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Synopsis: The effects of nonlinearity caused by the material property and the geometrical
change of structure in the analysis of plane pin-jointed trusses are discussed herein, Several
typical systems are analyzed by both of the linear and nonlinear theories, and corresponding
comments are given to the numerical results.

INTRODUCTION

On the basis of the small deformation assumption, the criterion in the design
of the prevailing structures has been made, correspondingly, the member stresses
generated by the specified loading condition is limited within the actual or
idealized linear stress-strain realm of consisting material.  Using a large or
empirical safety factor, the ahove condition can be satisfied in the practice of
structural design. As a more rational criterion for the structural design, the
reliability analysis has been proposed in recent years. D2 In this study, to estimate
the load bearing capacity of structure or to analyze the failure mechanism of
structure is one of the important problems.® Consequently, the introduction
from the accurate characteristic of consisting materials into the analysis is
necessitated. Taking the entire history of the stress-strain behavior of materials
into account, considerable quantity of strain takes place with the increase of
the stress intensity, and the shape of the diagram becomes nonlinear, the
former effects on the geometrical change in structure and the latter the reduc-
tion in the structural stiffness. Introducing each effect into the analysis, the
governing equation becomes nonlinear, and therefore, no formulary description
will be available so that the numerical treatment preferable.

In this paper, as the first examination, the effect of each nonlinear factor
on the analysis of plane pin-jointed trusses is discussed individually. In the
treatment of the material nonlinearity, a polygonal analogy to the stress-strain
curve and the incremental-variable elasticity procedure® are adopted for use,
because they are the most surefooted way in the computer operation. The
problem of the finite deformation in structure is analyzed by three attempts,
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namely, the method of displacement correction, the method of superposition
and the method of equilibration.® The merits in each method are described
considering the combined use with the treatment of material nonlinearity above.
Note here that although the finite deformation problems in the structural anal-
ysis have been investigated about the deformable structures in the elastic stress
condition such as the design of suspension bridges, ® the same problem appears
even in the undeformable structures when the entire behavior of the stress-strain
relationship in materials is considered as described above, and this paper treats
the latter case. In the final examination, numerical examples are given to the
analysis of statical behavior of pin-jointed trusses considering the material
nonlinearity together with the geometrical change of the structures.

The letter symbols and the illustrative terms adopted for use in this paper
are defined where they first appear.

BASIC CONCEPTS

In the structural analysis, the prevailing infinitesimal theory gives the
following equations:

member force: F = SPD. (1)
equilibration: PTF =L, (2)
displacement: D = [PTsSP 1L, (3)

Here, F = the member force matrix, § = the stiffness matrix of structure, P
= the projection matrix given by the structural geometry, D = the displacement
matrix and L = the load matrix. They are interrelated by the Hooke’s law
and the statical force equilibrium condition, but are independent of each other,
therefore, the solution can be obtained uniquely in any loading conditions,

When the nonlinear property of the stress-strain relationship in materials is
taken into account, the stiffness matrix $ is no longer invariant. It depends
on the stress level in each member. The governing equation in this case is
written

b = [PTs(o)P 1L — PTC(0)], (4)

in which $(¢) = the stiffness matrix and €(s)= the domain correction matrix.
Both of them are the function of the stress level in each constituent member,
so that the solution can not be obtained uniquely.

Treating the geometrical change of structure, the projection matrix P varies
with the nodal displacements generated by the loading. In this case, we have

D = [P(x, y)7sP(x, ) 11 [L — P(x, )T 5B(x, y)]. (5)
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Here, P (x,y)= the projection matrix evaluated by the nodal displacements under
certain loading condition and B (x, y) = the corresponding geometry correction
matrix. This equation also gives the nonlinearity in the structural analysis.

The combination of the above effects results in the following formula,
wherein all factors except L on the right side depend on the displacement
matrix P on the left side of the equation.

D = [P(x, )T $(0)P(x, y) 7' [L — P(x, y)T[C(0) + $(0)B(x, y)11. (6)

MATERIAL NONLINEARITY

As a fundamental concept, it can be stated that the stress intensity in each
constituent member in a structure, which is generated by a given loading
condition, must be determined uniquely by virtue of the inherent stiffness of the
structure even if the stress-strain property of the material is linear or not.
However, introducing the nonlinear property of materials into the analysis, it
is impossible to find the stress condition directly because the stiffness matrix
$(¢) in Eq. 4 becomes to the function of the member stress. To solve this prob-
lem, the iterative-direct loading procedure, the incremental-initial strain pro-
cedure and the incremental-variable elasticity procedure may be used. To the
author’s examination, the third procedure is suitable to the treatment of com-
plicated stress-strain curves such as structural steel, and the first procedure
to a little idealized flat curves. The second procedure is not so recommended.?

In the statically determinate truss systems made of a nonlinear material,
the relationship between the incremental load and the nodal displacements is
analogous to the property of the stress-strain curve, but the incremental load-
member force relationship is always linear regardless of the material property.
On the other hand, in the case of the statically indeterminate systems, different
aspects are experienced accompanied with the increment of nodal loads. How-
ever, it may be noted that the linear relationship between the incremental load
and the nodal displacements or the member forces is hold as far as the statically
indeterminate condition of the system is not lost by the appearance of large
strain of a member due to its stiffness reduction in the loading process.

As a practical application of this study, examining the load bearing ca-
pacity of pin-jointed trusses made of structural steel, the strain hardening
realm in the material considerably effects on the capacity, and the statically
indeterminate system has superior capacity to the determinate one.?®

CHANGE OF GEOMETRY

The direct determination of the rigorous change of geometry in a structure
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under certain loading condition is impossible. Because, in Eq.5, both matrices
P(x,y) and B(x,y) are the function of the displacement matrix D on the left
side. Therefore, the avenue to reach the final shape of the structural deforma-
tion must be left to the iterative procedure. The author tried the following
three methods in this treatment.

Method of Displacement Correction

The displacement of a nodal point in the pin-jointed truss systems is repre-
sented by the horizontal component # and the vertical component v in this
paper. Fig.1 shows the state of a nodal point before and after loading. The
system is deformed by the loading and the displacement components at this
point are considered # and v as shown in the figure.

before loading

AN

Fig.1. Method of Displacement Correction.

In this manner, the elongation of a member in the system is represented
by the displacements of two nodal points whereto the member is pin-connected,
and the corresponding formula becomes the Taylor or binomial expansion of the
nodal displacements. We consider the first order terms of the displacements in
the formula as unknown factors and the higher order terms of them as known
quantities which are obtained from the iterative computation in one step before.
The equilibrium condition must be treated by the deformed geometry of the
system, then the projection matrix P; used in the (j)-th iterative computation
is renewed by the nodal displacements obtained in the (j—1)-th computation.
The governing equation in the present method is given as follows:
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D, =[P;TS,P, ] [L — P;TS,B;]. (7

Here, D;= the displacement matrix obtained in the (j)-th iteration, P;7= the
transpose of P;, $,= the stiffness matrix (constant), P, = the projection matrix
before loading and B; = the geometry correction matrix renewed by P;_,.

At the start of the computation, we take P; =P, and B; =0, then Eq.7
coincides with Eq. 3 (small displacement theory). The convergent characteristic
of this method is shown in Fig. 4.

In this method, by the author’s examination, it is of no use to take many
higher order terms in the expansion, because the method itself depends on the
iterative procedure. Then, how to take the convergent accuracy on the results
obtained in each iterative step is more important.

As a simple example, numerical results in the analysis of two member
system shown in Fig. 4 are given in the following. The nodal load @ =10000 kg
is applied directly in this case. Here, ¢ = the limit of convergency between the
nodal displacements obtained in the (j—1)-th and (j)-th iteration, and {= the
number of higher order terms of the displacements used in the binomial expan-
sion in the formula.

I. Influence of higher order terms in expansion (¢ =0, 001)

t u(cm) v(cm) Fi(ke) F,(kg)
2 0. 101 599 2,274 864 41043 40 798

0. 101 599 2,274 861 41043 40 798
4 0. 101 599 2.274 861 41043 40 798

II, Influence of convergent accuracy (¢ = 4)

a u(cm) v(cm) Fi(kg) Fo(kg)
0.001 0.101 599 2.274 861 41043 40798
0.0001 0.101588 2,274 282 41 039 40793
0.000 01 0.101 588 2,274 304 41039 40793
0.000 001 0.101 588 2.274 307 41039 40793

When the nonlinear characteristic of materials is treated with the geomet-
rical change of the structure, the incremental loading procedure is usually
introduced. In this case, the external loads are divided into small parts and
accumulated step by step until the initial value of the loads. In each loading
step, the stiffness of the structure and the effect of the geometrical change are
checked, and corresponding corrections are made. In such integrative method,
how to take the convergent limit has important influence on the final result.
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The following results obtained from the analysis of two member system (E
== constant) in Fig. 4 show the feature of this problem.

IIIa Influence of step number n (¢ = 0,001, ¢ = 4)

n u(cm) v(cm) Fi(kg) Fy(kg)
0.101 599 2.274 861 41 043 40798

5 0.101 593 2,274 529 41041 40 795
10 0.101582 2.273 996 41036 40791
20 0.101 597 2,274 762 41042 40797
50 0.101578 2.273779 41035 40789
100 0,101 583 2.274 045 41037 40791
200 0.101 596 2.274 675 41042 40796

IIIb Influence of step number n (a = 0,000001, £ = 4)

% u(cm) v(cm) Fi(kg) Fy(kg)
0.101 588 2.274 307 41039 40793

5 0.101 588 2.274 307 41 039 40793
10 0,101 588 2.274 306 41 039 40793
20 0.101 588 2,274 307 41039 40793
50 0.101 588 2,274 307 41039 40793
100 0.101 588 2.274 306 41039 40793
200 0.101 588 2,274 307 41039 40793
SM 0.119 995 2.925136 48 374 48 166

(Values on the row SM are the results by the small displacement theory)

Referring to Eq.7, the present method has two kinds of projection matrices
P, (invariable) and P; (variable). Besides, the element in the geometry correction
matrix B; has complicated form of binomial expansion. Then, from the
viewpoint of the computer programing, this method is tiresome comparing with
the methods described in the following, and the convergency is inferior to the
method of equilibration as shown in Fig. 4.

Method of Superposition

The difference between the results obtained by the small and finite dis-
placement theories is negligible when the external load applied to the structure
is very small comparing with the entire stiffness of the structure. In other words,
under such loading condition, the nodal displacements obtained by the small
displacement theory can be considered as those obtained by the finite displace-
ment theory.
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Fig.2, Method of Superposition,

On the basis of the above empirical fact, the present attempt has been made.
Fig. 2 shows the concept of this method. The external load is divided into finer
elemental load so as to satisfy the above condition.  Applying the elemental
load to the structure, corresponding nodal displacements of the system are
evaluated by the small displacement theory.  After that, the geometry of the
system and the projection matrix are renewed by these nodal displacements.
This procedure is accumulated until the summation of the elemental load reaches
to the value of the actual load applied to the structure. In Fig.2 is shown the
(s) - th step of this treatment, wherein the nodal point has been displaced by
the accumulated displacements Y4u and >'4v. 1In virtue of the accumulated
deformation of the structure, member forces have been generated as shown in
the figure. They effect on the equilibrium condition in this instance. The struc-
tural displacement matrix in the (s)-th step is given as follows:

4p, =[P,TS,PI [ 4L — P,TS,4,]. (8)

Here, 4D,= the incremental displacement matrix in the (s)-th loading step,
P,T, p,= the projection matrices made by the (s—1)-th accumulated deformation

of the structure, §, = the stiffness matrix, idlzthe accumulation of the

elemental load matrix and 4, = the member elongation matrix made by the
(s—1)-th accumulated deformation of structure. In this method, the convergency
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of the numerical result is satisfied by taking the finer division of the applied
load.

The convergent condition of this method is shown in Fig. 4, which has
different feature from other methods. In this example, a smooth convergency
of the results can be observed with the increase of the accumulative step. About
the horizontal displacement #, taking the number of load division n= 50, the
error compared with the result by 7 = 1600 is 1.54%, and thus, » = 100(0.76%),
200(0. 38%), 400(0.18%), 800(0.07%).

The present method of superposition needs considerable time and labour in
the computation, but the operational style is quite same as the incremental
loading procedure in the treatment of material nonlinearity. Therefore, the
combinative use of them is available to the treatment of material nonlinearity
considering the geometrical change of the structure. In this case, finer division
of the applied load is necessitated, and the stress-strain diagram treated in the
computation must be confined to the continuous and smooth shape.

Method of Equilibration

The structure has an inherent geometry of deformation against the external
load. In virtue of the geometrical change from the initial state of the structure,
the internal forces are generated in the constituent members. The condition of
equilibration between the external and the internal forces is perfectly held at

before loading
\\ after loading

g

q
Fig, 3. Method of Equilibration,
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the deformed state of the structure.

Fig. 3 shows the displaced state of nodal point in a pin-jointed truss system
by the external loading. The geometry of the system changes from the initial
shape, and consequently, the member forces, Fy g1, Fo -1, I3 -1, are generat-
ed. In this deformed geometry, the nodal equilibrium condition must be satis-
fied between the external load and the member forces. But, this condition
can not be satisfied perfectly, therefore, the complementary forces, fi1, fou
far, must be introduced to supply the above unbalance as shown in the figure.

To produce the complementary forces, the system must yield an additional
deformation, which is given by the small displacement theory. In this manner,
the comiputation is continued until the sufficient equilibration of the system is
secured. The additional displacement matrix d; in the (&)-th repetition is given
by the following formula, wherein the matrices on the right hand side are
referred to those defined in Eq.8 rewriting the subscript % to s.

oy = [P 7S, P ] L — PS4, 9)

The convergent feature of this method is shown in Fig. 4, which is analogous
to that of the method of displacement correction and has superior convergency
to it. To the individual finite deformation analysis of structures or to the inclusive
analysis of the material nonlinearity, the present method of equilibration can be
effectively applied because of its convergent property and the simplicity in the
computer operation.

The table (p. 11) shows the comparison between the results obtained by the
small and the finite displacement theories. The system treated is the Warren
truss shown in Fig.5, which is made of linear material (£ = 2000000 kg/cm?
------ constant). Each member has cross-sectional area 10cm? and length 200
cm. The nodal points and the members are designated as shown in the figure.

3 @ 200=600cm

Fig.5. Three Panel Warren Truss,



Analysis of Warren Truss by Small and Finite Displacement Theories.

loading condition

horizontal displacements

vertical displacements

member forces

% 3 1, u; g ; vg V3 Vs v vg Fy Fy Fy
0 S L0882 ,0481 .0497 .0769 .0304 0866 L1620 1629 .1416 .1037 .0546 —1924 +2888 1923
L0882 ,0481 .0497 .0769 .0304 0865 L1621 1630 1417 1037 .0546 —1931 42889 ~—1926
E —0.00 —0.00 —~0.00 —0.00 —0.00 —0.12 | 4+0.06 +0.06 +0,07 +0.00 +0,00 +0.36 40,03 +0.16
e S .2165 ,0866 .1010 ,1732 .0433 .2020 .3250 ,4666 .4083 .3000 1583 +5782 48667 —5758
m F .2164 .0862 .1008 1729 .0429 2016 .3251 .4666 .4084 ,3001 .1584 +5749 48671 —5778
la k —0.05 —0.46 —-0,20 —0.17 —0.92 —-0,20 | +0.03 +0.00 40,02 40.03 +0,06 —0.57 +0.05 40.35
e e .3464 .1154 1732 .2886 .0577 .3464 ,4666 ,7333 .7666 .5666 .3000| 411575 17328 —11493
m F .3461 1145 1726 ,2880 .0565 3451 L4671 7334 .7674 .5671 ,3004 | +11511 +17351 —11554
= {e = —-0.09 -0.78 —0.35 —0.21 —2,08 —0.58 | +0.09 +0.01 4+0.10 +0.09 +0,13 ~0.55 +0.13 +0.53
S .4490 1347 ,2373 .3656 .0449 4618 L5703 .9296 1,033 .8703 .4629 | +15447 +23094 —19164
F .4486 1332 .2362 .3645 ,0429 4593 L5711 ,9299 1,035 ,8707 .4635 | +15352 423138 —19249
—~0,09 -~1.11 —0.46 —0.30 —4.45 —0.54 | +1.40 +0.03 +0.12 +0.05 +0,13 —0.62 +0.19 +0.44
L5051 1443 2742 4041 0433 5484 .6250 1,033 1.175 1,033 .6250 | -+17387 +25980 ~23018
F L5046 .1424 L2727 4029 .0407 5454 ,6260 1.03¢4 1,177 1,034 .6260 | --17281 426047 —23118
—0.11 —1.32 —0.55 —0.30 —6.00 —0.55 | +0.16 +0,06 +0.14 +0.06 +0.16 —-0.61 +0.26 +0.43

0€ "ON
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The finite displacement analysis is carried out by the method of equilibration.
Taking the convergent limit ¢ = 1/100 000, the computation was finished within
three repetitions in each case. In the table, the row symbols S and F denote
the results obtained by the small and the finite displacement theories, respec-
tively, and p is the ratio between them, which is given by 100 x (F—S)/S percent.
The column symbols #; and v; are the horizontal and vertical displacements at
nodal point [7] and F; is the internal force of member (). The vertical load @
equals to 10000 kg at each node.

Observing the results obtained by the finite deformation theory, it can be
said that, under the given loading condition shown in the table, the horizontal
displacements yield smaller, while the vertical ones larger than them obtained
by the small displacement theory. Similar aspects can be observed in the
column of the member forces. With the increase of the applied loads, the system
becomes deformable, consequently, the ratio p defined above becomes larger.
Thus, the importance of the effect produced by the geometrical change of the
structure increases under such deformable loading condition of the structure,
even though the stress condition of the consisting members is kept within the

linear (elastic) domain.

COMBINED EFFECT

The combined nonlinear effect on the analysis of pin-jointed truss structures
is caused by the nonlinear characteristic of consisting materials and the geomet-
rical change of the structure. All the analytical equations in this instance are
reduced to Eq.6, and it is advisable to combine the method of equilibration with
the incremental-variable elasticity procedure. The following examples are treated
by this combination.

Fig. 6 shows the behavior of three member truss analyzed by the small and
finite displacement theories. Each member has cross-sectional area 10 cm?, and
its stress-strain characteristic is shown in the figure. Horizontal load P is applied
to the interconnected joint and increased up to 10000kg.  In this figure, fi,
s, Js = the member forces by the small displacement theory, Fy, Fs, Fs=the
member forces by the finite displacement theory, and U, V = the nodal dis-
placements by the finite displacement theory.

In the small displacement theory, the truss maintains its original shape
regardless the external loading, so that, under the present loading condition,
the load P is carried by the members (1) and (3) only, and therefore, f; =0
and no vertical displacement appears.

Considering the geometrical change in the system, a slight upward dis-
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placement appears at the interconnection joint. In virtue of this behavior, the
member force F, varies as shown in the figure. Variation of other member
forces is also nonlinear, but very small, then the difference between both theories
is shown in the figure. The behavior of the nodal displacements U, V is anal-
ogous to the stress-strain diagram of consisting material. In the figure, no
visible difference can be observed between the horizontal displacements obtained
by both theories, because the difference is only 0.3 percent at the state of the
final loading condition.

CONCLUSION

Numerical approaches to the treatment of nonlinear problems in the pin-
jointed truss structures have been presented in this paper. On the viewpoint of
the author’s examination, it is stated that the incremental-variable elasticity
method is the steady approach to the treatment of material nonlinearity, and
the method of equilibration is effective for the analysis of geometrical nonlinear-
ity. The combination of these methods paves the way to the detailed research
for the structual behavior.

The effect of nonlinearity compared to the prevailing infinitesimal theory of
structural analysis is not so seriously observed in the examples shown in this
paper. Because the stress-strain diagram used for the computation is smooth and
continuous flat one as shown in Fig. 6. Treating the characteristic of structural
steel having the elastic, the yielding and the strain hardening domains, the
abrupt reduction of stiffness in the yielding domain of a member effects seriously
on the change of geometry of the structure.” To trace the structural behavior
under such state, it consumes too much time and labor, and therefore, this
problem will be reported with valid devices for programing in the near future.
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