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                            1. Introductioxx

   The present paper will treat the circular ring which is surrounded with

elastic foundation and is sabjected to a radial concentrated Ioad P applied at

its crown point <Fig. 1). At times, such structural systems have been treated

by replacing the foundation members by ordinary fiexural members subjected

to given distributed loads. Since the distribution of the reaction from foundation

is uRknown, it is sometimes assumed to be some given applied force. In order

to be compatible with oblique or horizontal loads, as well as vertical loads, it

is necessary to extend the usual Winkler assumptien foy the lateral defiection

and the corresponding nermal reaction to that of tangential or iongitudinal

displacement. Under these two kinds of Winkler assumptions, the foundation

beams or the combined structures involving such beam or beams can be treated

without difficulty by means of the operational method avoiding simultaneous

equations. The method of the analysis to be adopted will be the operational

finite eiement one.

   The circular ring is then divided into a series of finite elements of short

span length or rectilinear beams, each of which is governed by the ordinary

!ongitudinal and flexural behaviors. It is assumed that tke reaction from

foundation by Winkler assumptions applies at one point of each member to

tangential and normal directions.

   At first, it will be assumed that every finite element has an elastic founda-

tion. Then, with application of the concentrated load P at the crown point,

several elements in the vicinity of the point of application, say in the domain

(- ip, + ¢), wiil have the "negative" normal reactions. Since the negative reaction
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is to be prohibited in the structure, those elements will be replaced by ordinary

beam elements that have no' foundation. Inverse interporation techniques for

several different cases wiil permit the theoretical determination of the separa-

tion angle O.

   As the structure is divided into finer elements, the results obtained will

tend to the rigorous solution.
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Fig. 1. Circular Ring with Elastic Foundation.

                        2. Complete State Vector

   The complete state vector of a member is a sixth-order column matrix,

consisting of the iengitudinal displacement, the axial force, the !ateral deflec-

tion, the fiexural slepe, the fiexural moment, and the shearing force. Then
the state vector at any point ,o is given by the equationsi)

                             W<p) =R(p>X, (la)
or

                          W'(p>-R(p)[X -i- K], <lb)

in which W(p) or W'(p> holds for the normal or coniugate domain respectively.

Here R(p) is the complete abscissa matrix of size 6-by-6, X is the sixth-order

eigenmatrix which is the assembiage of integration constants,2) and K is the

load-matrix which is compatible with any external loads. 3)

   It should be noticed here that the right sides of Eqs. 1 exhibit the complete

classification of data, and then attention can be focused at attacking the eigen-

matrix only.
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             3. Connectien Conditions and Recurrence Fermula

   The connection conditions are the compatibility and equilibrium at the

common point of any two adj.acent segments (r-1) and (r). This point is

defined at point p=1of member <r-1) and also at pointp=Oof member
<r), so that we have the following equation:

                       P(95r-i)VY'rHi(1> =: P(¢r)Wr(O), <2)
in which P(ip) denotes the projection matrix or briefly the "projector. "

   Eq. 2 tben yields the desired recurrence formula

                          Xr == LrXr-1"LrKr-b <3>
providing

                     Lr ma [P(Or)Rr(O>]-iP(g5r-i)Rr-i(1>･ (4>

Here the L, matrix is the.shift operator or briefiy the "shiftor," with which

the X.mi matrix can be shifted from span (r- 1) to the adjacent span (r). Eq.3

is the desired recurrence formula, with which all the eigenmatrices X.'s (r == 2,

3, ･･････, n), can be expressed in terms of the first eigenmatrix, Xi. The recur-

rent application of Eq. 3 then gives

                        Xr := QrXi+LRjr-Li{K}r-b (5)

in which

                              Qr ua' LrQr--b (6a)
               LR]r-i ":" LRt R2 ''' Rr-ijr-i "" LLrLRjr-2 Lrj, (6b)

                        {K}r-i :{Ki K2 ''' Kr-i}･ (6C)

Note that the integrated shiftor Q. is always a 6-by-6 square matrix, the

integrated feeder LR].mi is a 6-by-6(r- 1) rectangular matrix, and the partial

assemblage of load-matrices {X}.mi is a 6(r - 1)-by-1 column matrix.

                        4. FiRal EquatieR

    Eq. 5 indicates that all the eigenrnatrices have been expressed in terms

of the single eigenmatrix Xi, so that we have (r == n)

                        Xn :" QnXi+LRjn-i{K}n-i･ (7)

The last connection point which is the common point of the last segment (n)

and the first segment (1) must be considered, which is expressed with Eq. 5 as

                          Xi := QiXi÷LRJn{K}n, (8>
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in which

                              Qi "= LiQn･ (9>
Eq. 8 at once permits the determination of the first eigenmatrix Xi ; L e. ,

                       Xi == -(Qi-fi>-'LRjn{K}m (10>
which is the desired final equation.4) Eq. 10 takes the form

                            Xi=LGj{K}. <11>
of which the LGj matrix is of size 6-by-6n and the {K}. matrix is of size 6n-

by-I. The former, LGj, depends en only the geometry and material properties

of the structure, and hence it is called the "geometry matrix." The latter,

{K}., is the assemblage of all the load-matrices.

                        5. Numerical Example

   As a numerical example of the present analysis, the circular ringsubjected

to a concentrated load acting at the crown point is ･taken as shown in Fig. 1.

The geometry aRd material properties of the ring are taken to be as follows

(Table 1):

Table 1. Numerical Values Adepted.
l tttttttt ttttttttttttttttttttttt ttttttttttttt tttttttttttttttttttttt

I E(t/m2)
il ttttttttt tttt tttttttttttttttt ttttttttttttttttttttttttttttt

I 2 100 Ooo.o
1

ttttttttttttttttttttttttttttttt tttttttttttttttt

 i (m4)
ttt tt tttttttttt ttttttt tt tt tttttttttttttttttt

O. OIO 8

. A(m2)
.

   0. 36

l
l

i

R(m)

3.0 l

. I'(.t/ie2) .

  351. 53

t. /t

i

l

  t t t tttt tttttttttttt

le(t/rn2) I･

1 054.. 6

Here E==Young's modulus, I=the moment of inertia of the cross section,

A == the cross-sectional area, R == the radius of the circuiar ring, 7' =- the shear

modulus o£ foundation, and k==the usual normal modulus of foundation; all
of these constants being measured with ton-meter unit. Table 2 shows the

values of the complete state vector at equidistant intermittent points, when

the complete ring is divided into sixty-four finite elements. Fig. 2 gives the

curves of the lateral deflection, the flexural moment, and the normal reaction,

which are plotted from Table 2. It is noted that scales of respective physical

quantities in Fig. 2 are fer convenience not the same.

   The point from which the foundation begins to experience the positive

reaction is obtained by lnverse interporation techniques, from which we have

di == 74012t.
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Table 2. Evaluatien of State Vectors.
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   The present investigation

elastic foundation (Fig. 3).

Further Developments

can be extended to box frames surrounded with

q

Fig. 3. Box Frame with Elastic Foundation.
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The geometry and material properties of this box frame are given by Table 3.

For brevity, a 4.0m× 4.0m square box frame is taken, the four members
bein.a assumed to be of the same cross section and material properties. Fig. 4

                    Table 3. Numerical Values Adopted;

E (t/m2) I
i
'

I(m`)

I
･

I A (m2)
I

I 7:(t/mL)
'

                    /.2 ioo oeo. o l･ o. ooo 67s l

         f1
O. 09

l
i 700. 0

fe (t/m2)

2 OOO. O

gwes the lateral defiection, the flexural moment, and the normal reaction at

several intermittent points.

                             7. Cenclusions

    This paper presents the operational finite element method, which is appli-

cable to the analysis of circular ring structures. It permits recursion avoiding

large-size simultaneous equations.

    In virtue of the perfectiy ciassified data of configulations and external loading

conditions, the analysis can be made without any assumption of distributed

reactions. The point at which the positive reaction begins to act can be

determined aflalytically.
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                           Appendix. -Netation

   The following symbols are used in this paper:

A =: cross-sectional area'
                              ,
EI =fiexural rigidity;
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       Circular Rings Surrounded with I),lastic Foundation.

-- axial force'
            '
== geometry rnatrix; Eq. 11;

= shear modulus of foundation'
                            ,
== normal modulus of foundation'
                             }
=: load-matrix; Eq. Ib;

=:load-matrix assemblage; Eq. 11;

= shiftor; Eq. 4;

== bending moment;

=: projector; Eq. 2;

= normal reaction'
                '
:= abscissa matrix; Eq. 1;

= shearing force;

== axial displacement;

= tangential reaction;

ma state vector for normal and conjugate domain respectively;

== lateral defiection'
                 '
== 6-by-1 eigenmatrix; Eq. 1;

== flexural slope;

== x/L, dimensionless curent abscissa; Eq. 1;

== row vector; and

==- column vector.

45

Eq. 1;


