdK. .. q,L, avR . (lo)

                           O 1- cOS nvR

                                     m. -Slll evP -.

The K(ap) matrix is the load-matrix for the Rniform load, and it takes at ends

A =O and p -- 1 the values

                                             cr2
                                           -i
                 K(o) == o, and K(ev) == 2L cr . ai)
                                     a
                                         1- cosa

                                          -sma

  Thus, it can be concluded that the state vector at the ends is always expressed

in the forms

                 U(O) ==: PP(O)N, and U'(ct) r; DP(ev)[N A･- K], (12)
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in which the load-matrix, ec, represents the assemblage of Eqs. 7, 11b, etc.

Note that any kind of lateral loads, including the system of concentrated loads,

the partiaily distributed load, the non-uniform load, the concentrated external

moment, etc., can be expressed in the corresponding load-matrix.

              3. BEAM-COLUMNS WITH RIGID SUPPORTS

  The procedure of arriving at the solution will then consist of the three follow-

lng steps:

  (1) Rigid support conditions that every span has no lateral defiection at both

its ends, which are expressed by

                        i･vp±-o == O, and zv'p=i=O. (13>
  (2) ConRection conditions at the common end of any two adjacent spansr-1

and r, which are expressed by

                         [AO4]l･-i,,..., =: [ICIT],.,,=o' (l4)

  (3> Boundary conditions at both extreme ends of the continuous structure,

which are expressed by

                      el,,=o == O, or Ml,,=o =o, (15)

and e'n,p..i=O, or M'n,p..i=O, (16)
according to the fixed or simple support; n being the number of spans. The

three kinds of conditions above, (1>, (2), and (3), will be treated successively.

Note that Eqs. 13 and 14 may also be treated simultaneously, which will be

referred to in the Additional Notes.

 First, Eqs. 13 yield

            [l 2 coisa siOn cr]N + [2 2 coOs cr siOn a]K == O' (i7>

          '
which suggests that for example A and Bdepend on C and D. Then Eq. 17

glves

                   -1 O OO OO
                1-cosa sina 1 cosa sina
                          - -1           N= cr a A-a a a K, (lsa>                   10 O                                          ooo
                                                              '

                   O 1 OO OO
and accordingly
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Nt ..,

providing A :=

and N' have
     '
of Eqs. 13.

 Second}y, Eq. 14 gives the connection eqwation

          L2
         -- O O 1 -sincv cosa         a2El

               L'          O - O O COS cr Sill CV
               a       -... -r-1 -. -. rml
                       L2
                             O OiOl                      a2EI

                             L
                        O- OOIO
                             a
                     .- -r-.

oy

                            C{N'r-i Nr} == O･

Here the operationa! matrix C consists of two 2-by-4

connector between the two spans r - 1 and r.

  Substituting from Eqs. 18 into Eq. 19 or 20 yields

         L2                       . 1- cos ct
        a2EI O -SMa+T cr-ww-, cosa-

               L
          o

==

t

     Direct Analysis of Continuous Beam-Clonmns 5

  1- cosa sina 1 cos cr sin cr           ------- -- o -- -- ----
     av CV A+ ev a a K, <18b)

{C D}. Eqs. 18 indicate that the fourth-order eigenmatrices, N

been degraded to the second-order semi-eigenmatrix, A, by virtue

 L2

a2EI

 o

a r-1

o

L
cr

 L2

ev2El

 o

r-1

1

cr 1

o,

cos cr,

o

L
a
  mr-

o' '

o,

sm a

1 - cos cr

        '   cr

    1,

     cos ec
   +
      ev

-cos cr,

'

N'r-i

 Nr

== o,

submatrices,

    cv
           '
sln a

       - -1

    sin cr

1- Ar-1     a

     O Ar
        .r.- H

         sma -cos a +
          a
                '
    -sm a
             .- r-1

and

(19>

  (20)

is the
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                            1 1 cosa sina
                   -(k/). aim3 cr-2 a3 cr3 Ki,'･

                           -o o o o -..- -

or

                       C'{Ar-i Ar} = T{Kr--i Kr}･

Here the'C' matrix is the reduced connector, consisting of two 2-by-2

submatrices, each of which is nonsingular.

 Eq. 22 or 21 permits extraction of the A. matrix by premultiplying

inverse of the second submatrix in the C' matrix. In this way,

                    Ar = krAr- + tV Wjr{Kr-i Kr},

in which

                                               L2                                     Ef
                      O cv - sln cr
                       '     Lr == (a-asin cr )r

     , cr2, -1+cosa

                        sina 1- co's cr
                      - at2 + a3

                   ×                           cos a
                           ----1                            a

                       O a- sina
                        '      Vr = (a- gina )r

                      a2, -1 + cos cr

                        1 sina
                      wwamu3' O' ww cr2

                   X
                                  cos cr
                       o, o,

                 wr := ( cr -is]na).[

Here the L. mtarix is the shift operator

A.-i matrix can be shifted from span r

and W. matrices are the feed operators

desired recurrence formula, with which

    -o -             EI   L2

        1
    o- o       L
r- -r-
    cosev sma
  ' a2 ex3

      -e     sln cr

      cr              - r-1

    El L2         o    L2 EI
         1
     o- o         L
.. r- .- r-
   cosa cosa
     a3 ' ev2

         sin a

a' cr
oo o O l
1 a cosa sinaJ.

 or briefiy the s
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  (22)
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(23)

(24a)

(24b)

          . (24c)

       hiftor with whlch the
            '
           span r, and the V.

        feeders. Eq. 23 is the

semi-eigenmatrices, Ar's <r -- 2,
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3, 4, ･･･, n), can be expressed in terms of the first semi-eigenmatrix, Ai. The

recurrent application of Eq. 23 then gives

                         Ar ::" QrAi+LRjr{K}n (25)

in which

                              Qr "" Lr Qr-i, (26a)

     tRlr == [Ri R2 ''' Rrlr =LLrtRi R:" ''' Rr-`la'jr-i, trWr-i+Vr, Wr], (26b)

with the starting equations

                      Q, == Lth LRj,)=LV Wj2, (27)

and {KiJ. represents the }oad-matrix assemblage

                        {K}r ":{Ki K2 ''' Kr}, (28)

which is a 4r-by-1 column matrix. It can be concluded that Eq. 25 has resulted

from ali the connection conditions of the type of Eq. 14 at intermediate supports,

and that the first semi-eigenmatrix, Ai, has become current to all the spans.

The last step to the solution is then only to attack the Ai matrix.

  Thirdly, Eqs. 15 and 16 will be treated. They yield

             LO 1 O ljNir-O, or LO O 1 OJNi=O, (29)
and LO 1 -sin cg ces a] .N'. == O, or LO O cos nt si ii avj.N'. := O, (30)

which, with Eqs. 18, become

          Ll - cos cy, cy - sin cvjiAi -Ll cr cos cv sin (vJiKi =-=- O, (31a)

and Ll - cos av -asin cr, -sina -- a cos al .A.

            +L-1, O, -cosa-asinct, -sinev+acosevj.K. == O, (32a)

               Lcosa sinevj.A.+LO O copa sincrj.K.==O, (32b)

which take the forms

                             BAi+FKi ==: O, (33)

and B'A.+F'K. =:= O. (34)
  Eqs. 33 and 34 are the desired boundary equations obtained from Eqs.,15 and

16, respectively. They are put into one equation, providing Eq. 34 is substituted

from Eq. 25. In this way, for the beam problem,
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            Ai = un[ BtBQ. ]rm '[[sst LOR j.] TF [: oO .- II FOt ]]{K }m (35)

which requires a second-order inverse. Eq. 35 is of the form

                             fti=LGjn{K}n･ (36)
Here LGj. is a 2-by-4n rectangular matrix and {K}. is a 4n-by-1 colttmn matrix.

The former, Lej., depends on only the geometry and material properties of the

beam, so that it may be called the geometry matrix, while the latter, {K}., is

the assemb13ge of all the lo3d-matrices which can correspond to any kinds of

load conditions.

  For the buckling problem, the desired eigenvalue equation is

                                 B
                                     =O, (37)                              IB'Qn

the left side of which is a 2-by-2 determinant.

  It is to be noted here that Eqs. 35 and 37 may be adopted for use whena

digital computer is available, but that in case of manual handling it is preferable

to treat Eqs. 15 and 16, or Eqs. 33 and 34, separately, in consequence of which

the necessary inverse or determinant reduces to the size 1-by-1. Eq. 37 can be

readily solved by means of inverse interpolation techniques, as will be given

iater.

              4. BEAM-COL{JMNS WITH ELASTIC SUPPORTS

  When the beam-column is resting on elastic supports, the connection conditions

between any two adjacent spans at their common end are

             ""w-' -w-t - O M "-1 O O OM -w"

              e o o olooo                  == + == , (38)              M M O oOIOM
             .- S.r -S. "i -RrW'r-i .- -2r O O 1 .. -S .- r-i

Here the reactidn, R., at support r is proportional to the end defiection w'..i at

the right end p == 1 of span r- 1, so that, with the elastic constant 2., B. ==

2.w'.-i, which has been considered in Eq. 38.

  Eq. 39 at once yields in view of Eqs. 12 the desired recurrence formula

                        Nr rm- LrN'r-1 rm- Lr(N+K>r-h <40)
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in which the shiftor, L. i,s

                       Lr =: Pr-'(O)Pr-`Sr'Dr-iPr-i(a), <41>

which may be evaluated as

     ev3EI a L3     Ti3im" O -IZJ O a3Ef O O O 1 ct cosa sincu

          cv2EI L2L.:= -Z in'L-2"' O nv1 O .-L' Elm')' O O O 1 MSinav COScr .<42)

                 (v L       O O - O O O -O OO COS cr Sill CV                 L at
    m 2 O O 1 ". rm O O O i- r-1 ..O O nv Sill CY COS ev- r-i

  The recurrent use of Eq. 40 permits all the eigenmatrices, N.'s<r =L' 2, 3, 4,･･･,

n), to be expressed in terms of the first eigenmatrix Ni. Thus,

                        Nr :='` QrNi {m LR jr-i{K}r-i, (43)

in which

                   Qr==LrQr-i, LRdr-i=LtrLRjr-{ Lrl, (44)

with the starting equations

                         Qx, == LL,, LR ji =: L2. (45)

  Boundary conditions at both extreme ends are Bow to be treated. They yield

the boundary eqttations

                        BNi==O, and B'N'.=O, <46)
in which, assttming both ends to be simply supported with elastic defiections,

the boundary matrices, B and B', take the values

                                         cr3EI
                             1O1 --                        B,. RL3, <47a)
                            -O O1 O .,

       B' :=[g g -,S,k",,a C,i:].+2..,(.,Li]).[8 a, COjcr S',na]., (47b>

providing 2,,+i denotes the elastic constant attached to the extreme right end.

  Eqs. 46 are put into one equation, providing the latter equation, Eq. 46b, is

substituted from Eq. 43 (r =-:r 7z). Thus, the current eigenmatrix Ni for the l)eam

problem caR be found to be
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                   Ni=-[ estZ. 1i[B,LR J9,-,, B,]{K}"' (48)

which requires a fourth-order inverse. Eq. 48 takes the same form as the right

side of Eq. 36, and the geometry m3trix LGj. in the present case is a4-by-4n

rectangular matrix. For the buckling problem, the desired eigenvalue equation

i
s

                                s
                                     ::= O, (49)
                               B'Qn

the left side being a fourth-order determinant. Eqs. 46 may also be treated

separately, in which cRse the 4･-by-4 inverse or determinant can be avoided and

only a 2-by-2 inverse or determinant is necessary.

  It inay be seen from the preceding analyses that the beamcolumn with elastic

supports is much simpler in pkilosophy anct computation than that with rigid

supports, and that the l3tter is a special case of the former when the elastlc

constants 2r' s become very iarge.

                         5. ADDMONALNOTES

  RegardiRg the beam-column with rigjd supports, the following note is to be

given. When computer is available, it seems preferable to treat Eqs. 13 and l4

simultaneously. In this case, the connection equation between the two spans r - 1

and r takes tlte form

                        C{Nr-i Nr} =:= T{Kr-i Xr], (50)

for which

c=

T=

 oo
 oo
 L2
      o
ev2Ef

      L
 o
      ev -

-o o
   oo
  L2
       o
 cu2EI

       L
   o
       cr

r-1

[
g

r-1

[
g

g zs,gn.a g,O･X.cr].m; -

1

o

-cSoisncrcr CsOinS cta

]
.
-
;

1

1

o

o

o

1

o

o

 O 1 OM
 cy cos cv sln cr

 L2 L2      o
ev2EI          cr2EI

     L
 o- o      cr

o o o""-
cr cos ex sm or

            -. 1' ."

  (51a)

. (51b)
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 Note that the second submatrix on the right side of Eq. 51a is square and non-

 singular, and hence N. can be extracted. IR this way, Eq. 5e yields tke desired

 recurrence formula

                      Nr "`' LrNr-i+LV Wjr{Kr-i Kr}･ (52)

(The explicit forms of the shiftor and feeders are not recorded herein for saving

space. )

  Recurrent use of Eq. 52 permits all the eigenmatrices N.' s to be expressed in

terms of the first eigenmatrix N.i. The fouy boundary conditions to attack Ni

           wl,p-o =O, tV'i,p-.!== O, MIi,,,==e =O, and M'n,p±±=1=:O, (53)

provided that for examp!e both ends of the continuous beam-column are assumed

to be simply supported.

  When the continuous beam is subjected to the tensi!e axial force, as well as to

iateral loads, it is only necessary to begin with, instead of Eq. 2,

                          L3
                     W== ,,3EILI cvp coshap sinhcvpJN, <s4)

in which a -- yv!PL2/El; P denotiR.ff the tensile axial force of the span.

  The lateral free vibration of the coBtinuous beam can be treated similarly. In

thls case, the defiection w during vibration is given by

                     L3
                W=guTsTl!TrlCOSCVR Sincep coshcvK) sirihcvpjNeitvt, (ss)

in which cu =:-:- V 7Ato2Lti/il]7b, in which A :=':' the cross-sectional area, g -- the ac-

celeratioR due to gravity, r =･=･- the mass per unit of volume, and (ti m- the circttlar

frequency.

  In conclusion, it is noted that complete analyses regarding Eqs. 54 and 55 have

been worked out, though unpLiblished. The free vibratiofl of some typical rigid

frames, together with their successful numerical examples, has also been treated

by the operaitonal method, and it will be published some other day.

                       6. NUMERICALEXAMPLES

  The first numerical example treated was the bu.ckling problem of the continuous

column with rigid supports shown in Fig. 2. The critical load, P, by means of

Eq. 37 amouRts to ri EI                             P=T- 5. 0517 -z-f. (56>
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     10

    100

   1 OOO

  10 OOO

 100 OOO

1 OOO OOO

m EIP/
   L2

3. 370 7

4. 8088

5. 027 4

5. e49 3

5. 0515

5. 051 7

== 100 OOO.

                            7.

  The continuous beam-column with

operational method.5)

  The known key equations to several

deflection approach, have been derived

sponding differential equations by

that most of them are not always

that the sttbsequent analyses become more

adopted for use. These facts would

these key equation approaches.

  ModerR analysis has made it possible to treat the

inclu(ling the present one, as oRe of

treated through a known straightforward proced

and no question or difficulty calt

adopted for use.

  Extension or improvement on classical

significaRce. It is, therefore, desirable

                            Pfe'v"a'iliiS' Meth'odg 'o'f7i ' ' y6's' hlz5W5,' ' Nl'l "'`lc5'}I{mentg '5n

 Shi"shu. [iniversity, Vol. 22, 1967.

         ,,mimrr--"L,J

Span Continuous Beam-Celum".

  The second numerical example was again t.he

same buckling problem, provided that the
continuous column is supported elastically with

the spring constant R.. The critical loads with

increase in 2. are given in Table 1. This table

indicates that the column with rigid supports

can be well included in that with elastic supp-

orts as a special case in which the spring

constant 2. becornes some larger valae, say R.

 CONCLUSIONS

    rigid or elastic supports is treated by the

     prevailing methods, including the slope-

      from the general solutions of the corre-

 one of the writers.7) It has been found there

 based on the perfect classificatioR of data, so

        or less tedious, even if matrix form is

   throw a doubt on the specific preference of

                rectilinear structural systems,

   the simplest problems. They can be readily

             ure without any specific devices,

  be raised when the operational method is

       theories would frequently be of little

       to pay attention to modern structural

Structural
Analysis, " lburnal of the
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analysis. Ernphasis should always be placed on the fact that structural analysis

in general reduces easiest when matrix algebra, with the cited classification of

data, is adopted for use. This must be the only way of modern strttctural analysis

and also to that in future.

  In conc!usion, it is noted that the present paper was set about by bein.cr stim-

ulated by a paper by Dundurs, Lee, and EIampe, which is due to the slope-

deflection approach.8) An abridged discussion of the cited paper by the preseRt

writers has been submitted to and approved by the American Society of Civil

Engineers, and it wil} be pttblished in a forthcoming issue of the ppt}ceedings of

the Society.

                         APPENDIX. -NOTATION

  The following symbols are used in this paper :

A,B,C,D =: elements in eigenmatrix N; Eq. 2;

         A = semi-eigenmatrix; Eqs. 18;

      B,B' == boundary matrices at extreme left and right ends, respectively;

             Eqs. 33 and 34 for rigid support, and Eqs. 46 for elastic support;

         C =: connector; Eq. 20;

        C' = reduced connector; Eq. 22;

         D = diagonal matrix expressing physical properties; Eq. 4;

        EI= fiexural rigidity; Eq. 2;

      Lej. == geometry matrix; Eq. 36 ;

         i == order nttmber of spans aRd supports;

         K== load-maerix consisting of Eqs. 6, 9, etc. ;

      {K}. = load-matrix assemblage; Eq. 28;

         L == span length; Fig. 1;

         L = shiftor; Eq. 48a for rigid sttpport, aRd Eq. 42 for elastic sttpport ;

        M=: bending moment; Eq. 3;

      N, N' = fourth-order eigenmatrix; Eqs. 2 and 6, respectively;

         n = number of spans;

         P == axial force; Fig. 1;

      P<crR) = abscissa matrix; Eq. 4;

         Q== integrated shiftor;Eq. 26a for rigid support, and Eq. 44a for

            elastic support;

         Q== lateral conceBtrated }oad;Fig. 1;

8) John Dundurs, Seng-Lip
   Beam-Columns, " Journal
   Paper 5254, June, 1967,

Lee, and Peter A. Hampe, "Direct Analysis of
of the Structurai Division, ASCE, Vol. 93, No.

pp. 1-10.

 Continuous

ST3, Proc.
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         q== intensity of distributed load; Eq. 10;

       LRj=:integrated feeder;Eq. 26b for rigid support, and Eq. 44b for

            elastic support ;

         S == elastic support matrix; Eq. 39;

         T-= Eqs. 22 and 50;

U(ap),u'(ap) = state vector for Rormal and conjugate domains, respectively; Eqs.

            4 and 8;

     V, W =first and second feeders;Eqs. 24b and 24c;

     w, w' =F･ deflection for normal and conjugate domains, respectively; Fig. 1;

         x= current abscissa; Fig. 1;

         cr :=: iv!PL2/EI, Eq. 2;

         0 ==: fiexural slope; Eq. 3;

         re =g/L, dimensionless load abscissa; Fig. I;

         g == load abscissa; Fig. 1;

         p == x/L, dimensionless current abscissa; Fig. 1;

       L J == row matrix; and

      { }= column matrix.


