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1. PREFACE

In the analysis of structural mechanics, the operational method was proposed
by one of the writers with the papers “Operational Method for Continuous
Beams, ” and “Operational Method for Pin-Jointed Trusses,” both of which
have been published on the Proceedings of the ASCE Structural Division, on
December, 1964, and June, 1966, respectively.D-® Since then, this method has
been developed for the analysis of various structural systems.

Presented herein is the operational method applied to various continuous
beams, such as ordinary beams, beams on elastic foundation, and beams with

axial loads.

2. BASIC CONCEPTS

The basic concepts of the operational method are summarized as follows:

1. The structural system is considered as the assemblage of topological
units, each of which is composed of several constituent members.

2. The parameters characterizing the mechanical behavior of the constit-
uwent unit are arranged in a column vector, and defined as the “eigenmatrix”
of the unit. In general, for rigidly connected structures, the eigenmatrix is
composed of integration constants of geverning differential equations, while,
for pin connected structures, the assemblage of member forces and nodal dis-
placements are taken as the eigenmatrix, which can also be the state vector
of truss systems.

3. The connection conditions, compatibility and equilibrium conditions,
between two consecutive units are treated by perfectly classified matrix form.
After this treatment, a certain shift formula or recursion one for eigenmatrices
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between two consecutive units is obtained. It is composed of a shift operator
and a feed operator; the former shifting the eigenmatrix of a unit to that
of the adjacent unit, and the latter introducing the influence of external loads
on the shift formula.

4. 1In virtue of the recursion formula, the eigenmatrix of a unit becomes
current to the entire system, and hence, it is called the “current-matrix.”

5. The current-matrix is determined by both extreme boundary conditions
of the system, and therefore, the system can be solved. In this treatment, the
operational matrices, perfectly corresponding to the boundary conditions, appear,
so that they are called the “boundary matrices.”

6. From the viewpoint of the matrix algebra, the operational method
permits a simplified analysis by making use of the above operators.

The matrix analysis for structural mechanics should be based on the pure
and complete classification of data, which leads to readiness and simplification
in philosophy and computation.

3. KEY EQUATIONS

Herein are shown the key equations to ordinary beams, beams on elastic
foundation, and beams with axial loads. The non-dimensional abscissas are
for convenience adopted for use to denote the current and load abscissas of a
memder, that is to say, taking L = the beam length (m), x = the current
abscissa (m), and & = the load abscissa (m), we write o = x/L = the non-dimen-
sional current abscissa, and = &/L = the non-dimensional load abscissa,
providing their positive abscissas are directed rightwards.

The state vector of a beam at abscissa p is given by the following equation:

W(o) = DP(0)[N + K(p)]. (1)

Here, W(o) = the state vector, D = the coefficient matrix, P(p) = the abscissa
matrix, M = the eigenmatrix, and K = the load matrix. They are defined as
follows:

(1) State Vector W(p).

The physical quantities at abscissa p in the beam are arranged in a column
vector as follows and called the “state vector.” That is to say,

W)={w 0 M S} ®)

Here, w = the deflection, @ = the slope angle, M = the bending moment, and
S = the shearing force at abscissa p, respectively.
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(2) Coefficient Matrix D.

The coefficients to be attached to respective physical quantities are arranged
in a diagonal matrix, and called the “coefficient matrix.” For respective beams,
they are given as follows:

(a) Ordinary beams,

b = dia L: L L . .
TS\ GET 6EI 3 | ®
in which, £ = modulus of elasticity, and I = the moment of inertia.
(b) Beams on elastic foundation,

D = di L L L 1 4
=08\ SBET opEl P ’ “
in which
5= / .E.[i, % = modulus of foundation. (5)
4EI

(¢) Beams with axial loads,

b — di L3 L? L ) o
R P ) R & ©)
in which

= %ZI:Z, @ = axial compressive force. (7)

(3) Abscissa Matrix P(p).

Corresponding to respective physical quantities, the abscissa functions are
arranged in 4-by-4 square matrix, and called the “abscissa matrix.” For
respective beams, they are given as follows:

(a) Ordinary beams,

L o p* p?
0 1 2p 3p*
P(o) = . (8)
0 0 1 3p
0 0 0 1
(b) Beams on elastic foundation,
o3 [ &y Oy ‘I
Gy~ Dt de —ds— Dy g — ¢y
P(0) = ; )
— ¢ & e —dy

—gr e b — 2 P3P 3+
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in which
Oy = ePfecosBp, o = ePrsinfp, @y = e~BrcosSp, 4 = e~Pesin Fo. (10)
{c) Beams with axial loads,

1 @ cosap sinap‘l

0 1 -sinap cosap
P(g) = . (11)
’- 0 0 -—cosap —sinap
0 0 sinap -—cosap

(4) Eigenmatrix N.

Four integration constants of a governing differential equation are arranged
in a column vector as follows, and defined as the “eigenmatrix” of the beam.
That is to say,

N={4A B C D}, (12)

in which A, B, C, D = the integration constants of governing differential
equation. Then, all the mechanical behavior of the beam are characterized by
the eigenmatrix, which perfectly corresponds to the state vector defined in Eq.
2. In general, this correspondence holds for usual structural systems; however,
in the higher structural analysis such as the recursive finite element method
(unpublished), it has been found that the perfect correspondence fails.

(5) Load-Matrix K.

The load-matrix is obtained from the treatment of the connection condition
of state vectors at the loaded point. Then the influence of external load can
he expressed by mere addition of corresponding load matrix to the eigenmatrix
N. Referring to Fig. 1, the state vectors at respective domains are given as

follows:

e N s N K e O R R R

3 o
Fig. 1. Load Matrix,
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0<p< # : W(p) = DP(p)N,

iy < p g 1 W(p) = DP(0)[N + K,],

wy <o w3 1 W(p) = DP(0)[N + K, -+ Kq(0)], (13)
ey < p<ry : W(p) = DP(p)[N + K, + K],

g < p <1 (

Here, X,, Kq K, = the load-matrices for the concentrated load, the distributed
load, and the moment load. For respective beams, the load-matrices are given

W(o) = DP(0)[N + K, + Ko + K,,].

as follows:
(a) Ordinary beams,

= P{—r® 3k% —3& 13},
K,=L Sm g(e){ —x® 3 —3x 1}k, 1
{ (14)
J

K, = mmz{m —2% 1 03},

(b) Beams on elastic foundation,

P 1, 7, 7,

Kp={-ds—ds  ds—dr gi—gn ditdade,
L #s

Ky = ‘4“3 ‘1(’5){“9/’3 — ¢y Ps—Gu bi— e i+ deldr, (15)
ﬁmt ,

Km - { (/)L ¢3 (%3 —-(fl)l}”&'

(c) Beams with axial loads,
= P{—ar, 1 sinar; -—cosar},
K, L Skisq(;;){~mc 1 sinar —cosax}ds,

K, = *‘Z‘"{ 1 0 —cosary, —sinag}.

4. BOUNDARY CONDITIONS

To show the generalized boundary conditions of the beam, both extreme end
supports are considered as elastic ones, that is to say, settlements and slopes
at these supports are respectively proportional to corresponding reactions. Figs.
2a and 2b illustrate these conditions, and Eqs. 17 and 18 show their formulation,
provided that letters % and m represent spring constants attached to these
supports. Those conditions are expressed by the eguations:
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B 6
| | L
my
At the left end: -+ vl 0. a7
s| |-
_ p
wl |2
. Wi
At the right end: + =0 (18)
o
i L %

Here, the physical quantities at the right end of the beam (p = 1) are primed,
while those at the left end (o = 0) are unprimed. This notation holds throughout
the present paper.

v

'

=
Vi= Iy
(a) Left Extremity

Fig. 2.

In virtue of the key equation, Eqg. 1,

beam analysis are reduced to the

At the left end:
At the right end:

B'N' = B'[N -+ K] = 0.

Vo= k2

(b) Right Extremity

Boundary Conditions,

the above boundary conditions for

following matrix equations:

BN = (.

Here, B, B’ = the boundary matrices of 2-by-4 rectangular form, the values of
which are summarized in Table 1 for respective beams, and K = the summation
of load matrices acting on the span considered, i.e., the “load term” of the
span considered.

Assuming due values of the spring constants, all kinds of boundary condi-
tions can be represented by the boundary matrices in Table 1. Several examples

are shown in Table 2.



Table 1,

Boundary Matrices,

Left End B Right End B/
£
g 0. 1 2EIm, 0. 1 o2+ 2EDm; . 6FIm:
? > s L ’ ] ’ L k) L
5 6Tk, 61k,
& 1, 0, § —— 1, 1, 1,- - P
= Iz L
3ot
=}
= 2BEDn, 2pEDn; \ | )
g R (R P —ﬁL—~)s»1 + g
<
2 (1+ v Jou + ¢ (14 Y s
————— 6y + by, - — | by
& 28 EIm, 2pEIm, 2pElR, )t T o 2B Elk, |
N e L
% . 28EIn, 28EIm,
= L3 L3 _¢3_(1_ﬂ bs, (1.._‘{..__if.>,,53_(54
&= w1 e, 1, 14 oo 1 L L ! ’
, 2p°Elk, 2B Elk,
& 3 I3 ’ i } '
g (*1 + MzﬂaEIkg )‘Pu + oy —gst (*1 -+ _21”9515’[/’8;)9'4
[+
A fu = 0BCOS B, fy = eBSinG, ¢y =e—FcOSf, g, = c—Bsinp
58 o Elny . aElm, ol Img |
= 0, 1, —_— 1 0, —1, sina -+ cosa, —cCOSa + sina
3 L L L
e «tElky Lk, , «Elk,
iy 1, 0, 1, ————e 1, «a cosa— T sina, sina 4+ cos «
Ly z z Z

V% "'ON

Sweag SNONUIIN0Y) SNOLIRA J10J PoyIdN [euonierad(
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Table 2. Spring Constants and Boundary Conditions.

’ ki ] 0

Elastic Supports j k; j m;
Fixed Ends ] 0 l 0
Simple Ends } 777777 0 J VOO
Free Ends i o0 ! )

5. CONNECTION CONDITIONS

The connection conditions hetween two consecutive constituent members are
satisfied by due treatment of compatibility and equilibrium conditions for both
state vectors at the common ends of constituent members. For generalization,
assuming the elastic proportionality at the common point, those conditions are
given as follows:

-y - — —

T w [~ w 0
@ % 0
0
M| +{ M|+ — | =0 (21)
m
w
S S e
L. i1 S ) L k )

Here, %, wm; = the spring constants attached to the intermediate support i.
Assuming the values of the spring constants, various connection conditions
can be represented by the above equation; for instance, taking k&; = m; = oo,
the above equation shows the connection condition at point of abrupt change
in cross-section in the plate-girder bridges, and taking k; =0, and m; = oo, it
would result in the connection condition at intermediate rigid support of the
continuous beams.

On the other hand, for the continuous beams composed of only the com-
bination of rigid supports and pin joints, it would be preferable from the philo-
sopical and computational viewpoint to use the following procedure. That is
to say, noticing the characteristics of the rigid support and the pin joint, the
preliminary treatments are to be made for respective eigenmatrices of constituent
members. Consequently, the order of them can he reduced to a 2-by-1 column
vector. For instance, taking a constituent member whose left and right ends
are connected with rigid support and pin joint, respectively, the eigenmatrix
after the preliminary teatment becomes
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0
0
; +
‘.o—s too-1_3
0 1 0 0 0 0

A;={B Dj (23)

in which

and K; = the load term of the span considered. The matrix A; is called the
“semi-eigenmatrix. ”
After such preliminary treatments, the connection condition can be satisfied

by the following equations:1.3%

o o ()
For rigid supports: — } + L —] + (/ 0. (24)
G 1, Ll
I_w O‘l
For pin joints: - —I 0. (25)
S “k“_l

In virtue of Eq. 1, Eq. 21 can be reduced to the following consolidated
form:
c{N';., NJ=0 {26)

This is the desired connection equation at the intermediate support. €; is the
4-by-8 rectangular matrix, and is called the “connection matrix,” or briefly the
“connector,” whose values for various beams are summarized in Table 3.

In a similar manner, the connection matrices for semi-eigenmatrices can
be obtained from Eqs. 24 and 25, the order of which corresponds with the semi-
eigenmatrix. In this case, by the possible combinations of rigid support and
pin joint, there will be seven kinds of connectors.®

6. SHIFT OPERATORS
The connectors in Table 3 are given in the form
C, = lcioy el (27)

Substituting this equation into Eq. 26, and modifying the resulting equation,
we obtain a relationship hetween two consecutive eigenmatrices N,.; and N;
as follows:

Ny = —¢;7 "¢/, (N + K)oy = §;(N + K}y, (28)



Table 3. Connection Matrices.
e - ~ .3
1, 1, 1, 1 I,
w g
& 2
g -
foe] O, 1, 2, 3 01 T)
b _— )
1
.g 0, 0, 1, 3 0, ——=ru,
; cl 2
= 2
| 0, 0, 0, 1 . 0,
L _ | 6
= -
‘g (/)Qv f/)fh ¢4 653 4
ks 2
=g ;
c = &) — b, 1+ Py ~thy ~hs, Py — b4 ——
25 -
8: =@ b1, Das — s ’ I )
[aa] 2 256
b=
= . — Gn — 4 __'2. —
G~ o, D1 o, Pa— Pay Pt Py - s
i _28
— = =
1, cos a, sin a > 0,
(3%
=0 s
k-t
! E g 0, 1, —sina, cosa 0, fl)
b= gv®
- > T
7
5-5 0, —cosa, —sina a, r
&« av
. A
0, sin a, —COS a —_, 0,
- REES! ~ a®
L; _ EL; 2= ( L3 > ( L
L T ELL T \ER) “ = \Eim

01
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N, = —¢; e, — Koy = SiN; — K,y (29)

In virtue of Eq. 28, the eigenmatrix N;_; in the left-hand span is shifted to M;
in the right-hand span. Therefore, the matrix §; is called the “rightward shift
operator,” or briefly the “rightward shiftor.” Similarly, the matrix §'; in Eq.
29 is called the “leftward shiftor.” These wvalues for ordinary beams are given
as follows:

= 0o o ol]1 1 1 1
7
0 = 0 ofllo 1 2 3
72
S,-:
e 1
0 =0 0 0 1 3
oy
2o 0 1llo o o 1
67‘3 PR
B £ g & & 7
oo 7
s 2e 3e
0 e e g
- 7 7 4 : (30)
e 1 7 3 ept
o L) ey
2r 7 T 27
&l A A el
672 ~6f3 67 673 :
- T -
1 -1 1 =114 0 0 0
0 1 —2 310 r 0 0
s’.: N
’ 0 0 1 31 o L 0
- — =T
2/, 7
0 0 0 1 A 0 0 1
— —_6 .l I
S 7 . , 7
7 7 /)
L2 Lo L -1
e 6 T(e 2 7
4 7 .
5 rlbre) -wos
= - . 31
) R (31)
— ——T —
5 ST 7 3
* 0 0 1
- 6 —l
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In the case of beams on elastic foundation and beams with axial loads,
the inverses of the matrices ¢';.; and ¢; become complicated, so that numerical
procedure is recommended.

In the analysis of continuous beams composed of only the combination of
rigid supports and pin joints, the connection conditions given by Egs. 24 and
25 are to be treated, from which the following shift formulas for consecutive

semi-eigenmatrices A;_, and A, can be obtained:
A; =LA, +PK,, + QK (32)
A =LA + P LK + QK. (33)
Here, Lt; and L'; = 2-by-2 shift operators for semi-eigenmatrices. On the other
hand, the matrices P;, P';, Q;, and Q'; = 2-by-4 rectangular matrices called
the “feed operators,” or briefly the “feeders.” They introduce the influence of

corresponding load term into the shift formula. It can be mentioned that Eq.
28 is a special case in which the shiftor and feeder are the same.

7. SHIFT OPERATIONS

Egs. 28, 29, 32, and 33 are the recurrence formulas for continuous beams.
In virtue of the recurrent use of such fromulas, the eigenmatrix selected as
standard become current to the entire system, and hence it is called the “cur-
rent-matrix,” which usually can be detemined by both extreme boundary
conditions. This is the standard procedure of the operational method.

In the continuous beams whose shift operations can be made by only the
recurrent use of Eq. 28 or 29, taking the extreme left eigenmatrix as standard,

and shifting it rightwards, the solution of the system is given in the form

B -t 0
N1 = = . (34)
B/snsn—l - 8o B/[snsn—l'”s‘lKl + o snsn—lKn—2 + &K1 + Kn:]

Here an inverse matrix of fourth order appears.

In the systems composed of only the combination of rigid supports and pin
joints, the form of final solution becomes a little complicated, but the size of
inverse in the final equation becomes second order.

Practically, the computation design can be made effectively by the aid of
the “shifting chart.” In Fig. 3 isshown an example of the chart. In this figure,
the numerals in the symbols --, O, [, and <& represent the initial order of
eigenmatrix in each span, the degraded order of eigenmatrix by the treatment
of given conditions, the order of boundary conditions which can be treated

independently in each span, and the order of connection conditions between two
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consecutive spans, respectively. The symbol —> denotes the direction of shift
operation. ¥

Fig. 3. Shifting Chart.

8. GEOMETRY MATRIX

After the determination of the current-matrix, using the recurrence formula
again, the eigenmatrices in the entire spans can be evaluated. In this case,
the solution should be written in the form separating a physical matrix from
the load terms, i.e., in the case of nm-span continuous beam, the entire
solution is consolidated as follows:

{N3}, =[61{K},. (35)
Here

N}, ={NM N, Ny - N, (36)

"Gy G2 Gy - Gy,

Gy G

[G] =| Gy ) (37)

G, o e e G,
{K}, ={K: K: Ky - K} (38)

The matrix [6] is a 4n-by-4n square one, which can be obtained from
only the geometrical quantities, I, L, of respective members, and the modulus
of elasticity, FE, which is known value for given structural materials, and
therefore, this matrix is called the “geometry matrix.” Thus the geometry
matrix can be obtained independently of the loading conditions. In other words,
by virtue of the geometry matrix, the eigenmatrix of the system considered

can at once be obtained for arbitrary loading conditions. Therefore, using the
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geometry matrix, the influence of external loads on various physical quantities
can be obtained numerically, so that all the influence lines can bhe formulated.

9.  APPLICATION

Example 1. Fig. 4 shows a single span ordinary beam supported elastically
at both ends. The boundary conditions of this beam are given by Egs. 19 and
20. Writing these equations together, and rearranging the resulting equation a
little, we obtain the solution of this system in the form

B O
N:-[ ] [ ]K:GK. )
B’ B’

G is the geometry matrix and is obtained in this case as follows:

C12E1 12(EI)? 6EI 12ET
B Ry + 7 Ry(my -+ my) —E—kl -+ —L%)wklmo
GE[m 12(ED)? ELy 4E{ 12(E)? / 12(ET)? P 12(ET): .y
1 7 + N U my Iz mymy -+ I 11+ I 2M,
D | 6EI 6ET 6EI,  6EL
3+ e 2+ B A a e iy e
5 2E[( . 2ET
_ — (N 9 - T T
] L 1 + 772&)’ L "y,
]Z(EI) 24(ET)
s Wy = Ryinying,
2E] 8(EI)? 24(EI)? 24(EI)?
‘"“L“ml + ““ZT”hmz + - 1t (kg - ko) + - —’%ig““mﬂ'”z(kl + k),
4ET 12E7 El
1+ i my + ——LTA(/\Z1 + ko) + (L4 >_ olly + k),
EEI . 4(EI)®
L Wy L?' My,
6EI  24(EI) TAEI? TAEI TAET)? B
_ Ls‘kl L 2MED Ry(my -+ my) — —l, R P — To F 1Ry — <L7 ) Rylo(m1y -+ 1m5)
%G(EI) T2(ET)3
i kot + - s Fymymy
18ET 36(ET)?
s ky + T4 kyintg
1 4ET 12(E[)2 B 12E7 I 12(E]) v
+ —f-(ml + s + T T s o1y + 113)

(40)
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in which

EI
D=—1—- i11——(1711 + )

2AEI)?
(my + 7'}’12)}(/31 + ko) — 11-2—(«1‘2 ) Mys. (41)

12EI  12(EI)
_{ r T

= LEI J

Fig. 4. Single Span Beam on Elastic Supports,

Selecting due values of the spring constants as shown in Table 2, the geometry
matrices for possible cases of ordinary beams can be summarized in Table 4.

Example 2. Neglecting the axial elongation of members, the rigid frame
shown in Fig. 5 can be analyzed applying the basic equations for ordinary
beams.

El==constant

s

2L * L < 2L

SN

Fig. 5. Rigid Frame,

First, at both ends of each member, the boundary conditions, which can
be given independently, are to be treated, and the order of each eigenmatrix
is degraded from 4-by-1 to 2-by-1 or 1-by-1.

Next, the compatibility condition at connection point of respective members,
which is the continuity of slope angles, are to be treated; consequently, the
semi-eigenmatrix of the member @ becomes current to the entire system.

Lastly, the current-matrix can be evaluated by the moment equilibrium
conditions at two connection points.
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Table 4. Geometry Matrices for Single Span Ordinary Beams

No, 24

Systems Geometry Matrices.
-0 0 0 0
e 0 0 0 O
-3 -2 -1 0
Fix-Fix _ 2 1 0 -1
-0 0 0 0
e 0 0 o0 o0

Fix-Simple

o=

[
o o o ©
|
"
=

Fix-Free 0 0 -1

-0 0 0 0 7
A—'{ 1 -3 -2 -1 0
210 0 0 o

Simple-Fix _1 0 -1 -2

-0 0 0 07
A [\ -3 -3 -2 0

Simple -Simple

W
=)
=)
=
=)

Free-Fix




Table 5. Geometry Matrix for Rigid Frame,
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0 0 0 0 ¢ 0 0 0 0 0 0 0 0 o 0 0 0 0 [ 0
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Thus, the solution of the system can be obtained in a form similar to Eq.
35. The geometry matrix in this case is given in Table 5.

Example 3. Referring to Eq. 34, the eigenvalue problem of continuous
long-columns can be reduced to find the axial load satisfying the equation

B
=0. (42)
Blsnsn—l”'sﬁ
P £l 2E1 e 2E1 El 2p
Py :
. | | ; |
— L . L 21 IS S

Fig. 6. Continuous Long Column on Elastic Supports,

- P Fig. 6 shows a continuous long column on
elastic intermediate supports whose spring con-
stants are commonly given by £ The relationship

]i 2000 between the value of spring constant and the
M .uem

o . critical load is shown in Table 6, from which it
1;  Ey= 2000000ke ‘cm”
[, 1000em’ can be mentioned that, as diminishing the value

of k&, the critical load obtained approaches to the
case of continuous long column on rigid supports.
This procedure will be recommended to the elec-
tronic computer operation.

Table 6. Critical Loads (x EI/L?

Lrz= 200.0cm k | Critical Load
Ey = 2000000kg . ‘cm? ‘
1= 1000em? 1/1000 4.250
1/16000 4.265
i ) 1/100 000 4.266
Fig. 7. Dolphin, Rigid Support § 4.266

Example 4. Fig. 7 shows a simple dolphin built in an elastic foundation.
The part without the foundation will be treated as ordinary beams, while that
inbedded in the foundation must be treated as beams on elastic foundation
assuming the elastic proportionality between the beam deflection and corre-
sponding reactive force. Then such a system will be reduced to the connection
of the ordinary beam (D with the beam in elastic foundation @.
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First, the boundary conditions, at the top and bottom ends of the system,
the bending moment and shearing force vanish, are to be treated, and then
the eigenmatrices of respective members are reduced to 2-by-1.

Next, connecting all physical quantities of both members at connection
point, the solution of the system can be obtained.

Using the values shown in Fig. 7, the results obtained are as follows:

{N, N, =6{K, K, (43)

Here % = 10 kg/cm?® has been used for the modulus of foundation. Also N, and
N, = the eigenmatrices for beams @ and @, K, = the load term for ordinary
beams (Eq. 14), and K, = the load term for beams on elastic foundation (Eq. 15),
but except for the special case in which several external forces act on the beam
part in the foundation, this matrix is given by

K.={0 0 0 0} (44)

The geometry matrix in this system is evaluated as follows:

" —1. 000 0 4.204 14.655 —2.629 9.375 1.572 —1.4027
0 —1.000 —4,491 —12.612 1.195 —7.270 —1.195 1.109
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

G = {45)

0 0 0.014 0.080 —1.040 0.063 0.040 0.017
0 0 —0.363 —1.407 0.317 —1.928 —0.317 0.294
0 0 1.335 6.678 —1.674 3.919 0.674 —0.571

_ 0 0 —0,958 —3.191 0.317 —1.928 —0.317 0.294 |

16. CONCLUSIONS

The operational method for bending problems of various continuous beams
is presented in this paper.

This method is based on the systematic treatment of the eigenmatrix which
is the column assemblage of integration constants of the general solution for
governing differential equation. The boundary and connection conditions are
given by simplified matrix formulas, and then the analysis can be carried out
readily and systematically. It should be noted here that the pure and complete
classification in data treatment results in the readiness in philosophy and
computation.

Four typical examples are appended at the latter part of this paper, in
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which the geometry matrices have been evaluated in three examples. These
matrices will be particularly useful for structural design.

The prevailing key equations to known methods in structural analysis, such
as the three-moment method, the slope-deflection method, etc., may be derived
from the approach equation of the present method, and their characteristics
can be commented.® Applying the philosophy of the operational method to
these key equations, recursive procedures for respective prevailing methods
may be composed. &
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APPENDIX. —NOTATION

The following symbols have been adopted for use in this paper:

A = semi-eigenmatrix, see Eq. 23;

B, B’ = boundary matrices, see Table 1;

C = connection matrix, see Table 3;

D = coefficient matrix, see Egs. 3, 4, and 6;
E = Young’s modulus;

G = geometry matrix, see Eq. 37;

I = moment of inertia;

k = modulus of foundation;

k = elastic support constant;

K = load matrix, see Egs. 14, 15, and 16;
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L = beam length;

L, L' = shift operators, see Egs. 32 and 33;

M = bending moment ;

m = elastic support constant;

N = eigenmatrix, see Eq. 12;

P(p) = abscissa matrix, see Eqs. 8, 9, and 11;
P,P' = feed operators, see Eqs. 32, and 33;

Q = axial compressive force;

Q, Q' = feed operators, see Egs. 32 and 33;

S = ghearing force;

8,8 = shift operators, see Egs. 28 and 29;
w = deflection ;

W(p) = state vector, see Eq. 2;

x = current abscissa ;

= A/QL?/EI, see Eq. 7;

Y RI*JAEI, see Eq. 5;

= slope angle;

> W R
i

= non-dimensional load abscissa ;

= load abscissa ;

= non-dimensional current abscissa;
] = row vector; and

[atn T s SN N

} = column vector.
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