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A New Rearrangement and the Theorem of
Hardy - Littlewood - Polya

By Yukio TAKEUCHI*
(Received October 30, 1976)

In this paper, we introduce a new rearrangement of functions and prove a
generalization of Hardy-Littlewood-Pélya’s theorem. At first we define the concept
of stratus system and a concept of a new rearrngement, We study various properties
of doubly-substochastic-markov operators on L! defined over a stratus system. At
last by using Kadison’s theorem and Fan’s theorem, a result concerning doubly-
substochastic-markov operators will be obtaind, This result is a generalization of

Hardy-Littlewood-pélya’s theorem.

1. Intoroduction.

It was proved by Hardy-Littlewood-Pélya® that non-negative vectors x, Y &€
I'x satisfy a certain order relation ¥ { x if and only if there is a doubly -stochastic
matrix 7 such that ¥ = Tx. This result has been investigated and generalized
in various points of views by Ryff?® and others. For example, Ryff extended
this theorem to the case when the vectors x, ¥ are in L'[0, 1] and T is a doubly-
stochastic operator on L0, 1].

In this paper, we shall obtain a generalization of the theorem of Hardy-
Littlewood-Pélya.

In section 2, we shall introduce a new concept called the stratus system on
o-finite measure spaces and a generalized concept of the rearrangement on such
a system. We shall rearrange functions which are measurable on the measure
space. Further, some elementaly concepts and results will be shown for later
sections.

In section 3, we shall study the property of doubly-stochastic operators and
doubly-substochastic operators on L.

In section 4, Kadison’s general compactness theorem and Fan’s theorem which
are usefull tools for our later discussion, will be introduced.

* Assistant, Department of Information Engineering
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In section 5, using these results the main theorem which is a generalization
of Hardy-Littlewood-Pélya’s theorem will be proved.

The auther wishes to express his hearty thanks to Dr. Y. Nakamura and
Dr. W. Takahashi for many kind suggestions and advices.

2. Preliminaries.

Let X be a non-empty point set provided with a countably additive nonnega-
tive measure # on a o-field ¥ of subsets of X. We shall denote the measure space
so defined by (X, 3, &).

DEFINITION 1. Let . ={Xw; k& '} be a subclass of Y satisfying the
following conditions :

(@ I'={KE);Ec 3, ME)< oo} ;

(b) #(Xr)=F for each k& [";

() UrXr=X and if k<<p' then X1 C X
Then, % will be called a stratus on X.

DEFINITION 2. A o-finite measure space is sald to be homogeneous, if for
any pair of E, E' € ¥ with M{E) = #(E’') < oo, there exists a mapping m ; X—X
which is measure preserving on E’ and satisfies #(m-1{(E)4E") = 0.

DEFINITION 3. A quadraplet (X, ¥, #, %) with a homogeneous o-finite
measure space (X, ¥, &) and a stratus % is called a stratus system.

ExAMPLES, We list below some examples of stratus system.

(1) Let, X=1{1, 2, -, n} and ¥ =2X. And let # be a counting measure on
X. Putting Xr={1, 2, -, b} % and ['={1, 2, ---, n}, we see that (X, ¥, #. %)
is a stratus system.

(2) Let X={1, 2, ---} and ¥=2%. And let ¢ be a counting measure. Putting
Xr={1,2, -, B}€ &% and I'={1, 2, -}, weseethat (X, ¥, ¢, &) is a stratus
system.

(3) Let X=[0, 11, # be a Lebesgue measure on X and Y be a class of
Lebesgue measurable sets. Let Xr=[0, ke . % and I'=[0, 1], then (X, 5, #,
F) is a stratus system.

(4) Let X=[0, o), I be a class of Lebesgue measurable sets, # be a Lebesgue
measure cn X, Xr=[0, k]l F and ['=(0, o), then (X, 3, #, F ) is a stratus
system.

(5) Let X=[—1,1], ¥ be a class of Lebesgue measurable sets, # be a

Lebesgue measure, Xr= _k é]ejf‘ and ['=[0, 2], then (X, X, &, F ) is

o
a stratus system.
6) Let X=[0, 11x[0, 1], X be a class of 2-dimensional Lebesgue measurable
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sets, # be a 2-dimensional Lebesgue measure, X+=[0, /£ 1x[0, +/ % ] .5 and
I'=[0, 17, then (X, 3, #, %) is a stratus system.

REMARK 1. If a o-finite measure space is mon-atomic or discrete then we can
find a stratus on this space. From now on, the space X under consideration shall
in fact be a stratus system.

DEFINITION 4. Let 7 be a measurable function on X. We define the distribu-
tion function dy of f for all t€R by dr(t)=u{x; F(x) >}, which may take a
value oo,

DErFINITION 5. For every x<X, The & -distance of x is defined by p(x)=
sup{k; *&Xr}, which is not infinite as X=UrXs.

DEFINITION 6. Let f be a measurable function on X. We define the & -
rearrangement oy of f by dr(x) =inf{t; ds(¢) < e(x)}, which takes a value + oo
if the set of t's is empty, and takes —co if the set coinsides to R.

REMARK 2. As we can see easily, if #(X)=co, the range of the & -rear-
rangement of a measurable function f is not always equal to the range of f,

Some foundamental properties of dy and 4y will be shown in the following
lemmas.

LEMMA 1. The functions dy and §y have the following properties :

(1) For all teR such that dr(t) < oo, dy is vight continuous and nonincreas-
ing.

(2) o7(x)>o7x") if x& X1 and x'& X for some k.

(3) ds(t) > 0(x) if and only if 57(x) > £.

4) dr=das,.

(5) If fulf where symbol ! denoles monotone pointwise convergence almost
ever ywhere, then §r, 1 or.

Proof. (1) Suppose #:<tz with dg(t1) <oo. Then, ds(t1)—dr(te)=0{x; f(x)
> ) —o{x; Fx) > tey=0{x; 2 > f(x) > 1} >0. Furthermore oo > #{x; ta> f(x)
>t} VH@)=0if tal ta

(2) The proof follows directly from the definition of §r.

(8) Suppose ds(to) > d(xo) for arbitrarily fixed fo& R and x,=X. We can find
an &€ >0 such that o(x0) <dslto + &) as dy is right continuous, then ds(f) > 0(x0)
for all t<#o+ &, as dy is non-increasing. Hence ds(f) < 0(xo) implies ¢ > to + €,
so that dr(te) = inf{¢ ; dr(t) < O(xo)} > 1o+ € >16. To prove the converse assume
dr(te) < 0(x0), then to€{f; ds(t) < 0(x0)}. This implies that ds(xe) = inf{¢ ; dr(t) <
£(x0)} < to.
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(4) By using the result of (3) we have ds,(to) = #{x ; 57(%) > to} = t{x ; dr(to)
> p(x)}. Now we shall show 1(A) = dr(te) Where A ={x; ds(te) > 0(x)}. If dr(to)
=oo, then A= X and so #(A)=ds(ls). Thus we may assume dr{to) < co. It is
easy to see that x=A implies x&Xa,¢,). This fact shows that #(A) < Xa,.))
= ds(te). We will prove the converse inequality. In the case that there is an
&> 0 such that 2 <dr(te) — € for all k € I" satistying X»&Xa,.), it is true that
o(x) < dslte) — & <dslte) for every * & Xat.). From this, we obtain Xa4¢) < A
and therefore #A) << #(Xas ) = dr(te). In another case, for any &€ >0 we can
find ke " satisfying ds(te) — &<k <ds(ts). Then, from the fact that Xr C A4,
we obtain that ds(fe) — &<k = t(Xz) < #(A). Since ¢ is arbitrary, we have ds{to)
< HA).

(5) Suppose fnlf we can easily see that #{x; fu(x) > ¢} 1 #{x ; f(x) > ¢} for
each t = R ; that is dr, 1 dr. Consequently, we have §7,..(%) = inf{t; dru..(t) <
o)y > inf{t 5 dra(t) <o)} =dru(x). Since Unlx ; d7u(x) > )= Uaulx 5 dralt) > 0(x)}
={x; dr(t) > P(x)}={x; 57(x) >}, we obtain s, 1 d7.

In the following lemma we denote max {f, 0} by f+ and —min{f, 0} by 7-.

LEMMA 2. (1) dr+a=2dr+a for all e € R.

(2) dr+(t) =dflt), for all t>0.

(8) &r% =ds+, for all x &€ X such that p(x) 5= iX).

(4) Let m(X)<oo. If p(¥) = p(X) — p(x), then —5-7(x) = ().

(5) Let {X)=o0. If J'Xf-<oo, then 55 > 0.

Proof. (1) The proof follows from
of+a(x) = inf{t ; drea(t) <P} = Inf{t; dr(t — a) < O(x)}
=inf{¢t + a; ds(t) <o)} =inf{t ; dr(t) < OX)} + a
= g7(x) + «.
(2) If +>0, then dr+(t) = £{x; f+(x) > t)=p{x; fx) > t}=ds ).
(3) We can easily see thet inf{t; ds+(£)<< o(x)}>0. And we see also that
(t;dr(t) <ox)y=¢ if and only if {t>0;ds(t) < e(x)}=¢. Then, by using (2),
we obtain that

dr+(x) = [inf{z 5 ds(t) <o)} ]r = inf{t > 05 dr(t) < o(x)}
=1inf{t >0; dr+(t) <o)} = inf{t ; dr+(t) < 0(x)}
=dr+(%).

(4) Since #{X) <o and o(¥) = #(X) — o(x), we have

d-5(t) = p{a 5 (= N)x >t} = e{x 5 %) <1}
= HX) — r{x; (%) > —t},
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and

= —inf{¢ ; (X)) — #{x ; flx) > —t} < o))
—inf{t ; #{x; flx) > —t > HX) — o(x) = ()}
= sup{—¢; #{x ; flx) > —t} <o)}

=inf{t ; #{x ; flx) > <))

|
$a
=
&
!

It

Let fo = —§-7(x) and ¢1=07(Y), then as >t implies #{x ; f(x) >t} o), o)
> illr{‘l £{x; Fxy >t} = p{x; f(x) >t} = ds(te). Therefore, by LEMMA 1-(3), we

have t1 =679 <to= —d-r(x). As dr(¥) <t1, we have p(¥)>ds(t) = p{x ; f(x) >
fy > p{x ; F(x) >t} for ¢ >t This fact shows that to= —g-s(x) <t for all >
and therefore fo = —§-r(x) < t1 = 5()).

(5) By our assumption, it is clear that for arbitrarily chosen &€ >0, ds(—¢)
= p{x; f(x) > —¢e}= oo. Since X =UrXr, there exists a ko= I" such that §s(x)
=inf{¢ ; ds(t) < %)} >inf{t ; ds(t) < ko) for each x € X. If the right hand side
of the above inequality is negative, then for some € >0, ds(—¢&) < ko< oo. This
is a contradiction.

The results of LEMMA 1 and LEMMA 2 will be used without warning in the
rest of this paper,

DEFINITION 7. Let E € ¥ with #(E) <. We denote Xuz) by E* and denote

the characteristic function of E€X by 1z.

LEMMA 3. Let E & 3 with t{E) < co. Then,
(1 J 1E§S oip, for all ke ;

Xp Xp
(2 JX1E= JX&E‘

Proof. (1) We can easily show that

dip(t) = p{x 5 1p(%) >t}
= (0, if 1>1¢;
wE), if 0<t<{1;
MX), if t<Co.
Therefore, we have

oip(x) = inf{f ; dip(t) < o(x)}
=1, if o(x) < HE);
=0, if o(x) > ME),

as #(X)>p(x) always consist. We obtain iz = 1z« where the notation = means
“almost everywhere equal”. Because, it is known in the proof of LEMMA 1-(4) that
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p{x ;5 o(x) < (E)y = (E) and {x; o(x) <<ME)}CXugp = E*, we have

I

2

1z = MXrNE) <min{#(Xr), HE)}
A

=min{#{Xr), ME*)} = (X0 E*)

= J 1px = J 01g.
Xy X

(2) Since X NE)= X NE*), (2) follows from (1).

We can show LEMMA 4 and LEMMA 5 by the essentially same way in the
proof of LEMMA 3.

LEMMA 4. Let E1, E: & X with the properties that E1D E: and t(E:) < oo, If
air, az<0, then

I earlg +aslEy) = Qig; + X2lig,.

LEMMA 5. Let Ei, Ee:€ ¥ satisfying the conditions t(E1) < oo, H(E32) < oo,
Then, if ai, as >0

(1 f 5(¢11Ex+azlEz)_<_J (dip, + adig,), Jor every ke[ ;
Xz X

(2) [ OalE1+a21E,) = J' (a151E1 + a251E2)~
X X
LEMMA 6. Let f be a non-negative measurable function. Then,

(1) J féj of, for every ke [ ;
X X

() hf:jgﬁ
The value of the integral may be oo,

Mmn

Proof. (1) By our assumption, we can find a sequence {fu;fu= ZailEi}
of simple functions with the properties :

(@) ai>0 (=1, 2, -, ma), for each n ;

(by EiDEzDDEm, and {E1) < o, for each # ;

(C) FRPA
By LEMMA 4, LEMMA 5 and Lebesgue’s monotone convergence theorem, we obtain,
for every k& I,

mn Mn

f=1imj a-lqglimJ’ idip,
JXk . sz ilE " sz 101

=limJ Jme :J of,
n JXg ZailEs Xp 4
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as the condition (c¢) implies 0 g 167.
(2) The proof is obtained by changing Xr and <to X and = in (1).

LEMMA 7. Let #(X) < oo, Suppose J'Xf““ < oo or Jyf‘ < o, then

JXf = JXb‘f.

The value of the integral may be - oo,

Proof. If J f~ = oo, then it is true that E orF :J dr+ :J St < oo, Thus,
X X X X

by using LEMMA 6 and LEMMA 2-(4) we obtain

T fo: _fo— B _Jxa_f - JX(SL

If J f~ < oo, we have similarly that
X
J 5"f:J' 5'f=J = oo,
X X X

Thus, if J [t = co, then
X

too= | r={ rr=| oo =] o= s
X X X X X

Finally, if J JF*< oo and J' f~ < oo, then

ij = j‘f - JXf‘ = jxaﬁ - wa = Jxaf.

REMARK 3. Let (X, 3, #, %) be a stratus system. For an arbitrarily but
fixed ko', let Sr,={XrNE;E<€X}, F ko={Xti; <k and tr, be a
restriction of # on X. Then, (Xkes Skes Hhor F ko) 18 a stratus system. Further-
more, Hr,(Xko) < 0. Let f be a measurable function on X. Now we can consider
the rearrngement drke of % which is a restriction of ¥ on Xz, It is easy to see
that §r > drke on Xe,.

We use this remark in the proof of LEMMA &

LeMMA 8. Let f be a function with J fr< oo or J' < oo for some koS
X

ko Xko
I, Then,
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J fg[ 35, for every ke I" with k< ko.
X X

The value of the integral may be -+ oo,

Proof. By the assumption, J Sr<eo or J f- <o for every ke[ sat-
X X

isfying £<Cko. We clearly have

Jka = JXkéfk < JX;?f,

from LEMMA 7.

LEMMA 9. Let f be a function with J St < oo or J f-< oo, Then,
X X

1) J' fﬁj of, for every ke[ ;
Xp Xp

(2) fo < JPXJ;.

Proof. We need only to prove (2) in case #(X) = oo, If J f~< oo, then by
X
LEMMA 2-(5), 65 > 0. Thus,

JXf = JXf“ - J'Xf‘ < JXf" = JX5f+ = JXszJ“ = JXﬁf.

— 00 = —ij" = JXfSJXBf.

REMARK 4. Let & = {(Xrs k'Y and F '={Xt' ; k& ') be two strati
for a homogeneous o-finite measure space (X, 3, #). We let 5z be the &~
rearrangement of 1z and diz' be the _&# '-rearrangement of 1z, then diz = Lxua,
and 01’ = lx'wg, We can easily show that for every ke [,

J O = MXeNXwp) = X' N X' ) :J dig'.
Xy Xy’

Furthermore, if §7 is the _% -rearrangement of f& L and §f' is the &% '-rear-
rangement of f, then it is easy to see that

J Jf :J dr', for all keI
X X'
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3. Doubly-stochastic operators and doubly-substochastic operators.

In this section we introduce important relations between integrable functions
on a stratus system (X, ¥, #, % ). We shall denote the set of all integrable
functions on X by L! and the set of all essentially bounded functions on X by
L,

DEFINITION 1. Let f, £ L. We denote f (& whenever JYang dg for
X X

all keI, and £ <& if f (& and fXaf = fXag.

Hence, these relations are free from the individual stratus, by REMARK 4
of §2. On the other hand the rearrangement depends on the individual stratus.
We can also define them by the way of Luxemburg.® [see the note of Chong
and Rice]. D

LeMMA 1. Let f, 8 Lt with f (& Then for any non-negative u < [=(L1)

J' f(‘;uéj 5!51:£J 5g5u.
X X X

mn

Proof. There exists a sequence of simple functions {Zailm ya; >0, ki EF}

mn

with Zaile;Tau. By LEMMA 9 of 82 and Lebesgue’s dominated convergence
theorem, we have

mn mn

Jon = Jim s (D) =tim] /- (Tt

mn Hin
— lim aiff.lX — lim a,-J P
m D i | Solxg =lm)jai |
Mn
glimZaiJ 55
n th
mn nwn

[: hirln Z a; Jxalekl = JX 1151’1 o5 (E ailX}e,') = J){Sf(ju].

Nn

i > [ o= | dsdu
é lilznz inag 5 g0u

DEFINITION 2. We denote by [Lt] (or [L*]) the set of all linear operators
on L (L*). An operator T € [L'] is said to be doubly-substochastlc if it satisfies
the following conditions :
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(@ T=>0;

(b) TrF< f for non-negative f & L1
A doubly-stochastic operator T is a doubly-substochastic operator which satisfies
T7 < f for any non-negative f € L, We denote the set of all doubly-substochastic
operators by . and the set of all doubly-stochastic operators by 7.

LEMMA 2. Let T e <A Then
J [Tf| gJ | £l for every f e L1
X X

Proof. It is easy to see that T/*—Tsf =TF=(TFH* —(TF)". From the
fact that 7>0 and sF"— f>0, it follows T(f* — f)=TFf*—Tf >0. This
shows that 7% >max {7/, 0} = (TF)*. Since (TA)" —(Tf) =TF" — TF >(TF)*
— Tf", it follows that 77~ > (T/)". We now have

[ =] (rpr+@m<| @r )
= JXT(f*’—kf”) = jXT]f] = jX5Tlfi

<[ o= 1A

from LEMMA 6 of §2 and the definition of T € &

DEFINITION 3. We denote by 7% the adjoint of T & [L'] which actson L= :
that is T* [ L~]. By LEMMA 2, if T =%, then as we can see easily 7% is a
positive contraction on L. We define &% = {T*; T € &}.

LEMMA 3. Let Te & If Fe Lin L=, then
ess sup |Tf| <ess sup |f].

Proof. Suppose ess sup |TF] > ess sup |f] for some Fe LitN L~°. We can
find £ 5 with 0 < #(E) < o on which |Tf| >ess sup |f]. From this we have

J 5T1/32J 5[m>J €ss sup Ifléj dis.
E* E* E* E*

But, T|fl<|f| implies JE*()‘TM < J'E*ﬁlfl, Which is a contradiction.
LEMMA 4. Let T €. 2. Then, for any 1p € L1,

0< T1p <1 and jXTlE < WE).
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Proof. The result follows directly from
0L T1g=1T1g| < ess sup |1z| <1

and
| 115 = o1 <[ o= 10 = HE)
X X X X

LEMMA 5. Let T <. Then,
JXTlg =((E) for any E €X.

Proof. We obtain the result changing < to = in the proof of LEMMA 4.

LemMmMa 6. Let T* € &#*. Then for any E< ¥
0< TH1; <1 and JYT*lE < HE).

The value of the integral may be oo.

Proof. Let E€ 3. Itis clear that 0 T*1p = |T*1g| <ess sup |1z] <1
There exists a sequence {lx. T*lp; ks €'} with the property that if n—oo,
1x.T¥1p 1 T*1g. Now we have for each 7,

J' 1xp. TH1p = J' T1lxw1 ﬁJ' 1-1p=tE),
b'e X X
and therefore

J T*lE = llmJ 1an Tﬂil]iétu(E)'
X n JX

LemMa 7. If T € &, Then T*1 = 1.

Proof. For any 1z € L!, by LEMMA 4 we have

J 1=J 1E=,U(E):J TlEZJ TlE-1=J 1E°T"1=J T*1.
E X X X E

X
Then, T#%1 = 1.

DerFiNiTION 4, Let Se[LtN L] and assume that satisfies the following
conditions :

(a) 0<S1p<L1forlp e tNL>;

{b) JXSh;g;z(E) for 1z € L N L.
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Let fe Lt (L*®) with f>0 and let {fa; fu € LN L=} be a sequence of nonnega-
tive functions such that /» 1 /. Then we define §f by §f= lim Sfx. For arbitra-

rily f& Lt we define Sf by Sf= SF* — Sf-.

REMARK 1. We can find that §f is well defined for any fe L! (L*) with
f>0.9 We shall show that if f= Lt (L*) with f>0, then gfe Lt (L*) in the
following lemmas. This fact also shows that for arbitrarily f& Lt (L*), §fe Lt
(L) by the definition of Sf.

LEMMA 8. Let f< L with £>0. Then Sfe LL.
Proof. It follows directly from the definition of S that if f >0, then §f2 0

~ Min
and that S is linear. We can find a sequence {Zm 1g; s 1, € LINL™®, a; 20}

Mg

with > ai1z;1 £ Then, we have

My "y

ogS(Zailgi) 1Sf and S<Z“i15i>€ Lin L*

This shows, by Lebesgue’s monotone convergence theorem,

Mp

[ng = J lim S(%ailg,) = 1izn JXS<Z“1'1E1'>

X n

My My
= IimZaiJ Sig; <lim D> ey J 1k
7 X n X

By

My
= lim JXZOME" = JXhén (thi 1El~>

7

= | f<en,
X
The proof is complete.

LEMMA 9. If f€ L> with f>0, then Sfe L=

Proof. For any 1gp € L' N L=, we have J OT1E gj o1 for each ke
Xk Xt

Because S1z <1 implies dr1z <1 and diz = 1 on E, we can show that

J 551E£J sz whenever k< HE) ;
Xt Xk

P

J dsie éJ ds1E = J S1g K HE) = f 01z whenever k> (E).
Xk X X Xk
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ig

While, there exists a sequence {E ailp, s 1g, € LANL>®, ai > O} such that E1D

Ny

<D Em, and EailgiT /. Suppose for some #,, there exists a set £ & XY with

Hino Mo

0<E)< oo on which S(Z ai1Ei> > ess sup Y ailp. Then we obtain

Mno

_ess sup D jeilp; > J o

E* T ailE:

J 0 ins >j
E* S ailE:d) E

But we see that
Moo
J 0 e < z}aij JS1E:
E* S ai1ED E*
Mo

< aiJ Olp: = J Omno
Z E* E* Zailg:

This is a contradiction. Hence we obtain that for all =,
My n
S<Z ail@) <ess sup Q) jailp; < ess sup f,
and therefore

Hin

Sf=1lim S(}] “ilE,-> < ess sup f
n

REMARK 2. By LEMMA 8 (9), we can consider that § is an operator on L1
(L>).

LEMMA 10. S & as an operator on L.

2p

Proof. Let f€ Lt with f>0, then there exists a sequence {Z aile; s 1g; €

Min

LN L=, ai> O} with £1 D+ D Em, and Zailgi 1 /. Then for each k€ I,

n
J 857 = lim J 5 m = limzai[ ds1m:
Xk ” Xt S ailED ” Xk
Han
_é lim Eai J O1g: = lim J 0 mn
7 Xk n S Xk (S ailgD

== [ 0f.
Xk
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LEMMA 11, For any E € 3,

0<S1p <1 and j Y§1E < ME).

P

The value of the integral may be oo,

Proof. 1t follows from Lemma 9 that og§1Eg1, There exists {X &, C
{Xr; ke with 1y, 111z, It is easy to see that 1xp, 1r = lxewne SLIN L™,

Since JX31‘Xk””E < M(Xp, N E)<<HE) for all kn, we have

nglE = JXlifzn Slxpene = 1i7rln JXSIX/enﬂE < HE).
REMARK 3. By LEMMA 2 LEMMA 11, we see that
S ={T*;T e}
— (T e[L*1;0< Tz <1, ijE < #(E) for any E € 3,
0<fut f{fu € L* N L>) implies T/n 1 TF}.
The following lemma and remark are essentially due to Ryff. »
LEMmaA 12, Let (X)) < oo. If an operator T onL> satisfies the condition :
0<T1g<1 and JXTlg = (E) for any E€ 3, then T € <.
REMARK 4. Similarly to REMARK 3, we see that
FDE={T";T e D)

={TellL"];0<T1p <1, JXTIE =mE) for E€X)
by LEMMA 12,

4. Kadison’s thorem and Fan’s theorem.

DeFINITION 1, The topology 1 on [L=] is said to be the weak*-operator
topology if a subbasic neighbourhood of the null operator in this topology is
given by

N g 9 =T elL]; || T8 <e),

where f€ LY, £ L* and ¢ > 0.



A New Rearrangement and the Theorem of Hardy-Littlewood-Pdélya 15

DEFINITION 2. We denote the all of positive contraction operators on L= by
Pe.
The following theorem which was given by Kadison® is very powerfull.

THEOREM 1. (Kadison’s general compactness theorem)

Pc is compact in weak*-operator topology.

The following theorem is due to Fan? and is also of considerable importance
in functional analysis. Recently Takahashil® gave a simple proof of this this
theorem and some applications.

THEOREM 2. (Fan's theorem)

Let K be a compact convex subset of a topologycal vector space E. Let {f;;
ie I} be a class of veal valued lower semicontinuous convex functions defined on
K. Then, the system of inequalities

filx) <0 (Gel)

is consistent on K [i. e. there exists a point x € K satisfying fi(x) <0 (e I)] if

and only if, for any finite subclass {fi,, -, fi,yC{fi;i €I} and for any n non-
negative numbers {ai, -+, ay}, there exists a point x K such that

11

Dk fi(%) < 0.

k=1

5. A generalization of Hardy-Littlewood-Pélya’s theorem.
LEMMA 1. &* is compact in weak*-operator topology.
Proof. Let {Ta; Te € &%} be a net which converges to T in weak®-operator

topology. For any E & XY and for any k&€, JXIXkTaIE — JAleTolE = J 1xs
Y X
(T« — To)lz converges to 0 if Ta— To. While for any ke [, j L Tale <
X
J Talp < t(E). Then we have { 1xiTolp < t(E) for any k = I". This fact implies
X Jx

that J Tolp < ME). On the other hand, since P¢ is compact and &* C P;, we
X
obtain that 0 << Tolg <{1 and therefore 7o & .%% This completes the proof.
LEMMA 2. If p(x) < oo, them <7 * is compact in weak*-operator topology.

DEFINITION 1. If an operator 7' & &/ satisfies 7%1 =1, then T is said to be
a doubly-subslochastic-markov operator, which is introduced by Sakai. 9 We denote
by &-m the set of all doubly-substochastic-markov operators. We define &-m*
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by & -m* = {T*;T & -m}. It is clear, by LEMMA 7 of §3, that & * C o/*.

REMARK 1. It is easy to see that & =% -m. If t#(X)<oo, T1=1 follows
from Te &, But, if #(X)= o0, T € &7 not implies T1 = 1. Then, our defini-
tion of &7 not equal the ordinaly definition of doubly-stochastic operators [71
=1 and 7%*1=1]. Therefore, if #(X) = oo, we use the notation . -m.

LEMMA 3. &7 -w* is compact in weak*-operator topology.

Proof. Let {Ta; Ta €. %-m*} be a net which converges to 7o in weak*-
operator topology. We need only to prove 7ol =1. Since Ta € F-n*, Tal=1
for all . For any f& L1, we have

fol - JXde - JXf Tol — JXde - J ATw — ToL.

P

S

If Tw— To, then j AT« — To)l—0. Thus we obtain Tol = 1.

LEMMA 4, .un* is convex.

LEMMA 5. Let {Ai, -+, A} and {Bi, -, Bn} be subclass of 3 which are
pairwise disjoint, If p{A;) = #(Bi) < oo for each i (1 <i<m), then there exists a
measure preserving mapping o ; X — X which satisfies the condition : t(o-1(A:)4B;)
= 0 for each i,

Proof. By the definition of stratus system, there exists a mapping ¢i ; X —
X which are measure preserving on B: and satisfying #{c:~{A:)4Bi) = 0 for each
7. Further, if we put

A:AIUUAnUBlUUBn—“AIUUAn:
B:AIU"‘UAnUBlU"'UBn“BlU"‘UBn,

then #(A) = #(B)< o and therefore there exists a measure preserving mapping
o ; X — X with p{e'-1(A)4B) = 0. Now, we define ¢ : X onto X by

oi on ¢;i-4(A:) N Bi ;
o=1 ¢ ono-1{A)NB;
I (identity mapping) on (A1 U - U Aa U -~ U Bn)e.

Then, ¢ has the desired properties.

DEFINITION 2, Let ¢ be a measure preserving mapping X onto X. We define
an operator To € [LYJ({LL>=]) by, for any f& LYL®), Tof = foo.

LEMMA 6. To € . F-m.

Proof. Since
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dr.rt) = p{x; Tef >t} = #{x; foo >t}
= plo-i{x ; flx) > t}) = #{x ; fx) >t}
= ds(t),

for any fEL!, we have 7,7 = dr and have To € .F -m.

LEMMA 7. Let {A1, -, An} and {Bi, -, Bn} be two subclass of pairwise
disjoint sets from 3. Then, there exists a measure preserving mapping o ; X — X
such that, for n nonnegative «;,

n n i
T,,(E ailAi) = EailBi and To* (Z} OlilBi) = ZailAi-
Proof. There exists ¢ which satisfies the conditions of LEMMA 5. Then

13 7 k23
To (Z “z’lAi) = (Z a'ilAi) oo = D jai(la;00)
3 i
== Eaila‘l(Ai) - ZailB .

On the other hand, for any 1g € L!, we have
[ To1pi = [ 16T 15 = | (To15)15:
E X X

= [ (pon)(aion) = | (stadoo
X X

= J 1A,‘.
E

DEFINITION 3. Let £, £ Lt For any E € ¥ with #(E) <, we define the
mapping Fg ; & -w*— R by

Fp(T* = jE@f — Tég).

LEMMA 8, For any E € 3 with p(E) < o, Fg is convex and weak*-operator
continuous.

Proof. Since
F(T") = Fp(Td) = || (To— T3l = || 0s(To* — 79181,
Ry X

Fr is continuous in weak*-operator topology. If «, 8 are non-negative real
numbers with @« + 8 =1, then
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FuleT*+ 6T = | (o5 — (T + $T4)o0)

— | aloy — Tés) + | plor — Tos)
E E

= C(FE(T*) + ﬁFE(T0*>-

From this fact, it follows that Fg is convex.
Now, we have had suficient tools to prove the following theorem, which is

a goal of our work.

THEOREM 1. Let f, & L' satisfying the following conditions :
(a) 5f20, (3g20 ;
) J 3 = J 3.
X X
Then, for every k&I,

J 5f§j Og
Xk Xt

if and only if there exists a T € S -m Such that
5f = T5g.

Proof. It is easy to check that dr = T3¢ if and only if, for any E & Y with

Fp(T*) = jE<5f — Té,) = 0.

We first show that there exists a 7" &€ .% -m such that Fp(T*) <0 forany E € ¥
with #(E) < . By Fan's theorem, we need only to show that for any fiinite
class {Ei1, -, Ex} and for # non-negative numbers «;, there exists T & & -m
such that

D IGFpT*) = JXZ ai1p{dr — Tdg) <0.

Without loss of generality, we assume that {E:, --+, E»} is pairwise disjoint. It
follows from LEMMA 7 that there exists a measure preserving mapping ¢ such

72
that To¢*u = o and T0ody = u, where u = EC‘(;‘IE. Then, by LEMMA 1 of §3,

J Uujf _<‘[ Oudy _éj’ Oulg = J (To*ut)og = J u+(Todg).
X X X E X
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Thus we obtain 7T¢ €.% -m which has the desired properties. Therefore, there
exists T &.%7-m such that o7 < T'§g. suppose #(A) >0 with A= {x;dr<Tde}.
Then

{Xaf - JAﬁf * JAc(jf < JAng i JAcTag - JXTﬁg = JX(?g’

which is a contradiction. Thus dr = Tds.
Let us prove the converse. If there exists a T € % ~m with §r = Tdg, then,
for any ke [,

| or=] Tos<| orsg<| o
XE Xk Xk X

If #(X)<co, we obtain the following theorem, which was essentially proved
by Ryff.® [see REMARK 1. ]

THEOREM 2. Let 1(X) < oo and f, & € L' which satisfy the condition :
(@) 95r>0, 62>0;

(b) JXa = JXag.

Then, for every k"

J 5f£J' (3g.
Xk Xk

if and only if there exists a T & <7 such that

5]‘ = T(?g

Examples.

(1) Let X =1{1, 2, }, 3=2%, ¢t be a counting measure. Let Xz={1, 2, , k}
and "= {1, 2, ---}. Let (a1, a2, ---) and (b1, b2, ---) have the following properties :

(@ aa>a>2>0, h>b>>0;

(b) Zdi = Zbi.

14 e
Then, for each k, » Ja; <> b: if and only if there exists a matrix P = (Pi;)i,j=1,2, -
= =

such that ZPij: 1, ZP;‘J’Z 1, Pij>0 and a; = ZPijbj for each 1.
7 7 7

(2) Let X=1{1, 2, , n}, I=2%, £ be a counting measure. Let Xz={1, 2, ---, £}
and " ={1, 2,--, #}. Let (a1,--, @) and (B, -, bn) have the following proerties :

(a) 6112"‘207120, bi> - >bn>0;
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k4 n
(b) 21 a; = 'Elbi.
= =

k k
Then for each £, a; < > b: if and only if there exists a nX#-matrix P= (Pij)
1 =1

such that P:i; >0, EP;']'= 1, ZPU: 1 and ¢; = ZPz‘jbj for each 1.
i 7 7

(8) Let X =[0, ), 3 be a class of Lehesgue measurable sets and # be a
Lebesgue measure. Let Xr=1[0, k] and " =1[0, ). Let f, &< Lt [0, o) with
the following conditions :

(@) 8r>0, 9g=>0;

o L[

k k
Then, for each k& J 5f£-[ dg if and only if there exists a T €. -m Such that
a o

(3f B T5g.

(4) Let X =1[0, 1], ¥ be a class of Lebesgue measurable sets and # be a
Lebesgue measure. Let Xr =1[0, £] and " =1[0, 1]. Let f, § & L1[0, 1] satisfying
the following properties :

(@) 37>0, 3520
1 1
m)Lm=L%

k k
Then for each [k =0, 1], J 5fgj dgz if and only if there exists a T € &7 such
o o

that 6y = T'dg.
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