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      Decreasing rearrangements of non-negative (co) seqttences and three preorder

 relatiens which are extensions of Xardy-Littlewood-P61ya's one are defined. Some

 generalizatiens of Hardy-Littlewood-P61ya's inequalities for rearrangements and

 convex functions are given.

                             1 Intreduction

   In recent years a number of inequalities have appeared which involve rear-

rangements of vectors in R" or sequences in (l') and of measurable functions on a

finite measure space or non-negative Li functions oR an infinite measure space

[1; 6]. These inequalities are not oniy interestiRg themselves, but also have many

appiications in probability theory, information theory, mathematical economics,

and so on [8]. Bu£ many times we are forced to considersequences which belong
to (eo).

   In this paper we define decreasing rearrangements of noR-negative (co) se-

quences and we introduce three preorder relations in the positive cone (co)+ of,

(co), two of which are new and one is equivalent to that of Markus [7, p. 103].

CoRsequently, some generalizations of well-known results of Hardy-Llttlewood-

P61ya [5, Theorem 108, p. 89] and P61ya [9] are giveR. Moreover, two results

of Chong [3, Theorem 2.7, p. 158; 4, Theorem 3.9, p. 434] are generalized.

   The author wishes to express his hearty thanks to Professor Yatsuka Naka-

mura and Mr. Yukio Takeuchi for their kind advice and suggestions in the course

of preparing the present paper. Also he wishes to express his ltearty thanks to

Professors Hisaharu Umegaki and Tsuyoshi ARdo for their constant encourage-

ment.

                      2 NOtatioRs and' Preliminaries

   Let R" denote the set of all n-tuples of real numbers. For any n-tuple x==

(Xi,･i･, xn> EIi R",we clenote by
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                           x* :i: (xl*,･･･, Xn*)

the n-tuple whose components are those of x arranged in decreasing order of

magn2tude. If a-- (ai,,.･, an> E R" and b =<bi,･-･, bn) (!i R", then a<b means that

                            fe k
                           £ai* $Xbi* (2.o                           i--1 i--1

for 1$k.K.n, and we wrlte a<b if, in addition to a<b, there is equality in <2. 1)

for fe=n. These two preorder relations in R" were originally defined by Hardy-

Littlewood-P61ya [5], and the following tlieorems give characterizatioks of<and-(K

[5, Theorem 108, p. 89; 9].

   SuPPose a =:'i (ai,･･･, an) and b = (bi,･J･, bn) are n-tuPles in R", then the following

hold.

                                      7e n
(Hi) a<b is equivalent to Z]¢(ai);:SZip(bi) (2. 2>
                                     i-1 i--1

for all convex fttnctions ¢: [bn", bi"] nyR.

                                      nn(,Elh) a-Kb is equivalent to 2ip(ai>;:SIXip(bi) (2. 3)
                                      i--1 i--1

for all non-decreasing convex functions ¢: [bn", bi"]eR, and this is equivalent

to

                        Vt il                        =<ai-u)"$Z (bi-u)' (2. 4>
                        z=1 zn=1
for all real nzembers za, where x"= max {x, O} for an>, x E.l?.

   If f(x) is non-increasing and right continuous on [O, co),

                     f"(x) == sup {ft:f(2) > x} (x lm>-T O> (2. 5>

is called the right continuous inverse of f on [O, oo), and the following are well

known [1, p. 24].

(Ri) f"(x) is right continuous and decreasing (2. 6>

(R2) f'(x)>2 is equivalent to f(R)>x. (2.7)
<R3) df*(R) :pt{ x: f*(x)>2}=f(2), (2. 8)
where /e ls the Lebesgue rneasure on [O, oo>.

   Throughout this paper, we write N in place of the set of all positive inte-

gers, and Z+ denotes the set of all non-negatlve integers. Also R+ stands for the
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positlve cone of R, and R+ for the set of all non-negative extended real numbers,

while (IP)+ denotes the positive cone of (IP) (1 ;S! P>. Moreover, if a == (ai, a2, ･･･) Ei (ce)+

we write ai dy- a(i) for any integer i E N, and S+ staRds for a set {a: a G (co)+,

there exists an mEN so that i>m implies a(i) = O}. d.(R) == Card {i: a(i)>R}

is called the distribution of a. Then <co).e is characterized by a set such that

{a:a=(ai, a2,･i-)lmmO, da(2)<oo for any 2>O}." In the sequel, we use the term

"convex" in a narrow meaning: a convex function is a function ip such that Ri, R2 lli,lrmO

and Zi -i- 22 = 1 imply di(Zix -F 22y> ;:i{lRi¢(x) -l- 22ip(y) for any x and y in the domain of ip.

      3 Decreasing Rearrangements of NoR-Negative (ce) Sequences and

       Sorne Extensions of K-L-P's [¢heorewas

   Our results are based oR the next existence theorein for rearrangements of

sequences in (co)+.

   THEoREM 1. if a belongs to (co>+, then zve can rearraiage all the comPonents

ai>O of a in a non-increasing order of ma.opzitude so that ai"=>.-.a2"}.ik... ･･･holds.

   Proof: If a e S+, then the statement iR our theorem is evident, therefore we

may assume a e S÷ and a E (ce>+. Then there exists a compoRent aj>O of a. Put

Ai =N, and then d.(ElitL) =Card {i : a(i)>e2-i} is finite, wltich insures the existence

of ii e Nso that ai, = max {ai: i G Ai}. De'fine An and ai. (n == 2, 3,.･･) by induction

as follows:

                 ai. == rnax {ai: iG An}, An+i"An-{in}. (3. 1)

If we set A+=:{i: ai>O}, we can define a single valued mapping

                         ¢:N.A. ¢(1') == i,･ (3. 2>

by means of (3. 1). It is easy to see that ¢ is one-to-one; for any afe E A+ there

exists one coordinate iJ' such that afe == ai,･, since d.(El;t) ::: Card {i: ai>a-2fe} is finite.

That is, ip:N-A+ is a one-to-one and onto mappiRg, and if we put

                         a"(y')=a(ii> -nd a(¢(])), (3. 3)

ai" (i e N) is the desired one.

   DEFINITION 1. If a e (co). and a EE S+, then we define a* ur= (a(¢(1)), a(ip(2)),..,),

where ip is the mapping defined by (3. 2>. If a e S+, assume Card {i: ai>O}=m,

and denote by ai* (i=1,-･･,m) the positive components of a rearranged in non-

increasing order of magnitude. In this case, we define a" -- (ai:i",･-･, a"i O,･i･, O>.

* This easy but important fact is suggested by Mr. Yul<io Takeuchi.
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we call a* the decreasing rearrangement of a EEi (ce)+.

    It is easy to see that d.(1> == d.*(2) for any 2 e R. Therefore al: G (co)+ if

a G (Ce)+.

   DEFINITION 2. If a, b Ei (co)", we wrlte

                    a--b if aRd only if d.(2) =' db(Z) (3. 4)

for any 2 E R, aRd we say that a and b are equt'disiributed if a"vb.

   It is easy to see thatNis a preorder relation in (ce)+ and that a-va".

   PROpOslTiON 1. ILI' a, b q (co)+, then

                      a-･b if and only if a" '= b". (3. 5)

   Proof: Both a--a* and bNb* with a--b imply a" --)b"; hence a" :b' is clear.

The proof of the converse implication is clear from Definition !.

   In tke sequel, we regard ece as oo, an element of R+, and we consider d.(.)

as a mapping from R to R+.

   THEoREM 2. A maPPing f(･) from R to R+ is a distribution d.(･) for some

a G (co)., if and only if, f(･) satisfies the following three conditions Di, D2, and

D,.

(Di) f(R> Eff Z+ for any Z>O and f(2) :'=` oo for any R<O.

(D2) There exists a lo E R+ such that f(2) ==O for any R>Ro.

(D3) f(2) is a non-increasing and ri,ght continuous fttnction on R.

   Proof If f(･) =d.(･) for some a G (co)+, then we have an alternative expres-

sion f(･)=:d.*(･); hence Di and D2 are clear. D3 is a consequence of the continu-

ity of a measure Card {･}.

   To prove the converse impiication, consider the right continuous inverse f"

of f. TheR, as mentioned already, (2.6), (2.7), and (2.8) hold. Moreover, if

f*(O> = oo, theR f"(O)>K for any K>O, which is equivaient to f(K)>O for any

K>O by (2.7), contradict,ory to D2 ; hence f'i:(O)<oo. Now, define a-(s) =:f"(s-1)

for any s E N. Then,

        a-(s)2.0 is non-incrasing for any s E N, and a'(1)=f"(o)<oo. (3.6)

It is clear that da(R) == f(1) = oo holds for any 2<O. Assume O;S{2<a-(1) == f"(O>,

then

                   da(2> = max {s: s G N, aM(s)>2}

                        =max {s: s E AT, f"(s-1)>2}

                        ="' max {s: s E N, f(2)>s-1}

                        -= f(2).
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Next, assume Rlll! di(1) = f*(O), then (3. 6) implies da(2> == O, while f<2) ;:i{O follows

from (2. 7>; hence f(2) =O. Thus we have proved that da(2) == f<2) for any R G R,

aRd da(R>= f(2)<oo for any R>O. Therefore a- belongs to <co)+, and f(･) = da(･):

the proof is completed.

   COROLLARY 1. IllC a belongs to (co)+, then

                  a*(s>>R if and only if d.(2)>s-1 (3. 7)
fbr anys EE N.

   ProofL Suppose a E (co)+, and pu# f =':=" d. ='ww-' d.*. Then f =:'L da, wkere a- i's the

element in (ce)+ definecl in the proof of Theorem 2. Hence,

           d.(2)>s-1 <O f(2)>s-1 <t => f"(s-1)>2 Ct=) a"(s>>2

!s clear from <2.7).

   COROLLARY 2. ,ILIe a @ (co)+, then

                      a"(s) = sup {R:d.(Z)>s-1}

                          = inf {ft: d.(2);$s-1}

necessarily holds for any s G N.

   Proof: Both a"(s) =k' sup {a: a"(s) > a} = sup {2: d. (1)>s -1} and a'": (s> =-

inf {2: a*(s)g:illl} == iRf {2: d.(2);:llls-1} are immediate consequences of (3. 7).

   By virtue of Coroliary 1 and Corollary 2, we can easily obtain the next con-

vergence tkeorem for rearrangement.

   THEoREM 3. ,ILf' an and a G <co)+, then

               anta imPlies both da.tda and a.:':ta:k. (3.8)

   ProoX It is easy to see that anta implies da.(2)$da.,i(2)$da(2> for any

2aR. Then a.*-Ka.+i:ge :Sla;'` is immediate by Corollary 2, aBd d.. t d. is a mere con

sequence of the continuity of a measure. llence lim ait:ts(s);SSa:":(s) (s E N> is imme-

                                        n-,co
diate. -To obtain the opposite side inequality, assume a*(s)>Z. Then we have

d. (R> == lim d..(R)>s-1 by (3. 7), which implies the existence of an integer m so
      itr' co
that da.(R)>s-1 ho!ds for any n>m. Hence anij`(s>>1 for any n>m and

lim an"(s)kR hold. That is lim an"k.rma". Thus we have compieted the proof.

71--.oe )'t-,oo
   Now we shail extend the preorders of Hardy-Littlewood-P61ya in R" to the

sequennces belonging to (co)+.

   DEFINITIO}sl 3. If a, b e (co)+, then we write

                                    fe k
                   a{Kb if aRd only if Xai" ISIIZbi" (3. 9)
                                   ztrtl ttrtl
for any fe Ei! N, and
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                                         co co               a<bif and only ifa-c{(band 2]ai m- iX]b,, (3. IO)
                                        z==1 i==1

            co cohere we write Xbi rm- oo, whenever lIil]bi is divergent. We say a is weakly (strong-

            i-1 i-1
ly) majorized by b lf a -K b (a <b).

   It should be noted that (3.9) is a generalization of the preorder of Markus

[7, p. 103]. It is clear that a--b is equivalent to a<bandb<Ka, and that a{Kb

 (a < b) is equivalent to a" -K b" (a" < b").

   PROpOslTION 2. If O;igan i a Eii (ce)+ and O.<....bn t b EEE (co)+ with a.<( b. (an m< bn)

for any nGN, then a-Kb <aKb) necessarily holds.

   Proof an-(3(bn (an<b") is equivalent to an"<bn' (an'<bn*). Hence a*<b"

(a* <b") is readily seen.

   LEMMA 1. Ilf aKb (aKK b), then there exist two seqttences -[a.iscS÷ and £b.}

cS+ such that an<bn (anKKbn) and anta, bntb hold.

   Proofl If a, bES÷, then our theorem is clear. IR tlie other case, firstly we

shall prove that there are two sequences {an"}cS+ and {b."}cS+ such that

a." t a",bn" t b",and an"<bn" (n ff N) hold. If b ij O and b E S+, then there exsists

a unique ke Ar so that bfe*>O, and bk+i" =Ohold. For this fe, choose any 7' GN

so that ai"+･･･+aJ'">bi"+･･･+bk.i* holds, and put 1-o :j, a."=:(ai..., a]',*,,..,

                                 J'o+71 k-1
ajo+,i O, O,E･･) and bii* =(bi･･･, bkei Z ai"-Zbi", O, O,･･･). On the other hand,

                                 i--1 i--1
if b GS., then there exists an unique knEN so that ai"+･･･+ak."$bi"+･･･+

b.* and ai"+･-･+ak.+i">bi"+･･･+ bn" hold, for any n E N, and set b." == (bi ,..,

                              71 kn
bn", O, O,･･･)and an" =(ai',･･･, afe.*,iZ]bi"-Xai", O, O,･･･). Then{an'}and {b.;'}

                              i--1 i-1
satisfy our requirements. Secondly, according to Definition 1, if a G S+, then

there exists a one-to-oRe mapping ip: N-A+ which satisfies (3. 2), aRd we define

a-n(i) == dn (¢(j>) = an"( 1') for any i E A+, and aM. (i) =O for any i aj A,, wkere n

is any positive integer. On the other hand, if a belong to S+, then there exists

a permutation ll over IV such that a(IT(7'))== a"(1') holds. For this case, set

aM.(i)==d.(ll(1'))=:an*(]-). If we define b. similarly as above, {a-.} and {b.}

satisfy the whole requirements in our theorem. Finally, if a-Kb, then a proof

of our theorem is obtained similarly as above.

                                                 co
   LEMMA 2. I)e ip: R.-.R is convex with ¢(O)==O, thenl ] ¢(ai) 'is de.17ned for
                                                tml
any a G (co)+, and the next holds:

                                    oo oo           O:$a.ta Eii (co)+ implies lim Zip(a.(i)) =: l2E] ip(a(i)) (3. 11)
                                JZ-}co i--1 i--1
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   Prooj1 If O: R+-+R is convex with ¢(O) =O, then ehe next four cases occur:

(Ci) ip(t) is non-decreasiRg on R+, and hence continuous at t=O,

<C2> ¢(t) is non-increasing on R.-,

(C3> there exist ti, t2>O so that ip(ti) ip(t2)<O,

and

        '
(C4) g5(t) is noR-decreasing on (O, oo) and non coRtinuous at t := O.

We recall that

            ae (co). is equivalent to d. (2)= Card {i: a(i)>2}<oo (3. 12>

                 oo
forany2>O; hence Xip(a(i)) is defined for all convex functions ¢ with ip(O)=O,
                 t =t- 1

which ma be÷oo or-oo. Besides, ip(･) is necessarily continuous at any t>O,
therefore it is easy to see that

               O-rm<.a.ta G (co)+ implies lim ip(a.(i))=:¢(a(i)) (3. 13>
                                    n-,oo

for any i ff N. In the case Ci or C2, (3. 11) foilows from Levi's Monotone Con-

vergence Theorem with (3.13), and in tke case C3, there exlsts an a>O such

that ip(t) is non-increasing on [O, cr], and non-decreasing on [a, oo), Set Ai=

{i:a(i>;i{a} and A2=:{i: a(i)>cv} Then A2 is a finite set of indices; hence foliows

                      limlZ] pt(a.<i>) =IX ¢(a(i)). (3.14)
                      numYooiGl!2 iesA2

On the other hand, ifi Eff Ai, then

                  ¢(a(i)) :.ilg¢(a.+i(i)) xill di(a.(i))SO (n G N)

holds, and we have

                    lim lZ) ¢(a.(i)) =:£ e<a(i)>, (3. 15)
                    Jl-coiEiAl iCMAI

agaln by Levi's theorem. Consequenty, (3.11) follows from (3.14) and (3.15).

Finally, in the case C4, there exi･gts an ao>O so that ip(ae)=O, set Bi == {i: O<

a(i)$cro} and B2 == {i: a(i)> cro,}, where B2 is also a finite set of indices. If we note

tkat ¢(an(i>)g:$¢(a.+i(i))S¢(a(i));sl-;O holds for any i e Bi, it is easy to see that

IX ¢(a.(i)) == -oo follows from ]!E] ¢(a(i)) = -oo. Moreover,

iEllBl iffIBI



                            ip(o.)
                     ip(t> $ -                                 t+ ip(O,) ;SIO (3. 16)
                             evo

holds for any t aj (O, cro], so we can claim that Bi is again a finite set of indices,

provided X¢(a(i)) f! -oo. The rest of the proof is easy.

   THEOREM 4. SmpPose a, be(ce)+, then,

                                 oo oo(1) a<(bis equivalent toZip(a)SXip(b) (3. 17)
                                 i-1 i--1

for all non-decreasing convex frtnctions ¢: R+-R with ip(O) =:: O. in Particular,

                              oo oo(2) aK{(b is eqztivalent to ;E] (ai-u> "$2(bi-u)" <3. 18>
                              1--1 1==l

for all Positive real numbers tt.

                                   oo oo
(3) a-<b is equivalent to iZ]¢(ai)S]Z]¢(bi) (3. 19)
                                  i--1 i--1

for all convex functions ¢: R.-->R tvith ¢(O)=O.

   Proofl According to Lemma 1, if a, bE (co)+ satisfy a<b, then there exist

two sequences {a.} and {b.} cr S+ which satisfy

                      anta, bntb, and antKbn.

     co OoThen X¢(a.(i))S£ip(b.(i)) follow$ frorn (2.3), where ip is any non-decreasing

     1-=1 1pt1
convex function on R+, and the necessary conditions in (3.17), and in (3.18)

follow from Lemma 2. Now we recall that

                    (x - ze - v)+ ==: ((x - zt)÷ - v)+

                      oo coholds for any u, v>O. If Z(ai-u)";SllX(bi-zt)' is valid for aRy tt>O, then

                     i-1 i-l

                 co oe                IX((ai-zt>"-v))";:llX((bi-u)"-v))' (3. 20)
                i--1 i--1
is so, for any u, v>o. Since (a-u)'=((ai-zt)", (a2-u)',･･･) and (b-u>"=

((bi-u)", (b2-zt)',･･･) belong to S+, (a-u)"-K(b-u)' follows from (2.4) and
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(3.20), and Proposition 2 implies a`Kb. Thus (3.17) aRd (3.18) are obtained.

The suthcieRt condition in (3. 19) is easily obtained if we put ¢(t)=:-t, and the

converse impiication is also obtained similarly as above.

   CoRoLLARy 3. ff ip: R+--R+ is non-decreasing and convex, zvith ip(O)=O,

then

                a -({( b imPlies (di(ai), ¢(a2), ･･･) KK (¢(bi), ¢(b2), ･i->.

   Prooi If we put ca(t) == (t -u)"o¢(t), then ip is again a non-decreasing convex

function with ¢(O) =r-O, and (3. 17) and (3. 18) imply

                    (¢(ai), ip(a2),･･･) tK (ip(b,>, ¢(b,), ...>*.

   ExAMPLE l.

(i) If aKK b, then lialip;SlllbMp""

necessarily holds for any Pk.rm1, where il･Yp denotes the (IP) Rorm, wkether the

right side is finite or infinite.

(2) Ifa-< b, then ilblia;s{lilallq

necessarily holds for any O<qiwwSgl, where ll･IIq denotes the formal (lq) norm,

whether the right side is finite or iRfinite.

   ExAMpLE 2. Suppose aKb, then h(b)$-h<a> necessarily holds, where h(a):=

   oo
-Xai log ai denotes an entropy of a G (co)+, provided O-log O m= O.
  i--1
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