Journal of the Faculty of Engineering, Shinshu University, No. 49, 1980 13
ENAF TR 0% |

Decreasing Rearrangements of Non—Negative (c,)
Sequences and Some Extensions of
Hardy-Littlewood-Polya’s Theorems

Yiji SAkar*
(Received October 31, 1980)

Decreasing rearrangements of non-negative (¢,) sequences and three preorder
relations which are extensions of Hardy-Littlewood-Pélya’s one are defined. Some
generalizations of Hardy-Littlewood-Poélya’s inequalities for rearrangements and

convex functions are given,

1 Introduction

In recent years a number of inequalities have appeared which involve rear-
rangements of vectors in R” or sequences in (/') and of measurable functions on a
finite measure space or non-negative L! functions on an infinite measure space
[1; 6]. These inequalities are not only interesting themselves, but also have many
applications in probability theory, information theory, mathematical economics,
and so on [8]. But many times we are forced to consider sequences which belong
to (co).

In this paper we define decreasing rearrangements of non-negative (c,) se-
quences and we introduce three preorder relations in the positive cone (co): of,
(co), two of which are new and one is equivalent to that of Markus [7, p. 103].
Consequently, some generalizations of well-known results of Hardy-Littlewood-
Pélya [5, Theorem 108, p. 897 and Pdlya [9] are given. Moreover, two results
of Chong [3, Theorem 2.7, p. 158; 4, Theorem 3.9, p. 434] are generalized.

The author wishes to express his hearty thanks to Professor Yatsuka Naka-
mura and Mr. Yukio Takeuchi for their kind advice and suggestions in the course
of preparing the present paper. Also he wishes to express his hearty thanks to
Professors Hisaharu Umegaki and Tsuyoshi Ando for their constant encourage-
ment,

2 Notations and Preliminaries

Let R” denote the set of all n~tuples of real numbers. For any n~tuple x=
(%1, -+, %) € R",we denote by
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14 Yaji SAKAI
x* = (xl*y ey xn*)

the #n-tuple whose components are those of x arranged in decreasing order of
magnitude. If @ = (a, ..., @y) € R"and b= (b, ..., b,) € R", then a € b means that

k k
Z—_,l‘ai* g_Z‘lbg* (2.1)
i= i=

for 1<k <m, and we write @ <? if, in addition to a<b, there is equality in (2. 1)
for £ =n. These two preorder relations in R" were originally defined by Hardy-
Littlewood—Pélya [5], and the following theorems give characterizations of <and <«
[5, Theorem 108, p. 89; 9.

Suppose a = (ay, -, ay) and b= (b, ..., b,) ave n—tuples in R", then the following
hold.

(H) a<b is equivalent to ég&(ai)gZ}gb(bi) (2.2)

i=] 1=]
Jfor all convex functions ¢: [b,*, 0,*|— R.
"n 3
(H,) a<b is equivalent to Eq’)(ai)ngi(bi) 2.3)
=1 i=1

for all non—decreasing convex functions ¢: [b,*, b*1— R, and this is equivalent
to
n

3@ — ) <3 br — w) (2.4)
=1 i=1

Jor all real numbers u, where x* =max {x, 0} for any x €R.
If f(x) is non-increasing and right continuous on [0, o),
f*x) =sup {2: fF(A) >x} (x=0) (2.5)

is called the right continuous inverse of f on [0, o), and the following are well
known [1, p. 24].

(Ry) f*(x) is vight continuous and decreasing. (2.6)
(Rs) F¥(x) >4 is equivalent to f(2) > x. 2.7
(R) derd)=p{ x: f5x) >3 = f(2), (2.8)

where p is the Lebesgue measure on [0, oo).
Throughout this paper, we write N in place of the set of all positive inte-
gers, and Z. denotes the set of all non-negative integers. Also R, stands for the
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positive cone of R, and R, for the set of all non-negative extended real numbers,
while (/%) denotes the positive cone of (/?) (1§ P). Moreover, if a = (a,, as,.-) € (co)+
we write @; = a(i) for any integer 1 € N, and S, stands for a set {a: ¢ € (co)s,
there exists an m &N so that i >m implies a(i) =0} d,(2) = Card {i: a@) >}
is called the distribution of @. Then (o)« is characterized by a set such that
{a:a=(a,, as,..) >0, d, ()< oo for any A >0} * In the sequel, we use the term
“convex” in a narrow meaning: ¢ convex function is a function ¢ such that 4;, 2, >0
and 2, + 2 =1 imply ¢(Ax + 29) < () + Ap(y) for any x and y in the domain of ¢.

3 Decreasing Rearrangements of Non-Negative (¢,) Sequences and
Some Extensions of H-L-P’s Thesrems

Our results are based on the next existence theorem for rearrangements of

sequences in (ce):.

THEOREM 1. If a belongs to (co)+, then we can rearrange all the components

Proof. If a € S,, then the statement in our theorem is evident, therefore we
may assume ¢ & S; and @ € (¢p)+. Then there exists a component «; >0 of a. Put

A, =N, and then d, (%) = Card {i : a(i) >—a—21} is finite, which insures the existence

of i1+ € N so that a;, = max {a;: i € A,}. Define A, and a;,, (n=2, 3, ...) by induction

as follows :
ai,=max {a;: i € Ay}, Ane=A,~ {0 (8. 1)

If we set A.={i: a; >0}, we can define a single valued mapping

¢ N—A., ¢(j)=i; (3.2)
by means of (3.1). It is easy to see that ¢ is one-to-one; for any a, € A, there
exists one coordinate i; such that a = a;;, since d, (%) = Card {i: a,~>‘—22-13} is finite.
That is, ¢:N— A. is a one-to-one and onto mapping, and if we put

a*(j) = ali;) = a($(7), (3.3)
a;* (i € N) is the desired one.

DEFINITION 1. If a € (co). and a & S., then we define a* = (a(¢(1)), a(¢(2)),..),
where ¢ is the mapping defined by (3.2). If @ € S., assume Card {i: a; >0} =m,
and denote by a;* (i=1,...,m) the positive components of a rearranged in non—

increasing order of magnitude. In this case, we define ¢* = (a/*, ., an*, 0,.., 0).

# This easy but important fact is suggested by Mr. Yukio Takeuchi.
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we call a* the decreasing rearvangement of a € (Co)+.
It is easy to see that d (1) = d () for any 4 € R. Therefore a* € (cy). if
a (Co>+.

DEFINITION 2. If @, b € (c,)*, we write
a~>b if and only if d,(2) = d»(3) (3. 4)
for any 2 € R, and we say that « and b are equidistributed if a ~b.
It is easy to see that~is a preorder relation in (¢o): and that a ~a™.
PROPOSITION 1. If a, b € (¢o)+, then
a~bif and only if a* = b*, (3.5)

Proof. Both a~a* and b ~b* with a ~b imply a* ~ b*; hence a* = b* is clear.
The proof of the converse implication is clear from Definition 1.

In the sequel, we regard R, as oo, an element of R., and we consider dg(+)

as a mapping from R to R..

THEOREM 2. A mapping f(+) from R to R. is a distribution d,(-) for some
a € {(co)+, tf and only if, f(-) satisfies the following three conditions D,, D,, and
D,

(DY) fQ) € Z, for any 2>0 and f(2) = oo for any 2<0.
(D) There exists a 4, € R, such that f(2) =0 for any 1> A,.
(D;) fQA) is a non-increasing and vight continuous function on R.

Proof. If f(+)=d,{(+) for some a € (¢;)+, then we have an alternative expres-
sion f(+)=d,«(+); hence D; and D, are clear. D; is a consequence of the continu-
ity of a measure Card {-3.

To prove the converse implication, consider the right continuous inverse f*
of f. Then, as mentioned already, (2.6), (2.7), and (2.8) hold. Moreover, if
f*(0) = oo, then f*(0) >K for any K >0, which is equivalent to f(K) >0 for any
K >0 by (2.7), contradictory to D, ; hence f*(0)<(eo. Now, define a(s) =f*(s—1)
for any s € N. Then,

a(s) =0 is non-incrasing for any s € N, and (1) = f*(0Q) < co. (3.6)

It is clear that dz(2) = f(2) = « holds for any 2<0. Assume 0=C2<da(l)= f*(0),
then
dz{3) =max {s: s € N, a(s) >}
=max {s: s € N, f*s—1)>1}
=max {s: s € N, fQQ>s—1}
= f(4).
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Next, assume 12> d(1) = f*(0), then (3.6) implies dz(2) = 0, while f(2) <0 follows
from (2.7); hence f(2)=0. Thus we have proved that dz(4) = f(2) for any 2 € R,
and dz(2) = f(2)< oo for any A>0. Therefore d belongs to (¢o)., and f(+)=dz():
the proof is completed.

COROLLARY 1. If a belongs to (co)s, then

a*(s) >R if and only if d (1) >s—1 (3.7)
for any s & N.

element in (co):+ defined in the proof of Theorem 2. Hence,
A >s—1& fA>s—166D fHs—1) > 2 a¥(s) >2
is clear from (2.7).
COROLLARY 2. If a € (cy)+, then
a*(s) = sup {2:d,(2) >s—1}
= inf {1: d, () <s—1}
necessarily holds for any s € N.
Proof. Both a*(s)=sup {1 a*(s)>1}=sup {2:d,()>s—1} and a*(s)=
inf {2: @*(s)< A} =1inf {2: d,(A)<s—1} are immediate consequences of (3. 7).

By virtue of Corollary 1 and Corollary 2, we can easily obtain the next con-
vergence theorem for rearrangement.

THEOREM 3. If a, and a € (Co)+, then
a1 a implies both da, 1 de and a,*?a*. (3. 8)

Proof. 1t is easy to see that @, 1 a implies de,(A) < da,, (2)d,(2) for any
1€R. Then a,* < a,.,* < a* is immediate by Corollary 2, and d,,, 1 d. is a mere con
sequence of the continuity of a measure. Hence lim @,*(s) < a*(s) (s € N) is imme-

H—r 00
diate. To obtain the opposite side inequality, assume a*(s)>4. Then we have
d, () =1lim d,,(2) >s—1 by (3.7), which implies the existence of an integer m so
00
that d,,(2)>s—1 holds for any n>m. Hence a,*(s)>2 for any xn>m and

lim a,*(s)=22 hold. That is lim a,* = «® Thus we have completed the proof.

3 00 N—roo
Now we shall extend the preorders of Hardy-Littlewood-Pélya in R” to the
sequennces belonging to (co)s.

DEFINITION 3. If @, b € (c,)+, then we write

I ”
a<b if and only if > ja* <> \bi* (3.9)
i=1 i=1

for any £ € N, and
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co

a<bifand only if a<band > a; = > bi, (3.10)
=

i=]

here we write Z b; = oo, whenever Zbi is divergent. We say a is weakly (strong-
=1 =1
ly) majorized by b if a<b (a <b).
It should be noted that (3.9) is a generalization of the preorder of Markus
[7, p. 103]. It is clear that a ~0b is equivalent to ¢« b and 6K a, and that a<b
(a < b) is equivalent to a*<b* (a™ < b%).

PROPOSITION 2. If 0<a,%}a € (¢co)s and 0 b, 1 b & (co)+ with a, <K b, (a, <b,)
for any n € N, then a<b (a <b) necessarily holds.

Proof. a,< by, (a,<b,) is equivalent to a,*<«b,* (a,* < b,*). Hence a*<« b*
(a* < b*) is readily seen.

LEMMA 1. If a<b (akb), then there exist two sequences {a,}CS: and {b,}
cS, such that a, <b, (a,<b,) and a,1a, b, 1b hold.

Proof. If a, b € S,, then our theorem is clear. In the other case, firstly we
shall prove that there are two sequences {a,*}CS. and {b,*}C S, such that
a,t 1a*,b,*1b% and a,* <b,* (n € N)hold. If b#0and b € S,, then there exsists
a unique k € N so that b,* >0, and bz+,* = 0 hold. For this £, choose any j € N
so that a;*+-+a;* >b,%+-+bp,* holds, and put jo=17, a,” = (a*, ..., ai*, .,

ot k=1
@jorn®, 0, 0,.) and by* = (0%, ..., bpy®, D) @i* —2 16;*, 0, 0,...). On the other hand,
i=1 i=1
if 5 & S, then there exists an unique k» € N so that a4+ a,* <054+
b,* and a*+ - Fak, ¥ >bF+-+ b,* hold, for any #» € N, and set b,* = (b*, ...,
k

n n
by*, 0, 0,..)and an*=(@*, .., ap,*, >0 —» la;*, 0, 0,..). Then {a+*}and {b,*}
= =

satisfy our requirements. Secondly, according to Definition 1, if @ & S,, then
there exists a one-to-one mapping ¢: N—A, which satisfies (3. 2), and we define
aq(i)=d,(¢(7)) = a,*(j) for anyi € A,, and G,(@)=0 for any { & A., where »
is any positive integer. On the other hand, if a belong to S,, then there exists
a permutation II over N such that «(/I(5)) =a*(j) holds. For this case, set
ani) = a, (1)) = a,*(j). If we define b, similarly as above, {d,} and {b,}
satisfy the whole requirements in our theorem. Finally, if a<b, then a proof
of our theorem is obtained similarly as above.

LEMMA 2. If ¢: R.—R is convex with ¢(0) =0, then > ¢(a;) is defined for
s
any a € (¢o)s, and the next holds:

0Lanla e (c)+ itmplies lim i“gﬁ(aﬂ(i)) = ZV‘__,ng(a(i)) (3.11)
fimee =] i=}



Decreasing Rearrangements of Non-Negative ¢, Sequences 19

Proof. If ¢: R.—R is convex with ¢(0)=0, then the next four cases occur:

cy) #(t) is non—decreasing on R., and hence continuous at =0,
(Cs)  ¢(t) is non-increasing on R.,

(Cy) there exist £;, £, >0 so that ¢(¢;) ¢(f:) <0,
and
(Cy) &(t) is non—decreasing on (0, o) and non continuous at £ =0.
We recall that
a € (co)+ is equivalent to d,(2) = Card {i: a(@) >} <o (3.12)

for any 2>0; hence Z‘q’)(a(i)) is defined for all convex functions ¢ with ¢(0)=0,
i=1

which ma be 4 oo or —oo, Besides, ¢(:) is necessarily continuous at any >0,

therefore it is easy to see that
0<a,la € (c). implies lim ¢(a,{i)) = ¢la(i)) (3.13)

#-r00

for any i & N. In the case C, or C,, (3.11) follows from Levi’s Monotone Con-
vergence Theorem with (3.13), and in the case C;, there exists an @« >0 such
that ¢(f) is non-increasing on [0, «, and non-decreasing on [a, o), Set A, =
{i:a()<a} and A,={i: a(i)>«}. Then A, is a finite set of indices; hence follows
lim D} $laa(i) =2 ¢lali)). (3.14)

Ho®ie Ay €A

On the other hand, if i € A,, then

Plald)) < plan+(0) S dla,(i) <0 (n € N)
holds, and we have
lim > ¢lan() = 2] plali), (3.15)
H— je Ay i€ A

again by Levi’s theorem. Consequenty, (3.11) follows from (3.14) and (3.15).
Finally, in the case Cy, there exists an a, >0 so that ¢(a,) =0, set Bi={i: 0
ai) <apyand B, = {i: a(i)> ay, }, where B, is also a finite set of indices. If we note
that ¢(a,(i) < dlan+1() < pali)) <0 holds for any i € B, it is easy to see that

ZB &an(t)) = —oo follows from Z dlali)) = —oo. Moreover,

i€ R1
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o) <— —‘fsg)oir 1 6(0.) <0 (3.16)

holds for any ¢ € (0, «,], so we can claim that B, is again a finite set of indices,
provided X ¢(a(i)) = —oo. The rest of the proof is easy.

THEOREM 4. Suppose a, b € (cy)+, then,
(1) a<k b is equivalent to Zg‘fgﬁ(a) ggﬂb) (3.17)
Jor all non—decreasing convex functions ¢: R.—R with ¢(0)=0. In particular,
(2) a<k b is equivalent to g(ai — u) *g_i:l,(b,’ —u)* (3.18)

Jor all positive veal numbers u.

oo

(3) a<b is equivalent to i¢(ai):<,_2¢(bi) (3.19)

=1 =1

for all convex functions ¢: R.—R with ¢(0)=0.

Proof. According to Lemma 1, if ¢, b € (¢,). satisfy a< b, then there exist
two sequences {a,} and {#,}< S, which satisfy

a?l T a» bﬂ T b) and a11<< b”.

Then > dla, (1) < D1 ¢(ba(i) follows from (2.3), where ¢ is any non-decreasing
iz =1

convex function on R., and the necessary conditions in (3.17), and in (3.18)

follow from Lemma 2. Now we recall that

(x—u—v) =(x—u)r*—ov)*

holds for any u, v>0. If > (a; —u)* < > (b;i~u)* is valid for any #>0, then
= ey

M

((b; —u)* —v))* (8. 20)

M

Il
i

(@i —u)* —uo))* <

z

il
p—

is so, for any u, v >0. Since {(a—u)* ={(a;—u)*, (a—u)*,..) and (b—u)* =
((by—u)*, (by—u)*,...) belong to S,, (a—u)*<«(b—u)* follows from (2.4) and
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(3.20), and Proposition 2 implies a<b. Thus (3.17) and (3.18) are obtained.
The sufficient condition in (3.19) is easily obtained if we put ¢(¢) =—¢, and the
converse implication is also obtained similarly as above.

COROLLARY 3. If ¢: R,—R. is non-decreasing and convex, with ¢(0)=0,
then

a < b implies (Ha,), dlas), .--) € (p(by), p(bs), ---).

Proof. If we put ¢(t) = (t —u)*op(f), then ¢ is again a non-decreasing convex
function with ¢(0) =0, and (8.17) and (3. 18) imply

(Plar), glas), )L (p(b1), Blb), )%

EXAMPLE 1.
(1) If ak b, then |lall, < |1b]|p**

necessarily holds for any p>>1, where {|-||, denotes the (/?) norm, whether the
right side is finite or infinite,

) If a<b, then 11bll,Zall,

necessarily holds for any 0<{¢<1, where ||-||, denotes the formal (/?) norm,
whether the right side is finite or infinite.

EXAMPLE 2. Suppose a<b, then h(b)<h(e) necessarily holds, where k{a)=

—Z}ai log a; denotes an entropy of a € (¢o)+, provided 0-log 0=0.
i=1
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