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                            1. Introduction

   As regards the fiow structure of a swirling cavity flow of water, Hashimotoi)

proposed a triple structure model coRsisting of a free vortex, a forced vortex

and a cavity. In the recent experiments of the present authors2), however, the

swirling velocity profile arouRCI a cavity was found to be of differeflt nature,

and this result may be attributed to an effect of the upstream conditions.

   In this part of papers, an attempt is made to skow some theoretical predic-

tions on a simplified model system in which the swirl generator is replaced

with a circular coaxial gap. There are two points in this study; the effect of

the upstream conditions on the downstream flow, and the determination of the

cavity radius. At the present stage, the theory is merely a preliminary one,

direct comparison with experimental data being not intended here. Unless

particularly stated, symbols in the previous paper2) (referred to as I hereafter)

will be used here as before.

                        2. ARalytical precedures

   Consider a steady axisymmetric swirling flow of an inviscid fluid, for which

we have

                   32,C-}'aip,+Z2ge==r2td",-rf',･ (i)

where ¢(r, z) denotes Stokes' stream function, H<¢) r-ll-(v.2 + va2+ v.2) + -{l

Bernoulli's function and r(¢) = rve is the circulation. See Appendix (AIO).

   As a simplest model of the experimental setup, the swirl generator is replaced

with a circular coaxial gap of the effective cross-sectional area rr(R2-ro2) in

                     ttttt tt .t.t tt tt .. . ...."
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             Fig. 1 A model of a swirling cavity flow of water through

                 a straight circular pipe

which the water has a uniform axial velocity U and rotates as a rigid body with

angular velocity 9 (Fig. 1).

    Thus the theory described in Appendix is applicable, and the problem is to

find such a downstream solution of Eq.(1> that the static pressure is equal to

the Prescribed cavity pressure P. at a certain radius r = r.(cavity wall>. If the

variation in hydrostatic pressure is neglected, the solution would be independent

of z as z-> oo and can be written as
             '

                             1
                       ip(r> :=7Ur2+ rF(r), (2)

                       v, ==: 9r+noF(r), (3)
                       v. =: U+ neG(r), (4)
where

                    :l: llC:[:O,l', 11 B.Y.',1".lr,l l; no -2g/u (s)

f's and Y's beiRg Bessel functions of the first and second kind, and A, B the

integral constants. See Appendix <A16) and (A17). Putting ae = a = R, bo == ro,

b== r. in (A18), we have here

                 U (ro2- r.2> Yi(noR)
            A=
                2r. fi(neR) Yi(nor.) - fi(ner.) Yi(neR) '

                                                                   (6)

            B= nvU (re2- r.2) A(noR) .
                 2r. fi(71eR) Yi(ner.) - fi(ner.) Y!(noR)

In these expressions the cavity radius r. is left as a disposable parameter to be

determined in the following way:
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   First, from the balance of forces in the r-direction, the upstream pressure

is given by

                         P(r) Po 92
                          p= miJ---2-(R2-r2), (7)

where Po is the upstream wall pressure at r = R. The corresponding stream

function and Bernoulli's function are

                        l

                   ¢- -2-Ur2, (s)
                                 2n2 Pe 92R2                          1

                   M¢)-iU2+uip+7- 2, <9)
which yield

           1 92R2 P     Hi =-2 U2+ 2 +-p-O at the outer wall (ip -- ipt J:= -ll-UR2>, (lo)

and

     Hb == -l;- u2 + g2 ro2 + P-pO - 9;R2 at the inner wall (¢ = e2 = }uro2), (m

respectively. Since the two strearnlines ¢ == ¢i and di =: ¢2 are still oR tke bound-

aries in the downstream region, tke wall pressure P. and the cavity pressure P.

are found to be

                lP     -`(ik'L = Hi - tE-(Vei2 + Vxi2> == 7+ {llu[U2 + 92R2 - (vei2 + V.i2)), (12>

and

                             Pe 1                1      Pa     mlsm == Hh -s(Ve22 + Vz22) = p' + lliiim(U2 -l- 92(2r.2 rk R2) - (ve22 -l- v.22)), <13>

where vo!, v.i are tke velocity components at r=R and vo2, v.2 are those at

r=:r    a.
   This iast equation (13) determines the cavity radius r. for a given set of

parameters R, ro, U, 9,Po and P.. With this value of r. the appropriate

downstream veiocity profiles are obtained from Eqs. (3) to (6).

    The downstream pressttre distribution can be found from £he balance of
forces in the r-direction again. In virtue of Eqs. (3) aRd (5), and with the aid

of indefinite integral formulas4),
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             l fi2./X) d. ... - g(f,2(x) + f,2(x)),

              1,(x)Y,(x)             i . dX =-}(k(x)Yb(x)+fi(x)Yi(x)),

             l Yii(X)dx == - t(yli2(x) + yz2(x)),

the result is that

         P2r) = f!if'il"dr + const. =: -;-g2r2 - 2gG - ll;'r2(F2 + G2> -- const.

This can be rewritten as

              Pi.r) .,, l}O + -;-<u2 - g2R2) + 9rv, - -ll-<ve2 + v.2),

which reduces to (12) and (13) at r=R and r. respectiveiy. We may

the relations (9), (2) and (3) to get the same expression as (16).

                       3. Non-dimensional form

   By iRtroduciRg the non-dimensional quantities

                                    29R
             ro/R=a, r./R=P, neR== u =:: re, r/R == ty,

the foregoing results are expressed in a non-dimeRsional form as

               Veu(rp) == 5o(u + 2f(rp)), Vxirp) -= i+ Sezg(o),

and

         Ptbt)p-u,PO = - Y'2 ((i - ny2) + i2{f2(q) + g2(v)}] - r,2g(ny>

where

                      a2 mo fi2
                   R =::
                      pf(p) '

                  f(ty) = K(ro)1i(rov) - fi(ro) Yi(rerp),

No. 32

(14)
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(19>
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<21)
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                   g(v) = Yi(re) fe(re?) -fi(re) Yb(rov)･ (22)

For comparison with experiments it is convenient to rewrite these in terms of

the dowBstream quantities. In view of the continuity relation, the mean axial

velocity at the downstream section vun . is given by

            U.(1-P2) = U(1-a2)=Uae, i.e., U. == Ua, (23)"

The downstream swirl ratio then becornes

                                        l
                           r= 2vei/VT. ==: -ro, (24>
                                       a

and hence we ltave

                  Veiminy).=g(rp+2flrp)), VkHirp)==t+S2g(rp), (25)

and

                            r-2

               P(q)-P. 4      k`(rp> == gp(v.2 + .,,,) " i +tT,((n2 - i> + 22{gi2 - f2(rp) - g2(rp)}

                           +XR{ gl -g(v)}), (26)
                             a

where gi is the value of g at the wall (? == 1).

   The procedure of finding the appropriate solution is thus as follows :

(i) For a given set of values of ae(=1-a2) and re, p}ot

                               lh
                   P(P) =Pw -i- -iii-p(v.2+vei2)le,(P) (27)

     as a function of P.

<iO A value of P such that P<P) = P. is the cavity radius for those values of

     (ao, re)･

<iii) With this value of P, compute the velocity and pressure distributions

     after (25) and (26).

                   4. Numerical examples and remarks

   Calculations have been carried out for the values of parameters re =: 1, 2, 3,

;ge Note that ae == 1 - ev2 and o = (1 - ex2)/(1 - P2) are the geometrical and actual area para-

 meters, respectively. see I, Notation.
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4 and a== O. 3, O. 5, O.7 (ae == O.91, O. 75, O. 51, respectively). In Fig.2the fuRction

le,(P) is plotted for every combination of re aRd ao (procedure (i) of the last

section). However, the cavity radius fi is determined here by the co.ndition

k,(P) == -3 instead of the absolute pressure criterion P(P) == P. (procedure (ii)).

This choice of critical value of le,(P) seems plausible iB view of the previous

experimental data I, and may suflice to see the general tendency of the solution.

   Table 1 shows the computed values of important quantities, while Fig.3

ls a plot of the relation between r and P. It is seen that P increases with r in

a rough qualitative agreement with experimenta! plot. (I; Fig.4). The resem-

biance of the pressure and velocity distributions shown in Fig. 4 to experimental

resttlts (I; Figs.5 to 18) is also only partial. Especially for strong swirl (re = 4),

v. is negative near the wall and va has a maximum within the flow (Figs. 7, 11
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          In such cases we have to

replace the present analysis with a

different kind of approach. See the

footnote in Appendix. Another draw-

back is that the theory predicts a

finite cavity radius however r is

small, and a skarp peak of ve near

the cavity for weak swlrl (ro == 1) is

also unnatural. These diffiiculties

will probably be remedied by a

viscous theory. Lastly it sltould be･

noted tkat tkere is no experimental

confirmation yet of the upstream

condition of a rigid body rotation.

                               Appendix

    An elegant and cleay account of tke theory of steady axisymmetric flow with

swirl is given by Batchelor3). For convenience we shall recapitulate the

argument briefiy bellow.

    Let (v., vo, v.) and (op., too, to.) denote the velocity and vorticity components,

respectively, in cyiindrical coordinates (r, 0, z). Tlte relevant equations of motion

and mass-conservation foy an inviscid incompressible fluid are expressed as

                    veto.-v.cao == aH/ar, (Al)

                    Vztor-Vrdix =" O, (A2)
                    Vrtuo ww Veblr=OH>l6Z, (A3)
                                     1 Oip                          1 adi
                   "r =:- -iJ- bT., V== -ff- b}, (A 4)

where H(r, z) is Bernoulli's function and ip(r, 2) Stokes' stream function. Further

we have immediateJy

                    'll-(Vr2+Ve2+V=2) +` -:= H(ip) (A5)

as well as rv, == C(¢) (A6)
since H and the circulation r are conserved along each streamline ip == const.

which coincides wlth the path of a mater}al element in steady fiow. It follows
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then

                             16r dT
                      tu, iEi rm 7-b2t ": VrZ7e5'

                                                               (A7)
                           10T dr
                      tox E -i--bi7 = Vx27e5)

in view of (A4), whereas

                 to,-7/r-{li';===--li-(gi'?l%--li-,,th',+'b'llZg) (As)

by definition. Another relation obtained from either of Eqs.(Al) or (A3) is

                        toe=III-tdot-rlaH, (Ag)

and equating these two expressions for a)e, we get

                   g2,g-Jllr.g;,l"Z2.g=,2tde"rmrlth (Aio)

Thls equation determiRes the stream function so long as H and r are knQwn

functions of ¢.

   We shall now consider a steady swirling flow betweeR two coaxial circttlar

cylinders as shown in Fig.Al. If the fluid 'far upstream has uniform axial

velocity U and rotates as a rigid body with angular velocity 9, the corresponding

stream function is ¢o = Ur2/2, and hence we can write

            To = :gPl ipo, ff6 == t; u2 + 2u92 ¢o + const., (Aii)

where the sufflx O refers to upstream conditions. Since the dependences (All)

              1'

9

   E-tc - mi-,.-?--"
       z

---diL-..m`-.-..

                     General model.

--"anir-nvm-r

o bo

     Fig. Al
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should hold over the whole field*, we may drop the suffix to obtain

                    02¢ 10¢                                02di 292                                             492
                    biJr2-7blrT+52T,= u r2- u, ip, (A12)

fQr the equation (AIO). This reduces to a simpler form

                     ao2,F, + -li 2Sei + 662.F, + (n,2 -,-1,)F == o, (A13)

by putting

                      1
             ip(r, z) ==-l7Ur2+rF(r, g) and no=29/U. <A14)

    Asz- oo, the flQw becomes independeRt of z again, and we are concerned

with Bessel's equation

                     dd2,F, +iei/C+ (no2 -;r,)F =- o, (Ais)

which gives

                    F(r) == AA(ner)+BYI(ner>, (A16)

and accordingly

                 :.-.nd;,/l/=.."zl";,(,AX;t([lol,),mlB.Y.',([xei,l ,.,,,

in turn.

    In order to determine the constants A and B, we have only to notice that

the streamliRes ip =: Uae2/2 and ¢=: Ubo2/2 far upstream are still on the･ outer

and inner wails respectively far downstream. The･ resttlt is

                 U b(ao2 - a2) Yi(neb) - a(bo2 - b2>Yi(nea)
             A
                 2ab k<noa) Yi(nob) - 1i(nob)M(nea) '
                                                                    (A18>
                   U b(a,2 - a2) A(nob) - a(bo2 - b2) fi(nea>
             B=
                   2ab A(noa) Yl(nob) - A(nob) Yl(nea)

 'ii This statement is not the case, if there appears a reverse flow which comes from the

  downstream region. In such a case we cannot proceed beyond the equation (AIO), and
  hence the solution (A16) together with (A17), (A18) cease to be valid.
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