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Synopsis: The effects of nonlinearity caused by the material property and the geometrical

change of structure in the analysis of plane pin-jointed trusses are discussed herein. Several

typical systems are analyzed by both of the linear and nonlinear theories, and corresponding

comments are given to the numerical results.

                            INTRODUCTION

   On the basis of the small deformation assumption, the criterioll in the design

of the prevailing structures has been made, correspondingly, the member stresses

generated by the specified loading condition is limited within the actual or

idealized linear stress-strain realm of censistkng material. Using a large or

empirical safety factor, the above condition can be satisfied in the practice of

structural design. As a more rational criterion for the structural design, the

reliability analysis has been proposed in recent years. i)･2) In this study, to estimate

the load bearing capacity oS structure or to analyze the failure mechanism of

structure is one of the importaRt problems.3) Consequently, the introcluctlon

from the accurate characteristic of consisting materials into the analysis is

necessitated. Taking the entire history of the stress-strain behavior of materials

into aecount, consideyable quaneity of strain takes place with the increase of

the stress intenslty, and the shape of the diagram becomes nonlinear, the

former effects on the geometrical change in structure and the latter the yeduc-

tion in the structural seiffness. Introducing each effect into the analysis, the

goverRing equation becomes nonlinear, and therefore, no formulary description

will be avallable so tkat the numerical treatrnent preferable.

    In this paper, as the first examination, the effect of each nonlinear factor

on the analysis of piane pin-jointed trusses is discussed individually. In the

treatment of the material nonlinearity, a polygonal analogy to the stress-strain

curve and the incremental-variable elasticity procedure4) are adopted for use,

because they are the most surefooted way in the cornputer operation. The

problem of the finite de£ormation in structure is analyzed by three attempts,
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namely, the method of displacement correction, the method of superpositlon

and the method of equilibration.5) The merits in each method are described

con$idering the combined use with the treatment of rnaterial nonlinearity above.

Note here that although the finite deformation problerns in the structural anal-

ysis have beeR investigated about the deformable structures in the elastic stress

condition such as the design of suspension bridges,6) the same problem appears

even in the undeformable structures when the entire behavior of the stress-strain

relationship in materials is considered as described above, and this paper treats

the latter case. In the final examination, numerical examples are given to the

analysis of staticai behavior of pin-jointed trusses considering the material

nonlinearity together with the geometrical change of the structures.

   The letter symbols and the illustrative terms adopted for use in this paper

are defined where they first appear.

                           BASIC CONCEPTS

   In the structural analysis, the prevailing infinitesimal theory gives the

following equations:

   member force: gt == $geP. (1)
   equilibration: ge71ge == t. (2)
    displacement: ew m= [geTsge]ig. (3)
Here, F= the member force matrix, S= the stiffness matrix of structure, p

 = the pro]ection matrix given by the structural geometry, D = the displacement

matrix and L=: the load matrix. They are interrelated by the Hooke's law

and the statical force equilibrium condition, but are 2ndependent of each other,

therefore, the solution can be obtained uniquely in any loading conditions.

    When the nonlinear property of the stress-strain relationship in materials is

taken into account, the stiffness matrix $ is no longer invariant. It depends

on the stress level in each member. The governing equation in this case is

wntten

                    D=[pT$(a)ge]-i[a-PTC(a)], (4)

in which S(o) = the stiffness matrix and C(a) := the domain correction matrix.

Both of them are the function of the stress level in each constituent member,

so that the solution can not be obtained uniquely.

    Treating the geometrical change of structure, the projection matrix P varies

with the nodal displacements generated by the !oading. In this case, we have

               D =: [ge(x, y) ilsisp(x, N)]mi [£ - ge(x, y)Tsss(x, y)]. (5)
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Here, ge (x,y) =' the projection matrix evaluated by the nodal displacemeRts under

certain loading condition and ss(x,N)= the corresponding georaetry correction

matrix. This equation also gives the nonlinearity in the structural analysis.

   The combination of the above effects results in the following formula,

wherein all factors except E on the right side depend on the displacement

matrix D on the left side of the equation.

      p :`- [p(x, y)T$(a)ge(x, y)]-' (a - ge(v, y)T[c(a) -Y $(a)ss(x, y)]). (6)

                      MATERgAL NONLINEARITY

   As a fundamental concept, it can be stated that the stress intensity in each

constituent member in a strttcture, which is generated by a given loading

coRditiori, must be determined uniquely by virttte of the inherent stiffness of the

structure even if the stress-strain property of the material is linear or not.

However, introducing the nonlinear property of materials into the analysis, it

is irnpossib!e to find the stress condition directly because the stffness matrix

s(o) in Eq.4 becomes to the functioii of the meraber stress. To solve tkis prob-

lem, the iterative-direct loading procedure, the incremental-initial strain pro-

cedure and the incremental-variable elasticity procedttre may be used. To the

author's examination, the third procedure is suitable to the treatment of com-

plicated stress-strain curves such as structural steel, and the first procedure

to a little idealized fiat curves. Tke second procedure is not so recommended. 7)

   In the statically determinate truss systems made of a nonlinear material,

the relationship between the incremental load and the nodal displacements is

analogous to the property of the stress-strain curve, l]ut the incremental load-

member force relationship is always linear regardless of the material property.

On the other hand, in the case of the statically indeterminate systems, different

aspects are experienced accornpanied with the increment of nodal loads. How-

ever, it may be noted that the linear re!ationship between the iRcrementaHoad

and the nodal displacements or the member forces is hold as far as the statically

indeterminate condition of the system is not lost by the appearance of large

strain of a member due to its stffness reduction in the loading process.

   As a practical application of this study, exarnining the load bearing ca-

pacity of pin-jointed trusses made of structural steel, the strain hardening

realm in the material considerably effects on the capacity, and the statically

indeterminate system has superior capacity to the determinate one. 7),8)

                        CHANGE (I)ge GEOwtETRY

   The direct determination of the rigorous change of geometry in a structure



under certain loading condition is impossible. Because, iR Eq.5, both matrices

P(x,y) and s<x,y) are the functioB of the displacement matrix D on the left

side. Therefore, the aveRue to reach the final shape of the structural deforma-

tion must be left to the iterative procedure. The author tried the following

three methods in this treatment.

   Methodi of Displacement Correction

   The displacement of a nodal point iR the pin-joiRted truss systems is repre-

sented by the horizontal component u and tke vertical component v in this

paper. Fig.1 shows the state of a nodal point before and after loadiRg. The

system is deformed by the loading and the displacement components at this

point are considered u and v as skowR in the flgure.

                            b{tfore ioftdinsr
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                  Fig.l. Metked of Displacement CorrectioR.

   In this manner, the elongation of a member in the system is represented

by the displacements of two nodal points whereto the member is pin-connected,

and the corresponding formula becomes the Taylor or binomial expansion of the

nodal displacements. We coRsider the first order terrns of the displacements in

the formula as unknown factors and the higker order terms of them as known

quantities which are obtained from the iterative computation in one step before.

The eq"ilibrium condition must be treated by the deformed geornetry of the

system, then the projection matrix gej used in the (]')-th iterative computation

is renewed by the nodal displacements obtained in tke (]'-1)-th computation.

'I'he goverRing equation in tke present method is given as follows:



No. 30 Nonlinear Effects on the Analysis of Pin-Jointed Trusses s

                  DJ' nv- [paJ'T$ogee]-i[th-gej'T$oBJ']･ (7)

Here, gej= the displacement matrix obtained in the (]')-th iteratioR, gejT== the

transpose of pj, $.= the stiffness matrix (coRstant), ge. == tke projection matrix

before loading and Bj -- the geometry correctlon matrix renewed by Pj-i.

   At the start of the computation, we take Pj -- ge.and sjxO, then Eq.7

coincides with Eq.3 (small displacernent theory). The convergent characteristic

of this method is shown in Fig.4.

   In this method, by the anthor's examination, it is of no use to take many

higher order terms ln the expansion, because the method itself depends on the

iterative procedure. Then, how to take the convergent accuracy on the results

obtained in each iterative step is more important.

   As a simple example, numerical results in the analysis of two member

system skown in Fig. 4 are given in the following. The nodal load Q=:10000 kg

is applied directly in this case. Here, a== the limit of convergency between the

nodal displacements obtained in the (1'-1)-th and (d)-tk iteration, andt= the

number of higher order terms of the displacements used in the binomial expan-

sion in the formula.

            I. .Influence of highe.r order terms in expaRsion (a =O.eOl)
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   When the nonlinear characteristic of materials is treated with the geomet-

rical change of the strttcture, the incremental loading procedure is usually

introduced. In this case, the ex£ernal loads are divided into small parts and
accumulated step by step until the initiai value of tke loads. In each loading

step, the stiffness of the structure and the effect of the geometrical ckange are

checked, and corresponding corrections are made. In such integrative method,

how to take tke convergent limit Iias important infiuence on the final result.



   The following results obtained from the analysis of two member

== constant) ln Fig.4 show the feature of this problem.

               III e. Influgn.c. .e of ..Etep number n (a = e. OOI, t : 4) .. ...

n u(cm) v(cm) L(kg)

    No. 30
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IIIb lnfluenee of step number n (a : O.OOOOOI, t -- 4)
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41 039

48 374
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4e 793
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    (Values on the row SM are the results by the small displacement theory)

   Referring to Eq. 7, the present method has two kinds of projection matrices

Pe (invariable) and Pj <variable). Besides, the element in the geometry correction

matrix Bj has complicated form of binomial expansion. Then, from the

viewpoint of the computer programing, this method is tiresome comparing with

the methods described in tke following, and the convergency is inferior to the

method of equilibratioR as shown in Fig. 4.

   Metkod of SuperpositieR

   The difference between the results obtained by the small and finite dis-

placement theories is negligible when the external load applied to the structure

is very small comparing with the entire stiffRess of the structure. In other words,

under such loading condition, the nodal displacements obtained by the small

displacement theory can be considered as those obtained by the finite displace-

ment theory.
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           f the above empirical fact,

                       method. The external load is divided into finer

                           above condition. Applying the elemental

                             nodal displacements of the system are

                           theory. After that, the geometry of the

                              renewed by these nodal displacements.

procedure is accumulated until the summation of the elemental load reaches

                             to the structure. In Fig.2 is shown the

                              the nodal point has been displaced by

                            and Ztiv. In virtue of the accumulated

                             forces have been generated as shown in

                      equilibrium condition in this instance. The struc-

                              step is given as follows:

                            '
                        ri[ZxttL-P,TS.A,]. (8)
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of the numerical result is satisfied by taking the finer division of the applied

load.

   The convergent condition of this method is shown in Flg.4, which has

differeRt feature from other methods. In this example, a smooth convergency

of the results can be observed with the increase of the accumulative step. About

the horizontal displacement as, tal<ing the number of load division n=: 50, the

error compared witk the result by n == 1600 is l. 54%, and thus, n == 100(O. 76%),

200(O.38%>, 400(O.18%), 800(O.07%).

   The present method of superposition needs considerable time and labour in

the computation, but the operationai style is quite same as the incremental

loading procedure in the treatment of rnaterial nonlinearity. Therefore, the

combinative use of them is available to the treatmeBt of material nonlinearity

considering the geometrical change of the structure. In this case, finer division

of the applied load is necessitated, and the stress-strain diagram treated in the

computation must be confined to the continuous and smooth shape.

   Method of EquiiibratioR

   The structure has aR inherent geometry of deformation against the exeerRal

load. In virtue of the geometrical change from the initial state of the structure,

the internal forces are generated in the constituent members. The condition of

equilibration between the external and the internal forces is perfectly held at

             befo･re loading

                      -×

                X ofter loadins'
                                wi!;･'i' ,,,-L . fff,i-lh

                                         t-
                         f3,k / SX.
                         .!{g2agQ, ptP
                              E,,,J, l

                    q
g'ig.3. M[etltod of Equilibration.
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the deformed state of the structure.

    Fig. 3 shows the displaced state of nodal point in a pin-jointed truss system

by the external loading. The geometry of tke system changes from the initial

shape, and consequently, the memberforces, Fi,k.i, F2,k-i, F3,k-i, are generat-

ed. In this deformed geometry, the nodal equilibrium condition must be satis-

fied between the external load and the member forces. But this condition
                                                         '
can not be satisfied perfectly, therefore, the complementary forces, A,k, .fb,k,

hfe, must be introduced to supply the above unbalance as shown in the 'figure.

    To produce the complementary forces, the system must yield an additional

deformation, which is given by the small displacement theory. In this manner,

the computation is continued until the suficient equilibration of the system is

secured. The additional displacement matrix dk in the (le)-th repetition is given

by the following forinula, wherein the matrices on the right hand side are

referred to those defined in Eq.8 rewriting the subscript k to s.

                    clk :== [PkT$ogek]-"i[k-PkT$eAk]･ (9)

   The convergent feature of this method is shown in Fig. 4, which is analogous

to that of the method of displacement correction and has superior convergency

to it. To the individual finite deformation analysis of structures or to the inclusive

analysis of the material nonlinearity, the present method of equilibration can be

effectively applied because of its convergent property and the simplicity in the

computer operatlon.

   The table (p. 11) shows the comparison between the results obtained by the

small and the finite displacement theories. The system treated is the Warren

truss shown in Fig.5, which is made of linear material (E === 2000000kg!cm2

･･････ constant). Each member has cross-sectional area 10cm2 and length 200

cm. The nodal points and the members are designated as shown in the figure.

                       Q2
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(4) [41 (8) [6i
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{11)

[31
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Fig.5. {I]hree Panel Warren Truss.
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The finite displacement analysis is carried out by the method of equilibration.

Taking the conver.crent limit a = lflOOOOO, the computation was finished within

three repetitions in each case. In tke table, the row symbols S and F denote

the results obtained by the small and the finite displacement theories, respec-

tively, and p is tke ratio between them, wkich is given by 100×(F-S)IS percent.

The column symbols ui and vi are the horizoRtal aRd vertical displacements at

nodal point [i] and Fi i's the iRternal force of member(i). The vertical load Q

equals to 10 OOO k.cr at each node.

    Observing the results obtained by the finite deformation tkeory, it can be

said that, under the given loading condition shown in the table, the horizontal

displacements yield smaller, while the vertical ones larger than them obtained

by the small displacement theory. Similar aspects can be observed iR the

column of the member forces. With the increase of the applied loads, the system

becomes deformable, consequently, the ratio p defined above becomes larger.

Thus, the importance of the effect produced by the geometrical change of the

structure increases under such deformable loading condition of the structure,

even though the stress condition of the consisting mernbers is kep't within tke

linear (elastic) domain.

                          COMBINED EgeFgCT

   The combiRed nonlinear effect on the analysis of pin-joiRted trttss structures

is caused by the nonlinear characteristic of consisting materials and the geomet"

rical change of the structure. All the aRalytical equations in this instance are

reduced to Eq. 6, and it is advisable to combine the method of equilibration with

the incremental-variable elasticity proceclure. The following examples are ereated

by this combination.

   Fig.6 shows the behavior of three member truss analyzed by the small and

finite displacement theories. Each mernber has cross-sectional area 10cm2, and

its stress-straiR characteristic is shown in the figure. Horizontal load P is applied

to the interconnected joint and increased up to 10000kg. In this figure, A,

fe, fl] =: the member forces by the small displacemeBt theory, Fi, F2, F3 == the

member forces by the fiRlte displacement theory, and U, V== the nodal dis-

placements by the finite displacement theory.

   In the small displacement theory, the truss maintains its original shape

regardless tke external loading, so that, under the present loadiR.ff condition,

the load P is carried by the members (1) and (3) only, and therefore, h ==O

and no vertical displacement appears.

   Considering the geometrical change in the system, a slight upward dis-
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placement appears at the interconnectioR joint. In virtue of this behavior, the

member force F2 varies as sbown in the figure. Variation of other member

forces is also nonlinear, but very small, then the difference between both theories

is shown in the figure. The behavior of the nodal displacements U, Y is anal-

ogous to the stress-strain diagram of consisting material. In the figure, no

visible difference can be observed between the horizontal dlsplacements obtained

by both theories, because the difference is only O.3 percent at the state of the

final loading condition.

                              CONCLUSION

    Numerical approaches to the treatment of nonlinear problems in the pin-

jointed truss structures have been presented in this paper. On the viewpoint of

the author's examination, it is stated that the incremental-variable elasticity

method is the steady approach to the treatment of material nonlinearity, and

the method of equilibraeion is effective for the analysis of geometrical nonlinear-

ity. The combination of these methods paves the way to the detailed research

for the structual behavior.

    The effect of nonlinearity compared to the prevailing infinitesimal theory of

structural analysis is not so seriously observed in the examples shown in this

paper. Because the stress-strain diagram used for the cornputation is smooth and

continuous flat one as shown in Fig.6. Treating the characteristic of structural

steel having the elastic, the yielding and the strain hardening domains, the

abrupt reductioR of stiffness in the yielding dornain of a member effects seriously

on the change of geometry of the structure.7) To trace the structurai behavior

under such state, it consumes too much time and labor, and therefore, this

problem will be reported with valid devices for programing in the near future.
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