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A calculation of the optical rotatory dispersion of helical pelymer for the
incident light perpendicular to the helical axis has been carried out in terms of
the linear response theory. The term added by Moffitt, Fitts and Kirkwood to
Moffitt’s result does not appear and the rotational strength contains explicitly
the helical radius of the polymer. For the randomly oriented assembly of helical
polymers the result botained by Moffitt, Fitts and Kirkwood is derived.

§1. Introduction

Recently Ando? discussed the optical rotation of a polymer for the light
parallel to the helical axis. Experimentally it is interested in the differences of
the optical rotatory power being arised for the various direction of light.
Actually Tinoco® observed the difterences of optical rotatory dispersion (O.R.
D.) for the beam parallel or perpendicular to the helical axis. The optical
rotation originates in the term of the first order of the wave number ¢ of light:
Using the adjacent distance d between chromophores, the optical rotation is of
the order of gd which results from the phase difference between the adjacent
chromophores. Since the interaction between chromophores propagates with the
light velocity, it needs the time d/c¢ for the change arised in a chromophore
to arrive ‘the adjacent chromophore.. :

Let us consider the light propagating along the z-direction, which is ex-
pressed by exp (it — igz). Considering the time retardation for the interaction
to propagate with the light velocity, the light should be expressed by exp (fewt
— igz — iqd) which deviates the factor exp(— igd) compared with no retardation.
It is not so clear that the effect is negligible compared with the effect of the
phase difference exp (‘- igd). In other word we may say that the optical
rotation is too subtle phenomena to neglect the relativistic effect, especially
the retardatio‘n-yeffect of interaction.: However, it is very diﬁicult to take into
account of the retardation. It is the problem that the experiment agrees with
the theory taking account of no retardation or does not. In order to investigate
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this problem, we calculate the optical rotation for the incident light oerpen-
dicular to the helical axis and compare with the results for the parallel case.

§2. The optical rotation in the case of light
perpendiculér to the helical axis
We consider the helical polymer which has the same chromophores with
the adjacent distance d on the helical axis and the pitch angle ¢. Since the
light propagates along the z-direction, let us take the z-axis as the (-axis of
the coordinate fixed on the polymer, the y-axis as the 7-axis and the x-axis as
the &-axis, which is the helical axis. When the relation -

/ p=y cosngp — ' sinng (1)
=7 sinng + {'cosng " @

is satisfied, the coordinate (& 9 &) is equivalent to the coordinate & — nd; 7,
. i
As shown by Stephen®, the O.R.D. is exressed as

g, @) = zni(uZS dtor) S dz<15<">(q, £ — b0y (= g, 0)

n,om Te0
— jy(g, t — hA)j (= g, O)> eI, : 6)

where j(®)(q, ) represents the spatial Fourier component of the current operator
of the n-th chromophore. Since the radius of the helical polymer is very small
compared with the wave.length 1 of light, exp ({¢) may be approximated by
(1 +.1g8). This approximation is not-allowed in the case of light parallel to the
helical axis, By making use of this approximation. and assuming the exciton
model, j:")gq, t — ih2) is expressed, under the assumption that the wave function

is real, as
efzq 3\ o
- jem gt = ihA) = {(] )f0+ H 5{—:> snnco+( 35) cosngo}}
X (B*,5(t — ihd) — B, st — iha)), (4)

where B*,r and B,r are the creation and the anmhllatlon operators of the f th
excited’ state at _the #n- th chromophore, respectwely, and the superscrlpt (0)
represents a standard chromophore Here we have considered only the lowest
exc1tatlon ' Henceforth the same symbols for physical quantities with those
described in the reference 1) are used as far as no confusion arises. Slmllarly
77M(—gq, 0) is written as' : L s
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ehq (

3= 4, 0)= {7 o) }(B+nf By

a7
(7,7) ro cos np — ( jcl®) sy sin ng

[( 3)(0) . ( a)w) .
e b Sin# ¢ COS Ny — e .81~ 1
7/377 fo ¢ ¢ 776& fo ¢

g\ (@) | 0\ (®
— (C——) sin ng cosng + (C—)
fo )

fo

cos? nga] } (B*,5— B,r). (5)

The superscripts (0) are omitted for the simplicity in what follows.
Introducing a Green function G,.(®)

Guml) = %Sl"m J<CB* s () + Bar(t), B*ps(0) — Bps(0)T>e¢7

and substituting (4) and (5) into (3), @(g, ®) is given by

) 2 f . . |
Q(qy (1)) = T ICI) ZE {( ]f)fOE ]V)fO(COS mq) - COS8 ngp) (]C)f()(Sln mgo — sin n¢)j
+W—[< 5§)f0<7”)f° - (Cae) (Jc)fo} sin (1 + m)e
2ef Pl 3 . ‘ |
i%lq _[(Caé) (2} o cOS 1190 COS PM1GP — (775‘2;) 1 (Fe)so sin ng sin mgo]

ﬁfﬁl(fe)fo[(va%)fo - (%%)fo} (sin me cos my + sin ne cos ng)

_L.ii. “(]:)fo[( B ) (sin® me + sin® np) — (C%)ﬂ’(cos2 me

+ cos? ny) ]} Gom(o). (6)

Taking g(n¢) as a suitable function of np, several terms in the right hand
side of (6) have the form

3333 gm0 = £016) Gl

On the other hand, G,,. (o) is the function dependént only on |{n — m| asfar as
the boundary effect is neglected, namely,

Gunl®) = G o)

holds, which is clear from the fact that the interaction is the function of its
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distance. Hence we obtain the relations
3333 smg) — g19) [Gonle) = 0

and

313 2tme) + £(16) Gt = 5 SIII3 glom)e= K- Gla),

4 ”

where Gy{w) is defined by

1 .
Guml®) = — 2 |Gglo) exp (— iK(n — m)].
NF
By dividing the summations on # and m into ;}2;}, it becomes

2 .
= 21> glmple—iK=—mGy(w) = 2GK-0 (@)Y ) & (mp).
N V2 m m

If g(my) is the periodic function of e, ;,g(mgo) vanishes. The first, second and
fourth terms in the curly bracket of (6) vanish by these reasons. When g(mo)
= sin?mge or cos?me, it leads to the relation

N

Zg(mgo) :E'

One may finally obtain

Qg o) = — 7 ef;"{[um( i) = dsolraz) 1, G =sto)

+Gon [ (), - (ca—i>f0]cx=o (@} @)

According to Moffitt¥, it is convenient to take the {-axis as the helical
axis and its transformation is performed correctly by using {, & and 5 instead
of & 7 and ¢, that is,

@, o) =~ "2 ZL (G nfrm) , ~ Gisofegy) |Gt
- (]c)fo[(faz)y)fo ~ (n%)f =) (7)

Using the expression?)
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2
G
w) = ) — 2 k) VIK) ®
and
N—-1
V)= 31 V,eiko-m, ©

N =0

and the relation for the matrix elements between the current operator j and
the dipole moment operator g '

(72) 5o (#v)fo,
we expand the (7) into the power series of V up to the linear term of V. Then,

it is found that €(g, ®) is proportional to g. Therefore, 4dg = ¢~ — ¢* may finally
be expressed as

i1
4q = T ;Q(q, w)

- QTFZZ‘”@ {(hw):“i 42 KY}%) fo(m)f0 N (c%) f"(‘UV)“ * <(C;;)) fo ( ;> >(! 6)f0}
N—1

~—-——~——<[ 5 o0 (52— (), 0
)

n—m=0

Z V””’] K( 6877)1’0 <’73_ac)fo) (#e) 1o >} (10)

Jz—m 0

The similar results are obtained in comparison with those considered in the
case of the incident wave parallel to the helical axis, namely, the first term in
the curly bracket is the intrinsic rotation and the second term arises from the
energy shift of the intrinsic chromophore due to the exciton. But the term
relating to the splitting of the absorption of light does not appear. It should
be noted that dg is proportional to » or {, and so, the rotational strength con-
tains explicitly the helical radius of the polymer in the present case.

§3. The optical rotation for the randomly oriented polymers

In the case of random arrangement of polymers to the light, the average
optical rotation 4q is given by (dg,, + 24q)/3, where 4q, and 4q, are dq for
light incident parallel and perpendicular to the helical axis, respectively.
Therefore, it can be concluded that 4g is expressed as
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7 = e e (6] o — (650 )+ (1) o ) )

24hw ( Nt

Tl — R [ >0 Vincos(n— m)sa} [(7/;—5>f0(#c)fo + 2(&:6%)”@5)1,0

n—m=0
N—-1

~3(cge) o] [, 23, Vor) [((C%) o~ () ) )

n—m=0

md 2820w Nl
TR Clhw) — _/12—32{ 2]

n—m=0

(1 = )V sin (2 = 1) ][ () soe) 0+ ()l pnd o

(11)

and agrees with Moffitt, Fitts and Kirkwood’s formula®. The third term in
the curly bracket represents the so-called “anomalous dispersion” and the
contribution from the splitting of the absorption of light only parallel to the

helical axis.
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