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   In this paper, we introduce a new rearrangement of functions and prove a

generalization of Hardy-Littlewood-P61ya's theorem. At first we define the concept

of stratus system and a concept of a new rearrngement. We study various properties

of doubly-substochastic-markov operators on Li defined over a stratus system. At

last by using Kadison's theorem and Fan's theorem, a result concerning doubly-

substochastic-rnarkov operators wM be obtaind. This result is a generalization of

Hardy-Littlewood-p61ya's theorem.

                            1. Intororfuctien.

   It was proved by Hardy-Littlewood-P61ya4) that non-negative vectors x, Y Eii

lin satisfy a certain order relation Y < x if and only lf there is a doubly-stochastic

matrix T such that Y =!= Tx. This result has been investigated and generalized

ln various points of views by Ryff7)8) and others. For example, Ryff extended

this theorem to the case when the vectors x, Y are in Lt[O, 1] aRd T is a doubly-

stochastlc operator on Li[O, 1].

   In this paper, we skall obtain a generalization of the theorem of Hardy-

Li£tlewood-P61ya.

   In section 2, we shall lntroduce a new concept called the stratus system on

a-finite measure spaces and a generalized concept of the rearrangement on such

a system. We shall rearrange functions which are measurable on tlte measure

space. Further, some elementaly concepts and results will be shown for later

sectlons.

   In section 3, we shall study the property of doubly-stochastic operators and

doubly-substochastic operators on Li.

   In section 4, Kadison's generai compactness theorem and Fan's tkeorem which

are usefull tools for our later discussion, will be introduced.
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   IR section 5, using these results the main theorem which is a generalization

of Hardy-Littlewood-P61ya's theorem will be proved.

   The auther wishes to express his hearty thaftks to Dr. Y. Nakamura and

Dr. W. Takahashi for many kind suggestions and advices.

                          2. YTe}Sifninaries.

   Let X be a non-empty point set provided with a countably additive nonnega-

tive measure Ft on a o-field X of subsets of X. We shall denote themeasure space

so defined by (X, ;, pt).

   DEFINIIPION 1. Let .9==:{Xle ; le ffI IN'} be a subclass of X satisfying the

following conditions :

   (a) " = {pt(E) ;EEX, pt(ff>< oo} ;

   (b) pt(Xk) = fe for each kEiir;

   (c) UkXfe == X and lf le <k' theR Xle c Xfe ,.

Then, .J;7H' will be called a stratus on X.

   DEFINITION 2. A a-finite nieasure space is said to be homogeneous, if for

any pair of E, E' EX with pt(E) or pt(E')<oo, there exists a mapping m ; X-X

which is measure preserving on E' and satisfies ge(m"i(E)AE') == O.

   DEFINITION 3. A quadraplet (X, .2EJ, pt, .mptcrJ> with a homogeneous a-finite

measure space (X, X, pt) and a stratus L9" is called a stratus system.

   EXAMpLEs. We list below some examples o'f stratus system.

   (1) Let, X ={1, 2, ･･･, n} and X =2X. And le't pt be a counting measure on

X. Putting Xfe ={1, 2, ･･･, le}Eii .)cr" aRd I" ={1, 2, ･･･, n}, we see that (X, N, pt.-)CrkT')

ls a stratus system.

   (2) Let X=:{1, 2, ･･･} and X=2X. And let le be a counting measure. Putting

Xle == {1, 2, ･･･, fe}EY and l"=- {1, 2, ･･･}, we see that (X, .X, Fe, Y> is a stratus

system.

   (3) Let X==[O, 1], pt be a Lebesgue measure on X and X be a class of

Lebesgue measurable sets. Let Xle=[O, k]EiJ`f?J and l-==[O, 1], theR (X, N, pt,

.-9cr) is a stratus system.

   (4) I.et X=:[o, oo), 27 be a class of Lebesgue measurable sets, si be a I.ebesgue

measure on X, Xk=r-[O, fe](ilY and r== (O, oo), then (X, X, Ft, ..S/) is a stratus

system.

   <5) Let X=:[-1, !], X be a class of Lebesgue measurable sets, p be a

Lebesgue measure, Xk=[-g-, -2-]EY and Jl"=:[O, 2ll, then (X, .X, pt, Y) is

a stratus system.

   (6) Let X =[O, 1]x[O, 1], X be a class of 2-dimensional Lebesgue measurable
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sets, pt be a 2-dimensional Lebesguemeasure, Xfe=:[O, V.k] x [O, Vk]en .:crf and

l7=:[O, 1ll, theR (X, X, Y, .S7) is a stratus system.

   REMARK 1. I'f a g-finite measure space is non-atomic or discrete then we can

'find a stratus on this space. From now on, the space X under consideration shall

in fact be a stratus systern.

   DEFINrrloN 4. Let f be a measurable function on X. We define the distribu-

tion function df of ffor all tER by df(t) =pt{x;f(x)>t}, which rnay take a

value +oo.

   DEFINmoN 5. For every x(iX, The Y-distance of x is defined by p(x)==

suP{fe ;xtEi:Xfe}, which is not infinite as X =: UkXk.

   DEFiNITIoN 6. Let f beameasurable function on X. We define the yo--

rearrangement 5f of f by o"f(x) == inf{t ; df(t) s{l P(x)}, which takes a value +oo

if the set o£ Vs is empty, and takes -oo i{ the se't coinsides to R.

   REMARK 2. As we can see easily, i'f ge(X) =:oo, ehe range of the yCT'-rear-

rangement of a measurable function f is not always equal to tke range of z

   Some fottndamental properties of df and e"f will be shown in the foilowing

lemmas.

   LEMMA 1. The functions df and 6f have the follozving properties :

   (1) .For all tER szaeh that alf(t)< oo, df is ri,gtPzt continztous and nonincreas.

ing.

   <2) o"f<x) 2}li6f(x') if xEisXh and x'eqXh for some le.

   <3) df(t) > p(x) if and only if o"f(x) > t.

   (4) df= dfi.

   (s) if fi,tf tvhere symboltdenotes monotone Pointwise convergence almost

everywhere, then 6fnT6f･

   Proofl (1) Suppose ti<t2 with df(ti)<oo. Tken, df(tD-df(t2)==ge{x;f(x)

>ti}-pt{x ; f(x) >t2} ==pt{x ; t2 l}il f(x) > ti}2}i O. Furthermore +oo > pt{x ; t.o ;;}) f(x>

>ti} l pt(¢)==O if t2 S tk

   (2) The proof follows directly from the definition of 6f.

   (3) Suppose df(to)>S(xe) for arbitrarily fixed toEiR and xoEsX. We can find

an E>O such that P(xo) <df(to -Y E) as df ls right continuous, then df(t)>p(xo>

for al! t<to+s, as df is non-increasiRg. Hence df(t)fl{:P(xo) implies tl}lto+s,

so that 6f(to) :inf{t;df(t)f{:P(xo)}}ll to+G>to. To prove tke converse assume

df(to) :{:P(xo), then loEma{t;df(t) ff{;P(xo)}. This implies that 6f(xo) == inf{t;df(t) f{g

P(xo)} f{:[ to.
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    (4) By using the result of (3> we have d6f(to) == pt{x ; 6f(x)>te}== pa{x ; df(to)

>p(x)}. Now we shall show pt(A) == df(to) where A =:{x ; df(to)>p(x)}. ILf df(to)

==oo, then A==X and so pt(A) ==df(to). Thus we may assume df(to)<oo. It is

easy to see that xEA implies xEiXdr(t.). This fact shows that pt(A)gpt(Xdf(t,))

=df(to). We wil! prove the converse inequality. In the case that there is an

E :})o such that kgdf(to) -E for all k Ei I" satisfying XklillXd,(t.), it is true that

p(x) K df(to) - s < df(to) for every x G Xdf(t.). From this, we obtain Xd,(t,) c A

and therefore pt<A)sgge<Xdf(t,)>=df(to>. In anotker case, for any E>o we caR

find k ff r satisfying df(to) -8:E{ k<df(to). Then, from the fact that Xle cA,

we obtain that df(to) - 8 sg fe = pt<Xk)g pt(A). Since s is arbitrary, we have df(to)

sg pt(A).

   (s) Suppose fitTf we caR easily see that pt{x ;nt(x)>t} T pa{x ;f(x)>t} for

each t E R ; that is dfn t df. Consequently, we have 6fn+,(x) =: inf{t ; df.+,(t) s{:

p(x>}>- inf{t ; df.(t) Sg P(X)}=:tifn(X)･ SinCe Un{X ; 6fn(X) >t} :=: Un{X ; df.(t) >P(x)}

={x ; df(t>>P(x)} = {x ; 6f(x)>t}, xEre obtain 6f. T 6f.

   In the following lemma we denote max {L O} by f+ and -mlR{f, o} by fL.

   LEMMA 2. (1) 6f+a == Sf +a for all ae R.

   (2) df+(t) =df(t), for all t2;i)o.

   (3) 6f" =:= 6f+, for all x Ei X such that p(x) 7E pt(X).

   (4) Let pt(X>< co. 11f p(N) = y(X) - p(x), then -6--f(x) == sf(y).

   (s) Let pt(x) =: oo. I]f Ixf= < oo , th en 6f ;2ii o･

   Proof (1) The proof foilows from

        Sf÷cr(x) == !nf{t ; df+cr(t) :{; P(x)} =- inf{t ; df(t - a) nv< p(x)}

              = inf{t + a i df(t) s{ P(x)} =: inf{t ; df(t) ff{: P(x)}÷ a

             = 5f(x) + a.

   (2) If t2O, then df÷(t) =y{x ;f+(x)>t}=: pt{x ; f<x)>t} =df(t).

   (3) We caR easily see thet inf{t;df+(t)gP(x>}20. And we see also that

{t ; df(t> fi{: p(x)} == ip if and only if {t 2O ; df(t) -< P(x>} == ¢. Then, by using (2),

we obtain that

        6f+(x) := [inf{t ; df(t) :E{ P(x)}]+ = inf{t2O ; df(t) E{I P(x)}

             = inf{t 2z O; df+(t) :E{: P(x)} = inf{t ;df+(t) :{g p(x)}

             = 6f+(x).

   (4) Since pt(X)<co and P(Y) := pt(X)-P(x), we have

              d-f(t) == pt{x ; (-f)x>t} == pt{x ; rtx) <-t}

                   = pt(X) - p{x ; f(x) 2 -t},
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and

            -o"-f(x) = -inf{t ; pt(X) - pt{x ; f(x) 2}) -t} :i{ll P(x)}

                   = -inf{t ; pt{x ; f(x) 2}i -t2 pt(X) - p(x) =: p(y)}

                  == SUP{-t ; pt{X ; f(X) :}il -t} E{l P(Y>}

                   = inf{t ; p{x ; f(x) 2)t}ff{{ p(y)}.

Let to = -6-f(x) and ti = 6f (Y), then as t > to lmplies pt {x ; f(x) >m t} E{g p(Y), p(y)

2;}) lim ge {x ; f(x) l}it t} == pt {x ; f(x) > to} = df(to). Ther efoye, by LEMMA F(3), we
  tSte
ltave ti == 6f(Y) s: to = -6-f(x). As 6f(Y) gti, we have P(Y) ;}l df(ti) = pt{x ; f(x) >

ti}l;}) ge{x ;f(x) :2t} for t>tk This fact sltows that to = -o"--f(x> :sllt for all t>ti

and tkerefore to == -ti-f(x) :f{: ti == 6(Y).

   (5) By our assumption, it is clear £hat for arbitrarily chosen s>O, df(-s)
= Lt {x ; f(x) > -E} == oo. Since X == U feXk, there exists a feo E I" such that 6f(x>

=inf{t ; df(t) :g; P(x)};}) inf{t ; df(t) f{{ ko} for each x EE X. If the right ltand side

of the above inequality is negative, then for some s>O, df(-E) :f{g feo< oo. This

is a contradictioR.

   The results of LEMMA 1 and LEMMA 2 will be used without warning in the

rest of this paper,

   DEFINITIoN 7. Let EGN with pa(E)<oo. We denote Xpt(E) by E" and denote

the characteristic function of EEiiX by IE.

   LEMMA 3. Let EEiig with pt(E)<oo. Then,

   <i) Sx,iE E{: Ix,6iE, for all fe Eiii T ;

   (2) IxlE==ix6'E'

   Proof (1) We can easily sltow that

                      diE(t) == 1rz{X ; IE(X) > t}

                           =: &.'S iif2otsl'::t <i ;

                             kpt(x), if t<o.

Therefore, we have

                      6iE(x) = inf{t ; diE(t) :E{; P(x)}

                           = 1, if P(x) < pt(E) ;

                           = O, if P(x) 2 F･t(E),

as pt(X) ll}lP(x) always consist. We obtain 6!E =: IE* where the notation == means

"almost everywhere equal". Because, it is known in the proof of LEMMA 1-(4) that
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pt{sc ; e(x) <g(E)}= pt(E) and {x ; P<x) < ge(E)}cXstE == E*, we have

                 f                   IE= pt(XknE)Kmin{ge(Xk), ge(E)}
                  Xk
                     == mln{pt(X'le), ge(E')> -- P<XkAE")

                     =: fxklE* =: fxk61E.

   (2) Since pt(XnE) == pt(XftE"), (2) foliows from (1).

   We can show LEMMA4 and LEMMA5 by the essentially same way in the

proof of LEMMA 3.

   LEMMA 4. Let Ei, E2 Gi X with the ProPerties that EiDE2 and pt(ED<co. IllC

ai, ev2 :i{: o, then

                 6(cr11E,+cr21E,) : a161E, + a261E,.

   LEMMA 5. Let Ei, E2E.V satisflying the conditions Ft(Ei)<oo, y(E2)<oo.

Then, if ai, a2 ;}) O

   (1> lxk6(ailE!+cr21E2) :f{g Ixk(a161E, ÷ a2tiIE,), for every fe EE r ;

   (2) Sx6(ailEi+cr21E2) =:: Sx(ai6iEi + ev2tiiE2)･

   LEMMA 6. Let f be a non-negat･ive meas"rable function. Then,

   (i) fxkfE{g lxk6f, for every le E i-r ;

   (2) jxf =: fx5f･

The value of the integral may be oo.

                                                        v')ln   P?toof: (O By our assumption, we can find a sequence {th;.fLi == IE]ailEi}

of simple functions with the properties :

   (a> ai >-O (i=1, 2, ･･･, mn), for each n;

   (b> EiDE2)･･･)Em. and pt<Ei)<oo, for eachn;

   (C) A, T .iC:

By LEMMA 4, LEMMA 5 and Lebesgue's monotone convergence tkeorem, we obtain,

for every k EIi r,

                 fxkf =: ijyn fxkilliil criiEi -< ilm, lxkillilr ai6iE,

                    = ljpa Sx,6M=').,1.,=: fx,Sf)
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as the condition (c) implies b'lj'".iiE,t O"f･

   (2) Tlte proof is obtained by changing Xk and s{; to X and == in (1).

   LEMMA 7. Let pt(X> < oo. SupPose Sxf" < oo or Sxf- < oo, then

                       S.f ::= s.o-f.

The value of the integral may be L- oo.

   proof. If jxf"";:oo, then it is true that jxtif' == jx6f+ == jxf'< oo･ Thus,

by using LEMMA 6 and LEMMA 2-(4) we obtain

              -oo == Sxf =-lxf- == -ixcrf =Ixsf･

If ixf-<co) we have similarly that

                 f.a-f == S.6-f = S.f- < oo･

Thus, if fxf" = oo, then

              +oo "= f.f = S.f' == S.6f+ = S.6f" - f.6f･

Finally, if ixf" < oo and ixfm < oo, then

              ixf = lxf" - ;xf- == ixsf' ww Sxo"f" =: fx6f･

   REMARK 3. Let (X, X, pt, L)cr7t )bea stratus system. For an arbitrarily but

fixed leoGT, let Xk.={Xfe.fiE;EEX}, ..JC"7""le,=={Xle;kf{gfeo} and ptle. be a

restriction of pt on X. Then, (Xk., Nfe,, ptk., JCer-)e.) is a stratus system. Further-

more, ptfe.(Xk.) < oo. Let f be a measurable function on X. Now we can consider

the rearrngement 6fko o'f fleo which is a restriction of f on Xfe.. It is easy to see

that o"f 2iil 6ffeo on Xfe..

   We use this re;nark in the proof of LEMMA 8.

   LEMMA 8. Let f be a fu1¢ction tuith fxk .f" < oo Or fxk .fM < oo for SOMe ko E

r. Then,
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               fxkf <- fx,6f, for every fe Er with fegk,.

The value of the integral may be ± oo.

   Proof: By the assumption, fxkf'<oo or fxkf-<oo for every feEl" sat-

isfying fe El{: ko. We clearly have

                     Sxkf == Ixkbfk s{; lxk6f,

from LEMMA 7.

   LEMMA 9. Let fbe a function with Ixf'<co or fxf-<oo. Then,

   (i) Jxkf :{l; fx,6f, for every kE rT ;

   (2) i.fgSff.

   Prooi We need only to prove (2) in case y(X>== oo. If i.f-<co, then by

LEMMA 2-(5), 6f;}i:O. Thus,

           Ixf =ixf÷- fxf-sSxf+ == Sxbf+ == fxbf+= Jx6f･

If ixfm r oo, then

                  -oo == MiXf- -ww fXf :il{ fXtif'

   REMARK 4. Let Y= {Xfe ;kEZ"} and .9" == {Xfe' ; le EEi It'} be two strati

for a homogeneous a-finite measure space (X, X, pt>. We let tiiE be the Y-

rearrangement of IE and OiE' be the LS7-'-rearrangement of IE', then 6iE = lxp(E)

and 5iE' = lx,ft(E). We can easiiy show that for every k Gl l",

           SxkO"iE = St(Xk n Xp(E)) =: Ft(Xle' A X"'(E)) == fxk,6iE'.

Furthermore, if 6f is the Y-rearrangement of fE Li and bf' is the ..9-'-rear-

rangement oi f, then it is easy to see that

                  fxkSf -- ixk,tif', fOr all le E ,rT.
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      3. Doubly-stechastic eperators and doubly-substochastic operators.

   In this seceion we introduce important reiations between integrable functions

on a stratus system (X, N, pt, .)crfrt ). We shali denote the set of all integrable

functions on X by Li and the see of all essentially bounded functions on X by

Loo.

   DEFINITIoN 1. Let f, ･gELi. We denOte f <･g WheneVer lxkO"f fi{ixktig fOr

all leEr, and f <･bff if f <g and fx6f == Sxtig･

   Hence, these relations are free from the indivldual stratus, by REMARK 4

of g2. 0n the other hand the rearrangement depeRds on the individual straeus.

We can also define them by tlte way of Luxemburg. 6) [see the Rote of Chong

and Rice]. i)

   LEMMA l. Let fL eaeLi with f <ecr. Then for any non-ne,gati7ve zt ELco(Li>

                      fxfO"u g IxSfSi` :EII IxSg6te.

                                                771tl   Proof There exists a sequence of simple functions (Xailxke ; ai20, kiEr]

     7111t
with Z]ailxk,T6tt. By I.EMMA 9 of ss2 and Lebesgue's dominated convergence

theorem, we have

                                '                           7nn                                             )')ln            Jxf6tt ==: Sxilm, f ' (X ai ixk, ) =: il.ge Sxf ･ (Zl ai ixk, )

                                       7'lln                      fnn                 == lige£ai i.f･lxk, == liM., Xcri S.,,f

                      7)ln                 f{{l li,m, X evt f.,,6f

                                         O}･11t                  111n            [= li,I,n=cri fx6flxk, == fxli,m, af･(X ailxlei) = jx6fo"u].

                      f71n                 :f{g li,I,n = Sx,,Eg == ix6gSt`･

   DEFINITION 2. We denote by [Li] (or [Loo]> the set of all linear operators

on Li (Lco>. AR operator T E!i [Li] is said to be doubly-substochastlc if it satisfies

the following conditions :
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   (a) T2O;
   (b) Tf<ffor non-negativefELi.
A doztbly-stochastic operator T is a doubly-substochastic operator which satisfies

Tf <f for any non-negative f E Li, We denote the set of all doubly-substochastic

operators by Y and the set of all doubly-stochastic operators by .9.

   LEMMA 2. Let T Eii.9Pl Then

SY Tfl s{: i.1fl for
every f ffi Li.

   .Proo.f: It is easy to see that Tf" - Tf- == Tf = (Tf)' - (Tf) '. From the

fact that T2O and f' - f2 O, it follows T(f" - f> = Tf" - Tf- 2 O. This

shows that Tf"2max {TL O} =r (Tf)'. Since (Tf)" - (Tf>- = Tf' - TfM 2}i(Tf)'

- TfH, it follows that Tf" 22i (Tf)H. We now have

           Iy Tfj = S.((Tf)+ + (Tf)-) :{g l.(Tf+ + Tf-)

                 = ixT(f'-FfH) =ixT]fi ::= ix6Tm

fl{l fxSlfi == f.1fj,

from LEMMA 6 of 52 and the definition of T E .94

   DEFINITioN 3. We denote by T* the adjoint of T Eii [Li] which acts on Loo :

thatis T'S Ei [Loo]. By LEMMA 2, i'f T Ei ,9`', then as we can see easily T* is a

positive contraction on Lco. We define Y" = {T* ; T EY}.

   LEMMA 3. Let T EiE .9Z lf f Ei Li n Loo, then

                  ess suP lTfl f{: ess suP ifi.

   Proof: Suppose ess sup ITfl>ess sup lfl for some fELi fiLoo. We can

find EEX with O<pt(E)<oo on which lTfl>ess sup lfl. From this we have

           SEiTlfl 2 fE.6ITfl > fE,eSS SUP lfi fEI: fE.61fi.

But, Tlfl<lfl implies SE),6Tlf] sl: fE*6efl, Which is a contradiction.

   LEMMA 4. Let T Eff .9 Then, for any IE Ei Li,

                  oSTIE s{ 1 and fxTIE :Eg pt(E)･
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The result follows directly from

         O ff{g TIE ww- lTIE 1 :f{l ess sup 1IE1 fE{: 1

LEMMA 5.

  JxTIE

Let Te.9.

fx6TIE E{: Ix61E = ifE* == p(E).

Then,

ixTIE = Pt(E) for aay E EiEx.

"Proof: X?Ve obtain the result changing :{g to = iR the proof of LEMMA 4.

LEMMA 6. Let T* E! .97*. Then for any EE .S

                O Eg T*IE S: 1 and fxT*IE f{; Ft(E).

The value of the integral may be oo.

   Proofl Let E Ei .X. It is clear that O:fl:T*IE ==IT"IEIE{gess sup

There exlsts a sequence {lxk.T:i:IE ifen Ei!r} with the property that

lxknT*IE t T"IE. Now we kave for each n,

             lxlxkn T'IE :SxTlxk.'1gfxltlErx･e(E),

and therefore

                SxT*IE = IIIn fxlxkn T"IE] fi{l; F`(E>.

   LEMMA 7. ifTE9, Then T*1 == 1.

   Proo.L For any IE Eii Li, by LEMMA 4 we have

       IEI == ixlE == Ft(E) = ixTIE == fxTIE･1 = SxlE･Tkl =: iET*l.

Then, T*1 == 1.

   DEI?INI'rloN 4. Let S Gi [Li ft Loo] and assume that satisfies the

coRditions :

   (a) OE{:SIE th<1 for lii ELi fi Loo ;

   (b) SxSIE s{ll lt(E) for IE E Li ft Lco.

11

l IE i if{l: 1.

if n-oo,

following
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Lee fEii Li (Lco) with f2}lO and let {A2 ; ylt E LinLoo} be a sequence of nonnega-

                                     AAtive functions such that fit ti Thelt we define Sf by Sf=:iim Sfa. For arbitra-

                                               n                 A AAArily fEm Li we define Sf by Sf == Sf" - Sf-.

                           A   REMARK 1. We can find that Sf is well defined for any f{Ei Li (Lco) wlth

                                               Af20. 3) We shall show that if fE Li (Loe) with f2}i O, then Sf GE Li (Loo) in the

                                                         Afollowing lerr}mas. This fact aiso shows that for arbitrarily fE Li (Loo), Sfe Li

                    A(Loo) by the definition of Sf

                                  A   LEMMA 8. LetfGLi with fl;}iO. Then SfELi.

                                         AA   Proof It follows directly from the definition of S that if f2O, then Sf2 O

and that g is linear. We can find a sequence (S3aiIEi ; IEiELinLco, ai2O]

     fnn
with XailEiT.L Then, we have

           o E{{: s(iliilicriiEi) t gf and s(ililiiaiiE,) eni Li n Loo.

   This shows, by Lebes.crue's monotone convergence theorem,

           f.sAf == ffi,m, s(SIIiiaiiEi) = ii;J,i i.s(SlliaiiEi)

               -: li;, iil:i ai f.siEi <- li;J,i Sl i cri f.iE,

               =ii,m, i.]ilZicriiEi-S.gm, (ililiiatiiEi)

               = fX'< oo.

The proof is complete.

                                 A   LEMMA 9. ILIC fELoo with f2O, then Sf (E Lco.

   Proofl For any IE Ei LiALoe, we have fxb6TIEs{gfxkalE for each kEr･

Because SIE S1 implies 6TiE :E{g 1 and biE = 1 on E, we can show that

                Ixfe6siE g IxktiiE whenever fe sg pt(E) ;

      ix,5siE fi{: Ix6siE == SxSiE g pt(E) == jxk6iE whenever k> pt(m.
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While, there exists a sequence (iilZi crilEi ; IEi E Li OLoo, cri 2}) O] such that EiD

           77zn
･･･ DE,n. and XailEiTf Suppose for some no, tltere exists a set EEX with

o<pt(E)<oo on which s('i"tOaiiEi) >ess sup ii'llii"'"aiiEi. Then we obtain

                               Tnlte           fE.6s('znno.,i.,) >IE. eSS SUP lli ] aiiE]i l;}! iE.Onx,ne.,i.;

But we see that

                              lnno                 fE,6s('z'ine.,i.,) g ]Z] cri SEisiEt

               g ii'iiliii"O ai fEiiEi == IE.6"x"iocriiE;

This is a contradiction. Hence we obtain that for all n,

              s(S3 aiiEi) :E{g ess sup ]ilii] atiEi <nv ess sup f,

and therefore

                 gf == il,m s(iSliil eviiE,) :i{: ess sup Jc

                                           A   REMARI< 2. By LEMMA 8 (9), we can consider that S is an operator on Li

(L-).

            A   LEMMA 10. SEY as an oPerator on Li.

   Proof. Let fE Li with f>- o, then tliere exists a sequence I]Slilr ailEi ; IEi E

                                 "lnLinLoo, ai 2}) o] with Ei )･･･ )Em. and IXcrilEAI Then for each le EIU',

           Ix,6gf r il',m Ix,Esexin.,i.,) = ii,Iri Slllr ai lx,tisiEt

                s ii,m, iliilr ai fxk6iEi = iilJ,i fxk6(I"Ii",,iiE,)

                == Ixk6f. ,
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   LEMMA 11. For any EE2',

                O f{l; glE f{:, 1 and S.glE -< pt(E)･

The value of the integral may be oo.

                                    A   Proof It follows from Lemma 9 that OgSIE:{:1. There exists {Xle.}c

{Xk ;k EIil l"} with lxk. IE t IE. It is easy to see that lxle. IE m lxk.nE EiLinLOO.

SinCe fxSlxk.fiEgpt(Xk. ft E) E{ll ge(E) for all fen, we have

          fx{}IE == fxli,M, SlxlennE "= li,m, fxSlxk.mE f{g pt(E).

   REMARI< 3. By LEMMA 2 LEMMA 11, we see that

    y:i: :: {T* ;TEY}

        =: {T E!i [LOOj ; OE{: TIES1, fxTIE :{{: St(E) for any .Eir Eii X,

         O :{g f}･, Tf(f;i E Li n Loo) implies T.L, t Tf}.

   The followlng lemma and remark are essentially due to Ryff. 7)

   LEMMA 12. Let ge(X)<oo. if an oPerator T onLoo satisLISes the condition :

Of{ TIE E{;1 and SxT!E =: pt<E) fbr any E {ii .x, then TA ei g.

   REMARK 4. Similarly to REMARK 3, we see that

     -9 ' =: {T'" ; T Eiil ..9 }

        = {T E ELeo] ; og TIE s!: 1, l.TIE = pt(E) for E E X}

by LEMMA 12.

               4. Kadisemp's tkorem and Fan's tkeorem.

   DEFINITION 1. The topology R on [Loo] is said to be the zveak"-oPerator

toPology if a subbasic neighbourhood of the null operator in this topology is

given by

                 AT(f, g, E) =:= {T E [Leo] ; 1l.fT･gl <E},

where fELi, ･gELco and s>O.
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   DEFINITIoN 2. We denote the all o'f positive contraction operators on Loo by

Pc･

   Tke following theorem which was given by Kadison5) is very powerfull.

   THEoREM 1. (Kadison's general compactness theorem)

   Pc is comPact in weafe"-oPerator toPology.

   The following theorem is due to Fan2) and is also of considerable importance

iR functional analysis. Recently TakahashiiO) gave a simple proof of this this

theorem and some appiications.

   THEoREM 2. (Fan's theorem)

   Let K be a comPact cozzvex subset of a toPologycal vector sPace E. Let {f};

i E I} be a class of real valued lower semicontinuous convex .ianctions devined on

K. Then, the system of inequalities

                         rt･ (x) :f{g e (i Effi D

is consistent on K [i. e. there exists a Point x EII K satis](lying ft(x) f{: O (i EII I)] if

and only if, for any ]inite subclass {fl,, ･･･, fl.}c{fl' ;iEI} and for anN n non-

negzztive nztmbers {ai, ･-･, crn}, there exists a Point x Eii K sztch that

                          n
                         X ak ftk(x) s o.

                         k==±1

        5. A generalization ef llardy-Littlewoed-P61ya's theoreTn.

   LEMMA 1. 5;0" is comPact in weah*-oPerator toPology.

   Proof: Let {Tcr ;Tcr E .9'"} be a net which converges to To in weak*-operator

topology. For any E Ei .X and for any fe GS l", fxlxkTcrIE un SxlxkTolE :Sxlxk

(T. - To) IE converges to O if Ta e Ta While for any k Gff I", fxlxk Ta lE Sg

fxTcrIE t<ua P`(E). Then we have jxlxkTolE s{g pt(E) for any k E l'. This fact implies

that IxTolES:g pt(E>. On the other hand, since Pc is compact and Y:k (:Pc, we

obtain thae O s{: TolE :i{: 1 and tkerefore To Eii .90: Tkis compietes tke proo£

   LEMMA 2. lf Ft(x) < oo, then .f)'* is comPact in zueak;}:-oPerator toPology.

   DEmNITION 1. If an operator T EIffY satisfies T*1== 1, then T is said to be

a doztbly-sttbslochastic-marfeov operator, which ls introduced by Sakai. 9) We denote

by Y-m the set o'f all doubly-substochastic-markov operators. We define .SJ"･-m:ts
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by .9P-m" := {T* ;TEY-m}. It is clear, by LEMMA 7 of g3, that 9'cY*.

   REMARK 1. It is easy to see tkat 9 =Y-m. If pt(X)<oo, Tl==1 follows

from TG .9. But, if pt(X) == oo, TEg not implies Tl =1. Then, ourdefini-

tion of S not equal the ordinaly definitioR of doubly-stochastic operators [Tl

=:1 and T"1= 1]. Therefore, if pt(X)= oo, we use the notation .SJ"-7n.

   LEMMA 3. Y-sct" is comPact in weak:i`-oPerator toPology.

   Proof: Let {Tav;Tev E!Y-m:'`}be a net which converges to To in weak"-

operator topology. We need only to prove Tol == l. Slnce Tcr EiY-,n*, Tal =l

for all cr. For any fEff Li, we have

            Sxfl - i.fTol == SxfTcri - fxfToi == ixf(Ta - To)1.

If Tev - To, then ixf( Ta - To)1 --÷ O. Thus we obtaiR Tol = L

   LEMMA 4. .gp-m* is convex.

   LEMMA 5. Let {Ai, ･･･, xgn} and {Bi, ･･･, Bn} be subclass of X which are

Pairwise disjoint. lf pt(Ai) = pt(Bi)< oo for each i (iSli-<n), then there exists a

measure Preserving mapping a ; X-X which satisLlies the condition : ge(a"i(Ai)ABi)

mo for each i.

   Prooi By the definition of straeus system, there exists a mapping ai ;X-

X which are measure preserving on Bi and satisfying pt(ai-i(Ai)ABi) = O for each

i. Further, if we put'

            A == Ai U ''' U An U Bi U ''' U Bn -Ai U ''' U An ;

            B= Ai U ''' U An U Bi U ''' U Bn HBi U ''' U Bn,

then pt(A) == pa(B) < oo and therefore tkere exists a rneasure preserving mapping

a' ;X-X with pt(a'-i(A)AB)= O. Now, we define a:X onto X by

        ...,(aa?(?.,nlt,.aai/.-,i,EAAiil).n,n,BB,/r',l,.(.,,...uA.u･''uB")c'

Tken, a has the desired properties.

   DEFINITION 2. Let a be a measure preserving rnapping X onto X. We define

an operator Ta cil [Li]([Loo]) by, for any fELi(Loo), Taf =foa.

   LEMMA 6. Ta E Y--m.

   Prooi Since
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              dT.f(t) = pt{X ; Taf>t} =:P{x ;foa>t}

                   = pt(a-i{x ; f(x) >t}) = pt{X ; f(X)>t}

                   == df(t),

for any fELi, we have 6T.f = tif and have Ta EY-"t.

   LEMMA 7. Let {Ai, ･･･, An} and {Bi, ･･･, Bn} be two subclass of Pairzvise

disioint sets .Erom X. Then, there exists a measecre Preservtng maPPtng ff ; X-X

such that, for n nonnegative ai,

         Ta(SailAi) =2]ctilBi and Ta*(SailBi) == l$i]ailAi.

   Proof: There exists a which satisfies tke conditions of LEMMA 5. Tken

           Ta(S ctilAi) =: (S ailAi)oo ==z ]!li] evi(IAioa)

                        i･t 7･t                     = IZ) ctila-i(Ai) =: X ailB .

On the other hand, for any IE E Li, we have

           iETa" IBt == ixlETa" IBt =: fx(TalE)'IB,

                   =: Sx(IEoa)(IAtoa) =Ix(IEIA,)oa

                   -- iEIAi.

   DEFiNRxoN 3. Let f, gGLi. For aRy E EffiN with pt(E)<oo, we define tke

mapping FE ;Y-m* --, R by

                    FE(T") " IE(6f - T6g)･

   LEMMA 8. For any EEX with pt(E)<oo, FE is convex and weafe*-oPerator

continarous.

   Proo.fl SiRce

      FE(T") ve FE<To") = 1.'E(To ww T)6gl == 1Sx6g(To* - T")IE],

FE is continuous in weak"-operator topology. If a, P are non-Regative real

numbers with a+B r1, then
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                FE(ctT" ff- PTo") == IE(6f nd (atT + PTo)o"g>

              == IEct(6f nd T6g) + iEP(6f - T5g)

              = aFE(T") -Y PFE(To').

From this fact, it follows that FE is convex.

   Now, we have had suficient tools to prove the following theorem, which is

a goal of our work.

   THEoREM 1. Let f, g Ei! Li satisZying the following conditions :

   (a) tif2O, 6g2O;

   (b) Sx6f= Ixtig'

Then, for every le G l'",

                          ixkSf :E{i ixk6g

if and only if there exists a T EY-m such that

                            6f = T6g.

   ProoX It is easy to check that 6f == To"g if and only if, for any E (ii X with

Y(E) < oo,

                     FE(T*> == i.(Of - T6g) == O.

We first skow that there exists a T EiiY-ni suck that FE(T")SO for any E E! W

with Ft(E)<oo. By Fan's theorem, we need only to show that for any fiinite

class {Ei, ･･･, En} and for n non-negative numbers cti, there exists TEllY-,n

such that

                              il               7･Z              ]E] ctiFEi(T'i:) =:= IxZ crilEi(6f - T6g) s{go.

Without loss of genera}ity, we assume that {Ei, ･･･, En} is pairwise disjoint. It

follows from LEMMA 7 tkat there exists a measure preserving mapping a such

                                   71that Ta"u=o"te and Ta6t{ :::: u, where u== ]Z]avilE . [E]hen, by LEMMA 1 of g3,

           fxZfO"f E{ Sxtiu6f -< Sx6u6g : IE(Ta'U)o"g zr- fxzt'(Tao".o･).
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Thus we obtain Ta EY-m which has the desired properties. Therefore, there

exists T ci Y-m such that 6f -<- To"g. suppose pt(A)>O with A : {x ; 6f<T6g}.

Then

        IxO"f "SASf+ .iA,6f<SATSg -i- SA.T6g : jxT6g -< fx5g,

which is a contradiction. Thus af == T6g.

   Let us prove the converse. If there exists a T G.9' mm with 6f == TSg, tken,

for any fe Er,

                 ixkSf =: SxkT6g g IxktiT6g ff{i fxk6g･

   If ps(X) < oo, we obtain the following theorem, which was essentially proved

by Ryff. 8) [see REMARK 1. ]

   THEoREM 2. Let pt(X) < oo and L ･g E!ff Li zvhich satistv the condition :

   (a) 6f2O, tig2O;

   (b) fx6f =Ix6g･

Then, for every kE IT

                         ixkbf sl: Sxko"g･

if and only if there evists a T E! .9 such that

                          bf := T6g.

   Examples.

   (1) Let X = {1, 2, }, X = 2X, pt be a counting measure. Let Xh=={1, 2, , fe}

aRd r := {1, 2, ･･･}. Let (ai, a2, ･･･) and (bi, b2, ･･ny) have the following propertles :

   (a) ai 2}). a2 >- ･･･2 O, bi >. b2 >um ･･･ 2rm O ;

   (b) =ai :--- X bi.

       ii
               le le
Then, for each fe, illEI] ai un< Xbi if aRd only if tkere exists a matrix ge == (Pii')i,i-rmi,2,･･･

              z==1 i･ ='l

suck that XPii == 1, XPi]' >nd 1, Pii ;l}i O and ai un- XPi]'bti for each i.

   (2) Let X=={1, 2, , n}, X=2X, ge beacounting measure. I.et Xfe=={1, 2, ･-･, fe}

and I" =:{1, 2,･･･, n}. Let (ai,･･･, aft) and (bi,+･･, bn) have the following proerties:

   (a) ai>･･･>-anLllilO, bi;})･･･211bn;;}lO;



20 Yukio TAKEucHI
         nn
    <b) £ ai - IZ] bi.
        i--1 i--1
                  kfe
Then for each fe, },ll=.l ai -< N...ibi if and only if there exists a nxn-matrix p== (pij･)

such that Pii' >mx O, Z) Pij' m 1, l:li] Pi,' == 1 and ai =XPiJ'bi for each i.

                   t11
    (3) Let X=[O, oo), X be a class of Lebesgue measurable sets and ge be a

Lebesgue measure. Let Xfe= [O, fe] and r==: [o, oo). Let f;gELi [O, oo) wlth

the following coRditions :

    (a) 6f }) O, 6g :}) O;

    (b) f,co6f=f,co6g'

Then, for each k f.fe6fs{:S,h6g if and only if there exists a Tey-,n such that

6f := T6g･

    (4) Let X= [O, 1], X beaclass of Lebesgue measurable sets and pt bea

Lebesgue measure. Let Xle == [O, le] and l- == [O, 1]. Let f, g E! Li [O, 1] satisfyiRg

the followlng propertles :

    (a) 6f 2k O, 6g 2O ;

    (b) I)tif=Ii6g･

Then for each [fe EE o, 1], S,k6f E{{:i,k6g if and only if there exists a T EEi 9 suck

that 6f = T6g.
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