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Synopsis

The present article will give a Fadle eigenfunction analysis of rectangular
plates in flexure by means of complex matrix algebra. Rectangular plates have
many structural applications, and their flexural analysis is thus of considerable
importance.

The solution of the flexural problems of classical elasticity generally involves
the satisfaction of the homogeneous biharmonic equation and the imposed
boundary conditions. Although these boundary value problems have been the
subject of many investigators and the literature is replete with numerous solu-
tions, many problems of practical interest have not been solved with respect
to the actual imposed boundary conditions.

Fadle and Papkovitch were the first to present a method for solving rec-
tangular plate problems by the use of complex biharmonic eigenfunction. The
utility of a representation in terms of a Fadle eigenfunction series is contingent
on the ability to express arbitrary functions in terms of the series. FEach term
of a series of these functions satisfies the governing differential equation ptw = 0
and certain homogeneous boundary conditions on two parallel edges identically.
In addition, each term of the general eigenfunction series, when written for
finite rectangular plates, contains two arbitrary complex constants which can
be used to satisfy arbitrary boundary conditions on the remaining two edges.
Thus, the use of these eigenfunction permits the simultaneous satisfaction of
the boundary conditions on all four sides of the rectangular plate. An appro-
ximate expansion formula is developed and applied to the flexural rectangular
plate problem.
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The analysis can be made for complex quantitiesas as these appear, and
needs not to separate real parts from imaginary ones, because these can be
evaluated numerically with digital computers.

1. First Solution for Clamped Rectangular Plates

1. Introduction.

The analysis of such plates with two opposing edges simply supported may
be easily made by a Fourier series analysis which is called Lévy’s solution.
When this technique is applied to a plate that is clamped on all four edges,
then the resulting matrix has an infinite number of terms. The usual procedure
is truncation of this matrix; however, this leads to poor convergence of the
solution near the corners of the plate. The infinite matrix results from the fact
that the trigonometric functions satisfy only one of the two boundary conditions
at each of the plate boundaries. The enforcement of the second boundary condi-
tion then gives rise to the infinite system of simultaneous equations. In the
forming of the infinite matrix, it is necessary to expand hyperbolic fuctions in
terms of Fourier series. It is the slow convergence of those series that lead to
poor convergence of the solution near the corners. In order to avoid this infinite
matrix, considerable effort has been expanted in developing eigenfunctions that
satisfy all the boundary conditions at the plate boundaries.

In the following analysis, the Fadle eigenfunction method is used in the
development of a general solution method for clamped rectangular plate prob-

lems.

2. Homogeneous Deflection.

The coordinate system used in describing the flexure problem considered is
shown in Fig.1; for brevity, only loading functions that are symmetric about

//"Emped‘ both the x and y axes will
be considered.
b The flexural deflection
Lo w of a plate is in general
0 X, 0

governed by the differential
equation

-

Clamped L« / a a ———-———1

y
Fig. 1., Clamped Rectangular Plate,
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ptw = qu. ey

It is convenient to write the complete solution to Eq.1 as a sum of two
functions; i.e.,
w = Wy + wp) (Za)

in which w, = the homogeneous solution meant to satisfy the prescribed bound-
ary conditions and w, = the particular soltution compatible with the loading
condition. The second function w, is a particular solution to Eq.1, satisfying

q
4y — L
viw, = g (2b)
Combining Eq. 2b with Egs.1 and 2a, the following governing equation for w,
is obtained :
‘74wh = 0. (ZC)
The homogeneous functions satisfying Eq.2c take from symmetry the form
(Fig. 1)
. 2 x
w, :Z_‘,l_cos Ap, Zosinlp] Nchzy (p = ——), (3)
it
in which the approach eigenmatrix N is a 2-by-1 column matrix, each element
of which will be a complex constant.

3. Complex Homogeneous State Vectors.

The plate flexure will consist of ten elements, and it will be for convenience
to classify into the two state vectors

- - 1 -
p ]
= ox
)
a, @
02 02
M, — Dz + v
wh = - (axz ay2) Wy, (43-)
92 92
’ = D(55 + 5)
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(4b)

Eq. 4b may be referred to as the edge-shear vector. Since the complex deflection
w), is given by Eq. 3, the two state vectors yield the approach equations

(5a)

- - - Ay P _ .
w ch; cos Ap, Ap sin Ap
0. ichl—y — sin 2p, sin 2o — Ao cos Ap
a a
A LAY .
9, - Sh— cos Ap, Ap S1n Ap
22y .
M, — D—ch— — (1 —wv)cosdpe, 2cosip—(1—v)lesindp
W/l - - a a
M £ ot 1 2psin2
’ — Dseh— (1 — vjcosdp, 2vcosdo-+ (1—v)ipsinip
Ay . .
M,, — D1 - v)—,,sh; — sin Ap, sin 2p -+ Ap cos Ap
. A2 2 .
S, —D— h—j—) 0, — 2sindp
@ a
X 2 Ay
_S, L _ —DZZ;S - 0, 2cosip i
i Ay
;] ]sl_shz_ll’ l’ (1 —vysindp, (14 v)sindp+ (1 —v)lpcosi )p‘l
5= = — D=
A K
LS, s sh; 1_ (1 —v)cosdp, 2(2 —v)cosdp — (1 —v)ipsinde_| (5b)

4. Boundary Condition of Rectangular Plate.

The boundary conditions of being clamped along all edges are expressed by

the equations

0x ﬂ=i1w

w
0, and =0.
03/ y== b

(6)
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The boundary conditions defined by Eq.2a are then expressed as

w w w w
=0, =0, and + ] = 0. (7
O _Ln, o=x1 Oz dpo=x1 Oy_iry=2b L0y |p,y=x0

In view of Eq.5, the boundary equation defined by Egs. 7a yields the charac-

cos Ap, Ap sin Ap
] ] N =0. (8)
—sinlp, sinip — Apcosip

teristic equation

Eq. 8 holds only when the determinant vanishes, from which we obtain the
eigenvalue equation

A+sindcos =0, or 21-+sin2i=0. (9)

The solution of Eq.9 yields only complex roots which are written as 2 = a + 8,
provided only positive values of « and 8 need to be considered. Eq. 9 has been
solved with digital computers, and its first sevral zeros are given in Table 1.

Table 1, Zeros of 22 + sin21 =0,

" 2, } 28,

1 4,212392 2305 2.950728611 6
2 10,712 537 397 3 3,103 148745 8
3 17. 073 364 853 2 3,551 087 347 0
4 23,398 355 225 7 3,858 808 993 1
5 29.708 119 825 3 4,093704 924 8
6 36. 009 866 016 4 4.283781587 8
7 42.306 826 717 6 4,443 445 830 3
8 48.600 684 124 1 45811045735

Eq. 8 has then only one significant component equation, so that the homo-
geneous eigenmatrix M reduces to the form

A Asini 1
N = - K, Ke—r A (10)
B — cos 2 Asind

Accordingly, the approach homogeneous deflection w, reduces to the equation

Asin 2 Ay
wy, = » }|coslp, Apsinip] ch=iK, (11a)
n — Ccos 4 a

K
i=[11], K:l: ] (11b)
K,

in which
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in which K is called the real eigenmatrix.

5. Representation for Particular Solution.

The particular deflection w, satisfies Eq. 2b. In view of symmetry about
both the x and y axes, it takes the form

w,=[1 p* ptIN,{1 7* 7'}, (12a)

[‘ao a, a[l
y 7

in which

Ny=|b, by 0 -2 (12b)
¢ 0 O
provided that
g 44
by = — 3ay, — 3¢ + 3D (13)

Noticicing that Eq.12a must satisfy Egs.2b and 7b, it will after a little
manipulation be found that the particular eigenmatrix M, results in the desired

1*1 0 0
qa*

value

Ny=5 50 =2 0 0 (14)
1 0 0
and then, the particular state vector becomes
4
3
01 ng 0 o 2p3
9, 0 0 0 0
2 1
M, - q{; 0 1 60 l— 1
w, = = L -2 . (15)
2
M, 2 o 1 e (L J
M, 0 0 0 0
S, —qa 0 0 o
S, 1, L o J Lo o o_
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6. Fourier Series Representation for Eigenfunction.

The four element p-eigenfunctions occurring on the right side of Eq.5 are
expanded into Fourier series as follows :

cos Ap _i I

psin Ao co I,
= > lcosmzp \ (16)

L sin Zp m=0 L ]3

0 Cos 2p 1,

in which (/; ~ I;) are the complex Fourier coefficients, which are to be com-
puted. Eq.5 then becomes

W, = Z Ccos mrp I:I,_Jmnyn(y)i K, (17)

m=0

which is the desired Fourier series representaion of the complex homogeneous
state vector W,.

7. Fourier Series Expansion for Particular Solution.

The element particular solutions will be represented by Fourier series as

follows :
-1- s
0 Ji
oF | = icosmnp T2l (18)
o " Js
_ o _Ja

and then, the particular state vector, Eq.15, will be defined by

W, = i cos mrp [ p,, . (19)

m=0

8. Final Equation for Real Eigenmatrices.

The complete state vector, W, is given by the sum of homogeneous and
particular state vectors from Eq.2a, so that we obtain

W= Wh + W/)- (20)

From Eqgs. 17 and 19, this equatioin should be expressed in terme of Fourier
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series, and then we can write

W= i cos map [| Xna(y) { Ko} + pul, (21a)

o
in which
Xn(¥) = [ Jma¥ u( D). (21b)
The boundary conditions at the second opposing edges y = b are then
expressed by the equations
SWy—up =0, (22)

in which § is a selector and is a 2-by-8 rectangular matarix. If for example
edges ¥y = £ b are clamped, then Eq. 22 becomes

w 10000000
= Wy:ib:()- (23)
0,125 LO 01000 0 0

Eq. 22 yields in view of Eq. 2la the equation
LZoa { K} + Py =0, (24a)
in which
LZ,,] = 8, (= 0)], P, = S$p, (24b)
The matrix z,, is a 2-by-2 square matrix and may be called the element
stiffness matrix of orders m and n. The matrix P,, is a 2-by-1 column matrix
and is the element load matrix of order m.

The element stiffness and load matrices for the clamped condition on all the
four edges are expressed by

iy 48(— 1)™
m ch— - 4
424 — 1) a :p qat (mz)
(22— (mz)* A 2 2y "24D
il N
a a

Lzan = (253)

y=z%x0

For the first special case in which m = 0, Eq.25a will become

Ay 16
e | 15
ZOn = 4 1, P() = > . (25b)
L2 | 0, ]
as a y=b

Eq. 24a will hold for m =0, 1, 2, 3, 4, -, so that the column assemblage for

these integers vields the desired system of simultaneous equations. Since Eq. 24a
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has an infinite number of rows and columus, it is necessary to truncate them,

so that the complet stiffness matrix can be a square one. We then take
m=0,1,2 3, - , N—1, and n=1, 2, 3, N. (26)

Eq. 24a may then be expressed in the final explanatory form

Zoi  Zop  Zos  Zos Zyy ] [ KT - Py |
Zyy Zyy E1s Zyy Zi,N K, Py
Zyy Zgo EZas  Zoy Zy N K3 P
-+ =0, (27)
Zs,1  Zge  Z33  Zaa Zy, N K, Py
Zy_1,1 Ey-1,2 Zy-1,3 Enore o Znogn o KN _Pn-1]

or in abbreviated notation,

[Zmn]{ Kn} + {‘Pm} = 0. (28)

9. Numerical Examples,

The proposed matrix eigenfunction method is very suitable for computer
programming. As numerical example of the preceding analysis, a rectangular
plate, which is uniformly loaded over its entire surface and is clamped along
the four edges, is taken.

Input data of the numerical example are given in Table 2.

Table 2. Plate Parameters and Loading,

Example 1 Example 2
Size of plate 2m X 2m 1.5ft x 2 ft
Thickness of plate 0.02m 0.251in
Modulus of elasticity 1.2 x 107 t/m? 0.42 x 10° psi
Poisson’s ratio 0.3 0.35
Uniformly distributed load 0.1t/m? 10 psf

Example 1. Figs. 2 and 3 show the convergence of the real-eigenmatrices
and the element load-matrices of order # in the infinite series.

Tables 3 and 4 show the comparison of respective physical quantities on the
Ox and Oy axes, when the infinite series is truncated with the first four and
eight terms.

Figs. 4 to 6 show the curves of the deflection, theflexural moments and the
shearing forces, when the first eight terms are retained.
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Magnitude
1071
Magnitude
100}
107°F
10*1 R P
Clamped along all edges
]
Ay
LY
A
kY
\
1072 PR = P Y,
o *s, Clamped-Free Y
Clamped N eGrm ey 10-% N
along all ‘\\
edges
1073 s
Clamped -Free %
107} 1075 .
\\
\Ql
A Y
\
\
Ay
‘\
N N ' , X I L ( n 1 . ' s L r Yomem =
1 2 3 4 5 6 7 8 Term 1 2 3 4 5 6 7 8 Term
Fig., 2, Magnitude of Real Eigenmatrix, Fig.3. Magnitude of Element
Load-matrix,
w X 10°
Deflection in meters
1.31593 1.17537
0.78865
0.28935
1.17537 10.0 0.25 0.5 0.75 0'0%0%65
" Distance
in meters
0.25 6.000553
07886 0.70663
Q4785 0.17829,
0.000496
Clamped
0.06715 1
0.000323 ( 2
& op—r=
LW - - - 0.0
Distance
in meters Clamped M

Fig.4. Deflection for Clamped Plate.
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Mx, Myx10®
Moments in ton-meters per meter
9.1620 8.1202
4.3695 v .
0.9 0.25 0.5 /075 1 oM
g Distance
8.1202 7.2291 inlsmle!t’ers
0.25
4.3695 3.9589, 2.6111 —20.9874
Clamped
fo—2m /
My I
g
y o O —1—X
Distance
in meters
- Clamped ¥y
30,5335 18.5935
Fig.5. Flexural Moments, M,, My, for Clamped Plate.
Sx,Syx10°
Shearing forces in tons per meter
0.0 0.25 0.5 0.75 1.0 Sx
0.0 B
Distance in
~1.3104 —2.9837 meters
0.25
—1.3104 —1.128
<2.6214 ~7.8669
0.5
~1.5307

Distance in
meters

1.0

C

/

Sy

lamped

/

X

Clamped

Fig.6. Shearing Forces, S,, Sy, for Clamped Plate,
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Table 3. State Vector Components for Clamped Plate,
0.0 0.25 0.5 0.75 1.0 Distance

X

1.315928 = w 1.175372| 0.788651  0.289355| 0.0 in meter
0.0 =0y | —1.103025]| —1,907597| —1.882434 0.0
0.0 =0, 0.0 0.0 0.0 0.0
9.162 022 = M, 8.12 0217 4,369537| —4,037 582 |—20,533 434
9.162019 = M, 8,12 3422 5,043 250 0.104 271 —6,160030
0.0 =Sy | —1.310493| —2.983732| —5,378800, —8,825 998
0.0 =S, 0.0 0.0 0.0 0.0
0.25
1,175 372 1.050 648 0.706 €28 0.260 325 0.0
0.0 —0.979416| —1,700223| —1.688248 0.0
—1,103 024 —0,979415| —0,645450, —0,229 389 0.0
8.123 430 7.229 076 3.958974| —3,529739|~-18, 593501
8.120213 7.229 082 4,552 532 0.158 147 | —5.578 050 =, _ 10-4T
0.0 —1.128995| —2,721448| —4,843800| ~8,172236
—1.310489 ~1.128998| —0.584475| 0,319236| 1,543689 | Oy= 107
0.5 0,= 10"
0. 788 652 0.706 628 0.478 561 0.178 292 0.0 -
0.0 —0.645446| —1.134041| —1.146669 0.0 My=10
—1.907 591 ~1,700227 | —1.134029, —0.412 920 0.0 M,= 103
5,043 392 4,552 404 2,611137| —2.280618|—12,949 757 s
4,369 524 3.959018| 2.611045| 0.053135| —3.884927 | Sy=10
0.0 —0.584376| —1.530893 ~3,205110| —6.024242 | § = 10-2
—2.983585 —2,621554| —1,530709 0.293 308 2.909290 - -
0.75
0.289 348 0.260 323 0.178 302 0,067 163 0.0
0.0 —0.229542| —0.412968 ) —0,430544 0.0
—1. 882655 —1.688202| —1,146485, —0.430903 0.0
0.102 811 0. 156 695 0,057 820 —1.150267| —4, 800962
—4, 030502 —3,532962 | —2.284100] —1.147746| —1,440288
0.0 0.323 352 0.285208] —0.487 063 —1.981 979
1a —b5,372 267 —4,849440 1 —3,203 406 —0.489 059 3.295 963
. 0. 001 804 0. 000924 0.000759 —0.001071 0.0
Distancel /¢ —0.025095  0.022642  0,005423 0.0
in meter] —0, 033 868 0.018 724 0.012 124 —0, 022558 0.0
~6, 644 296 —5,363479 —3.579056 —1,747744 —0,179650
¥ _19.819 708 —19,033307 —~13,117493 —4,248802 —0,053 895
0.0 1,670 156 2.549 225 3. 896 267 1.088 374
—9,556 789 —7.902479 —5,401256 —2,486488 ~1,6905244
Note : size of plate =2m X 2m ;
thickness of plate = 0.02m ;
modulus of elasticity = 1.2 x 107t/m?;
Poisson’s ratio = 0.3 ;
and loading = 0.1 t/m? uniformly distributed,
Table 4, State Vector Components along 0x Axis for Clamred Plate.
Flexural deflection| Flexural moment Flexural moment Shearing force
w 10~*m M, 10~*tm My 1073 tm S, 1072t
x Four Eight Four Eial Four Eight Four Eight
. . g ht . . R . .
eigen- |eigen- - : cigen- cigen- eigen- eigen-
values| values eigenvalues | eigenvalues values| values values values

0.0 1.3159221.315922] 9,161978 9,161 978 9.161986] 9.161986 0.0 0.0

0,251.175 3671, 175367  8,120191}  8,120191} 8,123374, 8,123 374|—1,310495—1,310495
0.5 10.7886470, 788647, 4,369494  4.369494| 5,043213 5,043213/—2,983728 —2, 983728
0.75/0.289 353/0, 289 353) —4,037 575 —4, 037575 0,104241] 0,104 241—5, 378 766/—5, 378 766
1.0 0.0 0.0 —20.533 290,—20, 533 290 —6. 159 989|—6. 159 989, — 8, 825 910, —8, 825 910
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Table 5, State Vector Components along Oy axis for Clamped Plate,
Flexural deflection] Flexural moment Flexural moment Shearing force
w 10 m M, 10~*tm My 1073 tm Sy 1072t
Y i i‘;ﬁr o Eeliht Four EKight Four Eight o g;o_ur o gnl_ght
gvalues gvalues eigenvalues eigenvalues leigenvalues leigenvalues g values g values
0.0 11.315922/1.315922| 9.161978] 9,161978 9.161986, 9.161986] 0.0 0.0
0,251, 175 366|1, 175 366) 8,123 312] 8,123312| 8.120223 8.120223—1,310523/~1, 310523
0.5 10,788642,0.788 642 5.042216] 5.042216] 4,369716, 4,369 716/—2,984 4982, 984 498
0,750,289 342/0.289 342  0.100819] 0,100 819 —4., 051 955, —4, 051 955{—5, 395 571/ —5, 395 571
1.0 {0,002 3380, 002 33857, 674 960|—57, 674 960—21. 287 350—21, 287 350|—8, 379 058} 8. 379 058
Table 6, Deflection along Axis Ox for Clamped Plate,
gsﬁlc?tceer Eigenfunction method Energy method
0.0 1,315932 x10-* 1.316 427 x10-*
0.25 1,175 375 x10~# 1.165104 x10-#
0.50 7.886 535 x1075 7.846 249 x10-3
0.75 2,893 560 x10-° 2,777 345 x10-*
1.00 0.0 3.685 676 x10-22
Note : size of plate = 2mx2m; thickness of plate = 0,02 m;
modulus of elasticity = 1.2 x10t/m?;  Poisson’s ratio = 0. 3;
and loading = 0.1 t/m? uniformly distributed.
w
0.025
s\ Clamped
0.02
E 0.015 \"\
P \*\
Z o0
[
—— Eigenfunction method, Iterative method
~«s==-Energy method
o ‘\
90407 2.25 15 6.75 5.0 "

Fig. 7.

Distance in i

nches

Clamped along All Edges.

Deflection along Axis of Symmetry 0x for Plate
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hes

Moments in pound-inches per inch

in inc

Distance

0.025
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Clamped
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0.02 f —
5| o
0.015 ﬁ | -
Clamped J
0.01
——— Eigenfunction method, Iterative method
-——-Energy method
0.005
0.0
0.0 3.0 6.0
Distance in inches
Fig.8. Deflection along Axis Oy for Plate Clamped
along All Edges.
Mx, My
1.0 Clamped—
—1.51t
M\a%
o pl====s —t— e
My \\\\
0.0
—0.5
-1.0
—— Eigenfunction method
------ Energy met}'lod
=== Iterative method
—1.5
-1.8
0.0 2.25 4.5 6.75 9.0

Distance in inches

Fig.9. Flexural Moments along Axis Ox for Plate Clamped

along All Edges.
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Mx, My

1.0 Clamped

—1. 5&7-—)

X

0.0

—-0.5

—Eigenfuncti?n method
—---Energy metbod

~---—Iterative method
—1.0

Moments in pound-inches per inch

—1.5b—
0.0 2.25 4.5 6.75 9.0

Distance in inches

Fig.10, Flexural Moments along Axis Oy for Plate Clamped All Edges.

My
| x
0.0F
5
3
2
. ~0.5 -t
=4 g
" [P
| UL ~<r
R S— :
P = Clamped
£ = L5ty
z = T
2 —1.5|- &Poo x
g
H —— Eigenfunction method
= «=--Energy method
~—-—Iterative method Clamped” y
285 2.25 1.5 6.75 9.0

Distance in inches

Fig.11. Moment M, along Edge Parallel to x- Axis for Plate Clamped along All Edges.

Mx
0.0

—-0.5

—-Eigenfunction method
---- Energy method
—-~—Iterative method

Moment in pound-inches per inch
|
—_
=3

~1.5 S— b 0 X —
~2.0 Clamped’ ¥
0.0 3.0 6.0 9.0 12.0

Distance in inches

Fig.12. Moment M, along Edge Parallel to y- Axis for Plate Clamped along All Edges.

37



38 K. Isgigkawa, B, TaniMoTo and S, NATSUME No. 32

Example 2. Figs. 7 to 12 show the deflections, the flexural moments and
the edge moments due to the present eigenfunction method, the iterative
method by B. Sen (4) and the energy method by C.T. Wang (5).

II. Second Solution for Clamped along Two Opposite Edges and
Free along the Gther Two Edges

10. Introductory Remarks.

It will be assumed for example that the first two opposing edges x = == a are
both clamped, and the other two opposing edges y = == b are free from traction
(Fig. 13).

Free

TC‘ amped
b/
R —
Clamped o] X, 0
b
4 .
I a a |
Free v

Fig.13. Clamped-Free Rectangular Plate,

11. Boundary Conditions at First Opposing Edges.

The boundary conditions at the first opposing edges p = -+ 1 are both clamped,
and the other opposing edges y == b are free from traction, which are given by

w M,
—0, | =0, (29)
0x o=1 Sy y=:b

On account of the symmetry about the Oy-axis (Fig. 13), the approach homo-
geneous and particular deflections are defined by

the equations

Asin i 2y
wy,= D coslp, Apsinip)] ch—~iK, (30a)
7 —cosi] ¢
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1

_ qa* - 1

wy = pll o pJLZ . (30b)
1

12. Final Equation for Clamped-Free Plate.

As the second bounding edges y = &= b are assumed to be free from traction,
Eq. 29b will vield the element stiffness matrix, Z,, given by the equation

DI 1) (22— umzrzz)ch%-) ']
@ e 2 b 1)

Z,,= 2
202 = (2 = ) (ma)] sh;y_]yzib

2(_ 1)771

P, = anz[" ma)t ), (31b)

and the selector § represents
00 0 010 0 0
§ = . (31c)
600 0 0 0 0 01

13. Numerical Example of Clamped-Free Plate.

The rectangular plate, clamped along two opposite edges and free along
the other two edges, will be referred to as the clamped-free plate.

Input data for the numerical example of the clamped-free plate are given
in Table.

Table 7. Input Data of Clamped-Free Plate,

Size of plate = 2mx2m;

thickness of plate = 0.1m;

modulus of elasticity = 2.1 x107 tm;
poisson’s ratio = 0.3; and

loading = 0,1 t/m? uniformly distributed.

Figs. 15 and 16 show the curves of the deflection w, the flexural moment
M,, when the first eight terms in the infinite series are retained. Tables 7 and
8 show the comparison of respective quantities, or state vector components on
the Ox- and Oy-axes, when the infintite series are truncated with the first
four and eight terms.
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wX 10°'m
Deflection in meters
2.133365 1.874716
1.199086
0.407471
1.0
X
Distance
in meters
2.253445
2.391412 90.7%
Clamped
Distance
in meters
1.0
y
Fig.14, Deflection for Clamped-Free Plate,
Free
—hr o
2,
Mxx107tm Moment in ton —meters per meler
Clamped 1.626701
— . 1.319854
2m [¢] X
0.398358
Clamped, 0.0 0.25 0.75 1.0 ‘
0.5 i
1.628026 - Distance
Free' | 1.321086 1135785 in meters
0.25 (.398353
1.634611 1 326112 5 a67568
0.399436
0.5
1.661698 1.346122
675 0.402836
Distance —3.345874
in meters )

y

—0,742022 —0.868716

~1.092331

Fig. 15,

—0.829164 =3 528602

Flexural Moment M, for Clamped-Free Plate,
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Table 8, State Vector Components along Ox Axis for Clamped-Free Plate,

Flexural deflection| Flexural moment Flexural moment Shearing force
w 107%m M, 10"? tm My 1073 tm S, 10"t
x | Four Eight Four Eight Four Eight Four Eight

eigenva- leigenva- leigenva- |eigenva- [|eigenva- leigenva- eigenva- |eigenva-
lues lues lues| lues| lues lues lues lues

0.0 2,139 8562, 133 365| 1.632149| 1.626701 4.461411} 4.382419 0.0 0.0

0.25/1. 880 656(1, 874 716/ 1.325154] 1.319854; 3.585730] 3.514 889(—2.430061/—2,423 614
0.5 11,203 34111,199 086 0.402512] 0.398358 0.940185 0.898525—4,879516|—4.858 981
0. 750,409 1430. 407 471)—1. 137 7481, 135 785|—3. 511 640|— 3. 509 796/~ 7, 336 063|—7. 291 390,
1.0 0.0 0,0 —3.282 543)—3. 267 568 —9. 847 630,—9. 802 705|—9. 752 315 —9. 696 058

Table 9. State Vector Components along 0y Axis for Clamped-Free Plate.

Flexural deflection} Flexural moment Flexural moment Shearing force
w 10~%m M, 10~%tm My 1073 tm Sy 1078 ¢
y Four Eight Four Eight Four Eight Four Fight

eigenva- leigenva- |eigenva-
lues lues lues

eigenva- leigenva-

eigenvalues lues lues

eigenvalues | eigenvalues

0.0 12,139 856|2.133 365;1.632 149 1.626 701 |4,461 411} 4.382419, 0.0 0.0

0,252,148 02512, 142 6871.633 396 1.628026 |4.325537| 4.237 351|—0.779 186 —0.829345
0.5 12,177 87212,176 179|1.645 107| 1.634611(3.807 971| 3.735614| —1.673529) —1,932 257
0.75/2.251 188|2,2534401.745 030 1.661698|2.428 970, 2.588 031| 1.367728] —3.261465
1.0 12, 423 734|2, 391 412|2. 214 526 | —0. 742 223 | 6. 806 408/38. 158 670, 79. 128 490|~579.639 50

14. Conclusions.

The flexural analysis of a uniformly loaded plate may be expressed in terms

of two functions, a homogeneous solution and a particular solution. The homo-

genous solution may be expressed as a Fadle eigenfunction series. The arbitrary

complex eigenmatrix {K,}, that appear in this series may be determined with

a high degree of accuracy from approximate expansion formulas.
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17. Notation.
The following symbols are used in this paper:

4 = complex eigenvalue;

n = order of eigenfunctions;

m = order of Fourier series numbers;

o = ratio between width and length of plate;
w, = homogeneous solution to plate equation;
w, = particular solution to plate equation;

x,y = rectangular coordinates;

D = flexural rigidity of plate;

W, = complex homogeneous state vector;
W, = particular state vector;

N = complex eigenmatrix (eigenfunction coefficents);

K = real-eigenmatrix;

q = normal surface load;

Z,, = complex element stiffness matrix;
P, = element load-matrix;

@, = real and imaginary parts of complex eigenvalue A respectively;

K;
K =111 ];
K,

pt o= (aa—;z —%})2; and

LL{} = row and column matrices respectively.



