Swirling Cavity Flow of Water through
a Straight Circular Pipe |

Toshihiko IKEDA* and Michio Omjyr**
(Received May 31, 1972)

1. Introduction

As regards the flow structure of a swirling cavity flow of water, Hashimotol
proposed a triple structure model consisting of a free vortex, a forced vortex
and a cavity. In the recent experiments of the present authors®, however, the
swirling velocity profile around a cavity was found to be of different nature,
and this result may be attributed to an effect of the upstream conditions.

In this part of papers, an attempt is made to show some theoretical predic-
tions on a simplified model system in which the swirl generator is replaced
with a circular coaxial gap, There are two points in this study; the effect of
the upstream conditions on the downstream flow, and the determination of the
cavity radius. At the present stage, the theory is merely a preliminary one,
direct comparison with experimental data being not intended here. Unless
particularly stated, symbols in the previous paper® (referred to as I hereafter)
will be used here as before.

2. Analytical procedures

Consider a steady axisymmetric swirling flow of an inviscid fluid, for which
we have
2y 1o d*¢  dH dar

— 2
or? 7y oy  0z% rd(/} ngb’ @)

where ¢(#, z) denotes Stokes’ stream function, H(¢) —_-%(v,2 + vt + 0.2 +%
Bernoulli’s function and I'(¢) = rv, is the circulation. See Appendix (A10).
As a simplest model of the experimental setup, the swirl generator is replaced

with a circular coaxial gap of the effective cross-sectional area n{R%?—#,%) in
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Fig.1 A model of a swirling cavity flow of water through
a straight circular pipe

which the water has a uniform axial velocity U and rotates as a rigid body with
angular velocity £ (Fig.1).

Thus the theory described in Appendix is applicable, and the problem is to
find such a downstream solution of Eq.(1) that the static pressure is equal to
the prescribed cavity pressure p, at a certain radius » = 7 (cavity wall). If the
variation in hydrostatic pressure is neglected, the solution would be independent

of z as z2— o, and can be written as

1

91y =5 Urt + rF(1), @)
vy = 27 + nyF(r), (3)
v, = U + nyG(r), (4)

where
F(ry = AJi(nyr) + BY 1(ngr)

0 ony = 202/U (5)
G(r) = Alynyr) + BYo(ner)

J’s and Y’s being Bessel functions of the first and second kind, and A, B the
integral constants. See Appendix (A16) and (Al17). Putting a,=a =R, by = r,,
b=r, in (Al8), we have here

U (re? — 7.3 Yi(mR)

A= S TR Yanar,) — Jumar) VanoR)

B — -U (ro* — 7. Ji(noR)
 2r, JioR) Yi(ner,) — Ji(ners) Yi(moR) '

In these expressions the cavity radius 7, is left as a disposable parameter to be

determined in the following way:
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First, from the balance of forces in the r-direction, the upstream pressure
is given by
pry Py 22

0 T —2‘(R2 — %), (7

where P, is the upstream wall pressure at * = R. The corresponding stream
function and Bernoulli’s function are

1
¢ = "é—-UTZ, (8)

P, (°R2
0 27

(22
Hig) = U+ g ©

which yield

@2R* P,

H, = -;—U%L 5 + - at the outer wall (¢ = ¢ = -;—URZ), (10)

and

2 22
Hy= 20t 4 0 + 20 - 28
2 0 2

at the inner wall (¢= ¢y = —;—Uf’oz), (11

respectively. Since the two streamlines ¢ = ¢, and ¢ = ¢, are still on the bound-
aries in the downstream region, the wall pressure p, and the cavity pressure p,
are found to be

P
0

1 1
e - Hy — o + 0) = Sk S0+ PR — (0 + 0], (12)

and

_% ", %(21022 toogY) = %’ n %[Uz A2~ RY) — (0 00D, (13)

where v,, v, are the velocity components at » = R and v,, v, are those at
¥ =7,

This last equation (13) determines the cavity radius 7, for a given set of
parameters R, 7y, U, 2,P, and p,. With this value of », the appropriate
downstream velocity profiles are obtained from Egs. (3) to (6).

The downstream pressure distribution can be found from the balance of
forces in the r-direction again. In virtue of Egs. (3) and (5), and with the aid
of indefinite integral formulas?,
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the result is that

0 r T2 2

This can be rewritten as

p(r) _ Po + i(Uz — 2R 4+ Qru, — _%_(U,)z 409,

0 0 2

2 2
p) J gy + const. = —0%2 — 20G — "OX(F* 1 G?) + const.

No. 32

(14)

(15)

(16)

which reduces to (12) and (13) at » = R and 7, respectively. We may also use

the relations (9), (2) and (3) to get the same expression as (16).

3. Non-dimensional form
By introducing the non-dimensional quantities

ro/R=a, v,/R=38, nR= g"lo—fﬁ =71, ¥/R =1,

the foregoing results are expressed in a non-dimensional form as

) _ Doy ap, B =1y gy,
and
P = Lo 1 g 2t + 20D — rotgt)
ZpU?
where
PR i
T

f) = Yilyo) Jilyan) — Jilye) Yilyen),

(17)

(18)

(19)

(20)

(21)
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g(n) = Yilye) Jolren) — Ji(ro) Yo(ren). (22)

For comparison with experiments it is convenient to rewrite these in terms of
the downstream quantities. In view of the continuity relation, the mean axial
velocity at the downstream section v, is given by

5.1 — ) = Ul — &) = Uso, i.e., 9, = Us, (23)*

The downstream swirl ratio then becomes

_ 1
7= 200/U, = 70 (24)
and hence we have
Uo(n) s :7) _ 1,7
v, 707 + 27, 7.~ + A8 (), (25)
and
7-2
— P 4
by = 2L =P A1) 4 g — 1) — )
”Z‘P(Ezz +v,f) 1 +‘4—

+Lif e — et)h, (26)

where g; is the value of g at the wall (5 = 1).
The procedure of finding the appropriate solution is thus as follows :
(i) TFor a given set of values of g4(=1— a?) and 7, plot

D) = Do+ 3ol0.E + VD) (21)

as a function of 8.
(ii) A value of B such that p(8) = p, is the cavity radius for those values of

(0-0; TO)
(iii) With this value of B, compute the velocity and pressure distributions
after (25) and (26).

4. Numerical examples and remarks

Calculations have been carried out for the values of parameters 7, = 1, 2, 3,

# Note that gy =1 — a? and ¢ = (1 — a*)/(1 — 8?) are the geometrical and actual area para-
meters, respectively, see I, Notation,
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Fig.2 The cavity condition k() vs. cavity radius $

Table 1 Computed £ and the other typical values

« ‘ To l B 4 7
1 0,21 0.53 1.87
0.7 2 0.30 0.56 3.57
: 3 0,35 0.58 5.16
4 0.40 0.61 6.59
1 0,09 0.76 1.32
0.5 2 0.15 0.77 2.61
: 3 0,21 0.78 3.82
4 0.29 0.82 4,89
1 — — —
0.3 2 0.05 0.91 2.19
' 3 0.08 0.92 3.28
4 0,19 0.94 4,24
1.0
B ks(8)=-3
0.5
b 0.7
///0~5
/// a=(.3
// Y

0 L i K1 I
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.9 8.0

Fig.3 The cavity radius B vs. downstream swirl ratio 7
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4 and «=0.3, 0.5, 0.7 (6o=0.91, 0.75, 0.51, respectively). In Fig. 2 the function
k(8) is plotted for every combination of 7, and ¢y (procedure (i) of the last
section). However, the cavity radius # is determined here by the condition
k(B) = —3 instead of the absolute pressure criterion p(8) = p, (procedure (ii)).
This choice of critical value of %/(B8) seems plausible in view of the previous
experimental data I, and may suffice to see the general tendency of the solution.

Table 1 shows the computed values of important quantities, while Fig. 3
is a plot of the relation between 7 and 8. It is seen that S increases with 7 in
a rough qualitative agreement with experimental plot. (I; Fig.4). The resem-
blance of the pressure and velocity distributions shown in Fig. 4 to experimental
results (I; Figs.5 to 18) is also only partial. Especially for strong swirl (y, = 4),
v, is negative near the wall and v, has a maximum within the flow (Figs.7, 11
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o D and 14). In such cases we have to
Yy Ve

= 0.3 ¥z U: replace the present analysis with a

P different kind of approach. See the
s \B)=—
1 > ' footnote in Appendix. Another draw-
i I Zﬁ back is that the theory predicts a
! |

1

|

T

0

ks

finite cavity radius however 7 is

small, and a sharp peak of v, near
the cavity for weak swirl (yo = 1) is

also unnatural. These diffiiculties

will probably be remedied by a

% 2 viscous theory. Lastly it should be
Fig. 14, noted that there is no experimental
confirmation yet of the upstream

condition of a rigid body rotation.

Appendix

An elegant and clear account of the theory of steady axisymmetric flow with
swirl is given by Batchelor®, For convenience we shall recapitulate the
argument briefly bellow.

Let (v,, vy, v.) and (w,, @, ®,) denote the velocity and vorticity components,

respectively, in cylindrical coordinates (7, ¢, z). The relevant equations of motion
and mass-conservation for an inviscid incompressible fluid are expressed as

Vo, — V,w, = GH/0r, (Al)
0, — v,0, = 0, (A2)
V0, — Vo0, = 0H/0z, (A3)
- 1 3¢ 13
i B

where H{r, z) is Bernoulli’s function and ¢(r, z) Stokes’ stream function. Further
we have immediately

302 + 02 + 0+ 2= Hg) (A5)

as well as rv, = () (A6)

since H and the circulation I are conserved along each streamline ¢ = const.
which coincides with the path of a material element in steady flow. It follows
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then
__LYor  dr
wr - 7 az . rd(ﬁ’
(A7)
o= L0 Al
fT oy oor dg’
in view of (A4), whereas
_0ov, ov,  1y3% 1ap 0%
R R Rt R (A8)

by definition. Another relation obtained from either of Eqs. (Al) or (A3) is

rdr dH
(1)0:78—9[]—7’7(/), (Ag)

and equating these two expressions for w,, we get

#6 10p o9 dH dr
T S R TR ¥; (AL0)

This equation determines the stream function so long as H and [’ are known
functions of ¢.

We shall now consider a steady swirling flow between two coaxial circular
cylinders as shown in Fig Al. If the fluid far upstream has uniform axial
velocity U and rotates as a rigid body with angular velocity £, the corresponding

stream function is ¢y = Ur%/2, and hence we can write

202

7 ¢y -+ const., (A11)

28 1
Ly =27, Hy=2U"+

where the suffix 0 refers to upstream conditions. Since the dependences (Al1l)

N
N T ;
7 1&, 7 e § . ,
a, bo a g
—_——ly ’ I_ — _ - | 1 _—
Z
B
—>U / 4

Fig, Al General model,
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should hold over the whole field*, we may drop the suffix to obtain
By 10 0% 200 40

i A — 2

PP L v s A A L (A12)
for the equation (A10). This reduces to a simpler form

2F 1 93F 0°F 1

[ T % __ —

ort ¥ or  0z° < ¢ 7’2> F=0, (A13)
by putting

é(r, 2) :é—UrZ 4 rF(r, 2) and ne = 20/U. (Al4)

As z— oo, the flow becomes independent of z again, and we are concerned
with Bessel’s equation

der 1dF 1
gL oL 28y A ¥ A
v <n0 )F o, (A15)

72

which gives
F(ry = AJ\(nor) + BY\(nyr), (A16)

and accordingly

vy = I'/r = Qr + nAJi(ner) + BY (ner)],
L

v.= 298yt mcA ) + BY st
in turn.
In order to determine the constants A and B, we have only to notice that
the streamlines ¢ = Uay?/2 and ¢ = Uby?/2 far upstream are still on the outer
and inner walls respectively far downstream. The result is

4 _ U bla® — a®) Yi(noh) — a(be* — b*)Y ()
" 2ab Ji(0@) Y 1(1b) ~ J1(16b) Y 1(n02)

(A18)
U blag® — a?) Ji(neb) — a(be® — b°) J1(nea)

B= 2ab Ji(na@) Y 1(nod) — J1(neb) Y1(nya)

* This statement is not the case, if there appears a reverse flow which comes from the
downstream region, In such a case we cannot proceed beyond the equation (Al0), and
hence the solution (Al6) together with (Al7), (Al8) cease to be valid.
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