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1. Introduction

Previously T. Pati has proved a following theorem for the absolute Nérlund
summability of a Fourier series at a point.

Theoren;. If o(ty & BV (0, ), and { p,} is a positive, monotonic non-increasing
sequence such that P,—» co as n-> oo,

{(n+1)p,/P,} € BV

and

H

S+ 1)‘1P,/P,,}E BV,
s
then the Fourier "series of f(t), at t = x, is summable |N, p,|.

Later on he“) has proved that in the theorem, “non-increasing” can be
omitted.

In this note, we shall prove an analogous theorem for the summability
IN, p,| of a Fourier series.

As is easily seen, the transformations |N, p,| and [N, p,| take symmetric
forms, hence we can expect the close relation between them. However, these

. - . 3)’4)
transfomations are not equivalent in general.

2. Definitions and Notations

Let Ea,, be a given infinite series and {s,} the sequence of its partial sums.
Let {p,} be a sequence of constants, real or complex, and let us write

P,,Ep() 4+ Py by P-k:j)_kfo fOl‘k:{f 1.
The sequence-to-sequence transformation :
1 i
Li=p 20 bas. (Py0) (1)

n y=0

defines the sequence {f,} of Noérlund means of the sequence {s,}, generated
by the sequence of coefficients { p,}
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The seriesza,, is said to be summable (N, p,) to the sum s if lim £, exists
and is equal to s, and is said to be absolutely summable (N, p,),” o’;_}osoummable
IN, p,], if the sequence itn} is of bounded variation, that is, the series
Dty —t, ] is convergeng.)

Similarly, the sequence-to-sequence transformation :

1 n
th=p 2105  (Py%0) 2
7 y=0

defines the sequence {f,} of discontinuous Riesz means of the sequence {s,},
generated by the sequence of coefficients {p,}.  The series Zan is said to be
summable (N, p,) to the sum s if lim 7, exists and is equal to s, and is said
to be absolutely summable (N, p,), :l);wsummable IN, p.), if the sequence {t.}
is of bounded variation, that is, the series »)|f, —,.;| is convergent.

Let f(f) be a periodic function, with period 2z, and integrable in the Le-
besgue sense over (— =z, =).

We assume, without any loss of generality, that the constant term in the

Fourier series of f{(t) is zero, so that

S f(t) dt =0

ki

and
fit)~ 3@, cos nt + b, sinnt) = 3 A).
1 1

We write throughout

I

S, = So(t) = ) AL,
y=2]

n

olt) = eult) = - { fla+ 1)+ fx— 1), 3

Moreover, by “{¢,} & BV ” we shall mean that {¢,} is a sequence of bounded
variation. Similarly, by “f(x) € BV{a, b)” we shall mean that f(x)is a function

of bounded variation over the interval (a, b).

Finally, as usual [z] denotes the greatest integer not greater than r.

3. Theorem and Proof

We state our result as follows :
Theorem. If o(t) e BV(0, =), and {p,} is a positive, wmonotonic sequence
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such that P,—>» o as n-» o,
{n+ Vp,/P,} € BV

and

{Z (v + 1)"1P,,/P,,} e BV,

v=1

then the Fourier series of f(t), at t = x, is summable |N, p,|.

We require the following lemmas for the proof of our theorem.
Lemma 1. If q, is non-negative and non-increasing, then, for

0<asb<co, 0t SR, and any n,

b
Eqkei (n — k)t

k=a

é Q:y

where v = [l/t] and Qm = + q\ RRREE o (/8
The result is originally due to Hill and Tamarkin.
Lemma 2. For v >0,

co __,g_n 1

ng;—f-l PnPn—l N Pu‘

This is evident, since p,= P, — P,_;, and P,-> co with n.
Lemma 3. Uniformly in 0 <t =<,

Dsin(k+ )t | Swtt
fe=0

The proof of this is easy.
Proof of the theorem. We have, by (2)

_ . " n—1
tn_' tn—l :2 }j))lfsy —Eﬁp) S,
n-1

y=0 n v =0
n 1 1 ) b
= R pvs + '—l";sn
y=0 <Pn n-1 F’n--Il

For the Fourier series of f{(f), at t = x

z sin (v —4~-21 )13
= 5,(%) = 1 o(t) dt
“To 2 sinfé ¢

(4)

(6)

)
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=2{ wp.(tyat,
T 0
so that
foro =2 w3l L L b 2(
L=t =2 0125~ p)pDADd T DAt (®)
where
sin{y + )¢ 1
D(t) = ————"—= -+ cost + - + cos L
. 2
2sin-+1

Now, by Abel’s transformation,
(22 1 1
2(p,~ pop00

-5 (; P%:)P,ADy(t) + (»1} - -I~5«711~-—~;)P,,Dn(t)

— pn ”le oS ,)—}» )t pn n D() (9)
Ppnly PnPn—l "
where
4D,(t) = D,(t) — D, .0

From (8) and (9),

k4

ro_ 2 by _ b _ba
" t"—l B T SO w(t){P Pn 11/2 P Cog g + l)t Pn»l ”(t) »+ Pn-lD”(t)}dt

o~

T

=2 S o(t)Q(n, t)dt,
T

0

where

n—1
.Q(n,t)zpi" ZP cos(v 4+ 1)L

v=

Thus, in order to prove the theorem, we have to establish that
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o

I i
St =l =235 e, at < K,

¢ l

where K is used throughout to denote an absolute positive constant, but it is
not necessarily the same at each occurrence.
We observe that

T 7 T x I3

S o(t)n, t)dt:[( S Qn, u)du)gp(t) ] —S ( S o, u)du)dgo(t)

0 0 0 0 Y]

b ¢

- ~S (S O, u)du)dgo(t),

0 0
so that,

ke !

Dt — Tl éf}_‘_,s (S Qn, u)du>d¢(t)
F74 i no 0 O i
o T ! ‘
éfZS d‘ﬁ(t)i }S Qn, u)du;.
BRI Yo !
Since, by hypothesis,
iS do(t) | < K,
o

it suffices for our purpose to show that, uniformly for 0 <f <z,

> : S Q(n, uydu ] <K,

no Yo

or what is the same thing, uniformly for 0 <¢ < =,

n—1 : :
J= }l]]Pp" Sip Sty g

| m— M
nPn——l vy =0 v+ 1

In order to deal with /, we consider two cases separately.
Case (i) Let { p,} be a posiitve, monotonic non-increasing sequence.
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Then,

P <o n—1 1
|
i

¢ pn YA
<1z=1 B nrgl >PnPn-1 /Zr() v+ 181n (V + 1)tj

J

A

=L, + L;, say,

where ¢ = [1/t].
Since,

[sin (v + D S+ DS,

and by hypothesis,

np, 1 & P,
O<~};”~<1, Pn_1§)v1—i<m'
we have
‘r_‘ _ﬁgz{m 2—1 Pv

L=t

=1 PnPn-l y=0; + 1

< Kt} " < Ktc < K.

=1 n

But, since {p,} is positive monotonic non-increasing, {j”--l—} 18 so, too.
v

Hence, we have, by Lemma I,

n—1 P t i3 P
g N
y=0u+1sm(y+ ) ]—§v+l’

v

Thus, we obtain that the Fourier series of f{f), at ¢ =, is summable
I[N, bl
Case (ii) Let {p,} be a positive, monotonic increasing sequence.

Then, we have

L . Z Pn :v:}l P,, . ( l)t
b n=1 PnPn—l v=0¥ -+ ISln ¥t
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T npn n-1 Pu
t; P Pn—lyzz() +1

I

=< KtE ”If"

(n + 1P,

< Kt)j

< Kir
=K,

by virtue of the hypothesis (4) and (5) of the theorem.

Also, {V T 1} is positive monotonic increasing sequence, by hypothesis.

Hence, by Abel’s transformation,

n—1

T—i——~sm (v +1)¢

-1

_—_g{fjsin(k—i— vt ( Pul_ P, ) *PZ_lkZﬂSi“(k* e

=0 v - v+ 2

i

— "E_:{gsin (k+ l)t} ( Poa P, > + P”'lgsin (k4 1),

v+2 w41 n

whence applying Lemma 3,

P‘J ' T Pn—l Pn—l
2y et s 0| (5 - Pt )
P,
< K(r + 1)

where
r=[1/1<1/t<c+ L
Thus, we have

- pn
L, =
: 1I§+1 PnPn-—l

n—1

P
Z‘_, SpSinG + 1t
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o Du Paig
< = LA K (- 1)
== 71 PnPn 1 7 )
= K(zr + 1) P
=41 nPn
i (m+1)p, 1
1= 741 Pn n(n + 1)
- 1
<K(c+ e
o =41 12(71 + 1)
=K.
Therefore,
J<Li+L,=K
Thus, we obtain that the Fourier series of f(#), at ¢ = x, is summable
[N, bl
This terminates the proof of our theorem.
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