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Synopsis

The notion of graph was generalized to make the abstract network theory appli-
cable to economic networks, where multi-commodities are traded among productive
sectors, intermediate sectors, and final demand sectors, The generalized graph, called
the multi-terminal graph, has contributed to developing a new network theory,
deriving that flows of multi-commodities correspond to electric currents in electric
circuits. A well-known Leontief model has been reformulated in this generalized
system. A notion of tension is defined to correspond the price in economics to the
voltage in electric circuits, The equilibrium problem of flows and tensions is dis-
cussed on the basis of new network, and solved under a general hypothesis that
characteristics of branches are represented by complete increasing curves, which
express demand and supply curves,

1. INTRODUCTION

The theory of network flows has many applications to various fields in diffe-
rent appearance, e.g., electrical networks, communication networks, the trans-
portation theory, hydraulic networks, and PERT networks.

In this work, we generalize the notion of graph to make the network theory
applicable to economic networks, where multi-commodities are traded among
productive sectors, intermediate sectors, and final demand sectors. Each branch
has a characteristic abstractly represented by the so-called complete increasing
curve, which is also represented by the demand curve or the supply curve in
economics. When characteristics are given to each branch, our first problem is
to find feasible flows and feasible tensions, which are compatibly defined on
the network. The second problem is to: know Whether quantities and prices of
commodities on characteristic curves can be determined or not, which is a sort
of equilibrium problem.
To solve the first problem, we present a method to examine the existence of

solutions for a general system of linear inequalities, which is discussed in Chap.
4,
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To solve the second problem, we refer to Rockafeller’s theorem in Chap. 5,
which reduces the second problem to the first. We did not discuss about the
method of getting concrete solutions of the first problem, while is not so difficult.
It will rather be more difficult to get equilibrium solutions of the second problem,
but we will not discuss it here.

2. MULTI-TERMINAL GRAPHS

Let N and B be finite sets, the elements of which are called nodes and branches,
respectively, and the cardinarities of which are [/ and m, respectively. Let 9+
and 09— be multi-valued functions from B to N (i.e., 9+(b) SN and 9-(b) S N),
which are called positive incidence mapping and mnegative incidence mapping,
respectively. A node n is positively incident to a branch b if n e d+(b) and
negatively incident to a branch b if n€9-(b). For simplicity we assume

a+B)UI—(b) # ¢ (2.1)
for all be B, and
b:nesotd) Ua—(d) #¢ (2.2)

for all » € N. The quadruple =(N, B, d+, d~) is called a multi-terminal graph.

If the positive and negative incidence mappings 9+ and 09— are single-valued
functions, % becomes a usual graph. We define other multi-valued functions §+
and 6~ from N to B as

Jtm)=1{b:neat®) (2. 3)
and
o-(m)={b : n=a—(b)}, (2. 4)
hence for all n € N
sty U s~ m)y=1{:neatd) U (b)*go (2.5)

by (2.2), and for all & € B there exists a node n such that » € 9+(b) U 9—(b) by
(2.1), i.e.,

be{b:ot(d)u a-)) =atn)U 6-(n).
(2.6)

Hence (B, N, &%, 6~) is again a
multi-terminal graph, which is called
a dual graph of & and is denoted by
«*, Thus, the branch and the node
(@) (b) are completely dual concepts in the

Fig.2-1 Diagrams of the multi-terminal graphs
(a) and (b) which are dual to each other, multi-terminal graph. The multi-
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terminal graph is represented by a diagram shown in Fig. 2-1, where the branches
are denoted by circles and the nodes are by squares. An arrow is directed from
branch to node if the node is positively incident to the branch, and is directed
from node to branch if the node is negatively incident to the branch (which is a
converse settlement from the electric circuit). Fig. 2-1 (b) represents the dual
graph of (a), where the arrows are reversed and the circles are converted to
squares.

The multi-terminal graph is regarded as a usual graph with colored nodes
(say, red and green), the branches of which are positively incident to nodes of

one color and negatively incident to nodes of another color.

3. FEASIBLE FLOWS AND FEASIBLE TENSIONS

Let #=(N, B, 8+, 0—) be a multi-terminal graph defined in Chap. 2., and
let P+=(p},) and P~ = (p;,) be [Xm matrices, rows and columns of which are
indexed by the nodes in N and branches in B, respectively. Moreover, we assume
that the elements are nonnegative and

ne a+(b) if and only if pf,>0 (3.1)
and

n & d—(b) if and only if p;, >0. (3.2)

The matrices P+ and P— are called a positive incidence matrix and a negative
incidence matrix, respectively, and the matrix P = P+ — P~ is called simply as
an incidence matrix. The transpose matrices (P+)T and, (P—)T are positive and
negative incidence matrices in &*, respectively, because b € é+{n) if and only if
n e o+(b).

Now let R(B) be a linear space of all real functions on B, the dimension of
which is m, and let R(N) be another linear space of all real functions on N, the
dimension of which is /. We assume that a vector ¢ € R(B) is a column vector,
i.e., & is written by

E=/&n} (3.3)
sz
Ebm

Accordingly, the positive (and negative) incidence matrix is considered as a linear
transformation from R(B) into R(N) if we define
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+E =
P & pniﬂn ......... P;ﬁl)m Ebl . (3 4)
{:bz
Dy, e B ) gy,

The vector £ of R(B) is called a compatible flow if it belongs to the kernel of P,
i.e,, £€ P-1({0}), and the vector » of R(B) is called a compatible tension if it
belongs to the range of PT (the transpose of P). The set of all compatible flows
is P~1({0}) and the set of all compatible tensions is PT(R(N)), and they are both
subspaces of R(B) and are orthogonal complements of each other.

Let Iy, and I}, be intervals (not necessarily closed) in the real line R! for
j=1, 2,..., m, which represent the intervals within which the flow and the tension
can take the values. The product sets I=/I7.; Ip, and I* =%, I; are regarded
as subsets (rectangles) of R(B). A feasibleflow is a compatible flow in [ and a
feasible tension is a compatible tension in I*.

If ¢; and d; are the left and right end points of the interval I;, respectively,

and ¢} and d}are defined similarly for I;, feasible flow §& = (&) satisfies
Ci S, Syd; (1=1, 2,..., m) (3.5)
and
Ty Dubs E6,=0 (i=1, 2,..., 1), (3.6)

which is a system of linear inequalities and equalities (¢;'s and d;'s may take
—oo or o), The feasible tension 77:(77bj) satisfies

¢ Sy S d (3.7)
and

SV G Pasy =7y, (=1, 2,..., m), (3.8)
for some {=({n) & R(N).

EXAMPLE 1 (The Leontief Model) The well known Leontief model in econo-
mics (Leontief [2]) may be expressed by the words of our multi-terminal graph
theory. The following is a three-dimensional case. Put B={b1, b2, ..., b} and
N= {n1, n2, n3}, and

Hbi)={ni} i=1, 2, 3; 9tb;)=¢ j=4, 5, 6, (3.9)
9-(bi) = {m, n2, ng} i=1, 2, 3; 0-(bj)={n;} j=4, 5, 6. (3.10)

The branch b; represents the ¢ th:endogencus sector (i=1, 2, 3), the branch &;
represents j th exogenous sector (j=4, 5, 6), and the. node #; represents a
market of the i th goods. Such a network is represented by Fig. 3-1. Let
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Pt=71 00 0 0 0
010000
001000

P-=fanaza3z 1l 0 07,
anm ax aps 0 1 0
asyt azg a3 0 0 1

We write a flow on this network as

E§=(x1)
X2
Fig.3-1 A representation of the X3
Leontief Model by the multi- c1
commodity network, co
C3

so that £ is compatible if and only if £ & P-1({0}), ie.,

l—an —aiz —aiz —1 0 07/ x1)=0,
—ag l—awr —axs 0 —1 0| x2
—a1 —as2 l—azz 0 0 —1J)} x3

C3

which is equivalent to the well known Leontief fundamental equation.

impose restrictions on & such as

0= % (i=1, 2, 3)
and

00 (i=1, 2, 3),

Il:[()> OO) (i:l’ 2, saay 6).

The flow is feasible if & satisfies (3.14), (3.15), and (3. 16).

53

(3.11)

(3.12)

where a;; ‘s are so-called input coefficients.

(3.13)

(3.14)

We can

(3.15)

(3.16)

(3.17)

The Leontief model treats the case in which each industrial sector produces
one kind of goods. In general, it is probable that plural goods are produced
jointly by one sector, and our network is also able to represent such a general

case.

4. LINEAR INEQUALITIES

In the preceding section, we have seen that the feasible flow and the feasible
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tension satisfy some linear inequalities and equalities. To know wheather the
feasible flow or the feasible tension exist or not, let us study the existence problem
of solutions of a given system of linear inequalities. For this, we need some round-
about preparations.

Let R” be an n-dimensional Euclidean space, and R** be its conjugate space,
i.e., a linear space of all real linear functionals on R* Then for any f € R*
there exists a unique vector ¢ € R” such that flx)=<x, a> :Z}};l x(1)a(i), by
the Riesz representation theorem, where <.,.>> is an inner product in R* and
x(z) is the 7 th coordinate of x & R*. Let & ={>, =, <, <, =} be d set of
great and small relations among real numbers. Single-valued maps 7, #%, #° and
7¢ of 7 in &, the ranges of which are also in &, are defined by Table 4-1. These
operations 7, #¢, #°, and 7¢ for » are called closure, interior, opposite, and com-
Dblement, respectively. A relation r is closed if and only if » = 7 and open if and

only if r=ri.

Table 4-1 Definition of four kinds of maps from I" into I,
A symbol ¢ means “not defined”.

v 7 i r° re
> = > < =
= = > = <
< = < > =
= = < = >
= = ¢ = ¢

Let f be in R*, ¢ be a real number, and » be in & We assume that a

triplet (f, ¢, 7) represents a linear inequality (or equality)
fx) re, 4.1)

t.e., it represents one of the equations f(x) >¢, fix) =c¢, flx)<c, flx)<c, and
Slx) =c.
A convex set K(f, ¢, 7) in R* is defined as
K(f, ¢, )= {x€ R" flx) rc}, (4.2)

which is a set of all solutions of the inequality (4.1). Clearly, K(f,c, 7) is closed
if and only if 7 is closed or f= 0 R*", and open if and only if » is open or
f=0 & R». The validity of the following is clear:

PROPOSITION 1. i) If f540, then K(f, ¢, v) % ¢, ii) if f=0 and the ine-
quality (0 r c) is true, then K(f, ¢, ¥) = R", and iii) if f=0 and the inequality
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(0 7 ¢) is not true, then K(f, ¢, r)=¢.
A line L(f, c¢) is defined as
L(f, ¢)=K(f, ¢, =), (4.3)
which is a closed convex set in R%. A system A (of linear inequalities) is defined

as A={(fi, ¢i, ri):i=1, 2, ..., m}, which represents m linear inequalities;

filx) 7 oL (4. 4)
faolx) r2 c2

Sm(x) 7.’7;1 Cm
Ko(4) (or simply K,) is a set of all solutions of (4.4), i.e.,
Ko = Kod) = 07, K(fi, ci, 7). | (4.5)
Let B be a convex set in B*. For a vector b in B, we put By =B —b={'
—b: b' & B}. The dimension of the convex set B is the dimension of the subspace

spanned by Bj. The dimension is then independent of the choice of 5. We denote
the dimension of B by dim(B).

PROPOSITION 2. If f540, then dim (L(f, ¢)) =n—1. If f5£0 and r+" =",
then dim(K(f, ¢, r))=n.

PROOF. By Proposition 1, there exists an x, in L{f, ¢), thus,
Ly, = L(f, ¢)—x, =f~1({0}), (4.6)

the dimension of which is # — 1 if fs£0, as well known. If »=£"=", then L(f,
c+e)E K(f, ¢, ), where e= +1 if #i=">" and e= —1 if i ="<". Therefore
K(f, ¢, r) must be n-dimensional. Q.E.D.

The following two propositions are well known, but we give the proofs for

completeness’ sake.

PROPOSITION 3. Let K be an (n — 1)-dimensional convex set, and L be an
(n — 1)-dimensional linear manifold, i.e., L —1 (€ L) is an (n — 1)-dimensional
subspace. If K< L and x, & L, then

A={txo, +(1L —yo: Yo € K, 0t <1} (4.7)

is an n-dimensional convex set.
PROOF. We can assume 0 € K. Linearly independent vectors ¥, ¥2, ... ,
and y»—1 exist in K. Clearly xo, 31, ... , and ¥,—; are also linearly independent.

It is easy to prove that the vectors zo=—§~xo —l—%yl and z; = %xo%— é——yi (i=1, 2,

.., n—1) are in A and linearly independent. Q. E.D.
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PROPOSITION 4. If K is an n-dimensional convex set in R", then Ki ¢

PROOF. We assume 0 € K. Then, there exist linearly independent vectors

x1, %2, ..., and x, in K. The convex hull co {0, x1, ..., xx} is contained in K.

A vector x in R” is uniquely represented by a linear combination of x;'s with

cofficients a;(i = 1, 2, ..., n). If a mapping ¢ from R” onto R* is defined by
Plx) =D Vi jaiei, (4.8)

where {e;} is an orthogonal basis in K*, then ¢ is a one-to-one linear mapping
from R” onto R*, hence it is a homeomorphism (topological isomorphism) from R#

onto R* Since co{0, x1, ..., xu} corresponds to an x-dimensional simplex co
{0, e1, ez, ..., ex} by ¢, it follows that Ki 54 ¢. Q.E.D.

A subsystem A; ={(gj, ¢;j, vi): j=1, 2, ..., i—1, i+1, ..., m} of a
system A= {{fr, cr, r): k=1, 2, ..., m} {assuming fi =0 for all k) is defined
by

&iy) = filg=X»), 7=1, 2, ..., i—1, i+1, ..., m (4.9)

for y in R*~1, where ¢ is an isomorphism from L(f;, ¢:) to R*-! (the existence
of which is assured by Prop. 2)." A subsystem is also a system of linear inequa-
lities of # — 1 variables.

PROPOSITION 5. If ri ="=", then the subsystem /A; has at least one solution
if and only if A has at least one solution.

PROOF. 4 has a solution x if and only (fi(x) #; ¢;) (j5%i) and fi(x) = c;,
which is equivalent to (gi(¢(x)) #i ¢;) (7 ~1i) and x € L{fi,c;). Q. E.D.

"

Thus, we can remove the case 7;="=" from the system when the existence
problem is under cosideration. If fi = f; and ¢; = ¢; for ¢ and j (i¥j), we can
merge the two equations into one or we can see that the system is void, e.g.,
filx) = ¢; and fj(x) = ¢; and therefore they are merged into fi(x)=c; and fi(x)<
¢; and fj(x) > ¢; and therefore it is a void case. By such a method, we can

remove the case
L(fi, ¢i) = L(fj, ¢;) for i+ j. {4.10)

Also, the case K(fi, ci, ri)SK(f;, ¢;, ri) (i=7) may easily be removed from the
system, even if L(fi, c¢i)#L(fj, ¢;j). Thus, we define that the system A is primary
if frs%0 for all k, and is4j implies L(fi, ¢i)s=L(fj, ¢;) and K(fi, ci, i) % K(f3,
¢i, ¥j). Therefore if the system is primary and m=2, then K, GSK{fi, c¢i, i) for
all i. The i th closed side S; of K, is defined by S:= L(f;, ¢i) N O.K<fj, Ci, ¥i).
The i th closed side is also a convex set in R*% The following is éﬁéy

PROPOSITION 6. If 1 and 2 are (n — 1)-dimensional subspaces of R* and
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if y1 #1 and y 1 #2 for some nonzero vector y in R" (y | .# means that y
is orthogonal to each vector in #), then #1 = A o.
The following two propositions are key steps to the conclusion of this section.
PROPOSITION 7. If the system A is primary, then Sﬁ =¢ for all i implies

K£=¢, where Sf is an interior of Si, topology of which is relative one on L(fi, ci).

PROOF. If K! ¢, there exists a vector x, in K:. As well known, we can
find a unique vector y; in L{fi, ¢;), which gives the minimum distance between
%o and L(f;, ¢i). Let i, be a number such that

%o = Yidl] :ml;nllxo—yill- (4.11)

The relation x,—y:, 1 L(fi., ¢i,) — ¥i, is also well known. The vector yi, belongs
to K(fi, c;, r;) for all j (%1,), because if y;, & K(fj, ¢j, #;), then, since x, € K
(f5, ¢i, 1), txo+ (1 — £)yi, must be in L(f;, ¢;) for some ¢ (0<¢t<1), which
contradicts to (4.11). Hence if y:i, & K(f;, ¢, #j)¢ for some 7 (js%41i,), then y;, &
L(fi, ¢5), so
[lXo—yi ll=min {llxo—yll: ¥y € L(fj, cj)} (4.12)
and x,—yi, L L(f;, ¢;)—:,, then by Proposition 6,
L(fio, ¢io) — ¥io = L{fi, ¢} — ¥i., (4.13)
thus
L( fio, ¢io) = L{ fi, ci)s (4.14)
which contradicts to the primary condition.
Hence yi, € K(fi, ci, #j)t for all j (s4i,). Then there exists ¢ >0, and for all
(o)
Si(vi.) € K(fi, €5, 1i), (4.15)

which implies

Ss(wio) N L(fio, €is) © O,K(fj, ¢i, ) N L fi,, ¢i,) =Si.. (4.16)

Fio

Therefore (Si,)! #¢. Q.E.D.

PROPOSITION 8. If the system A is primary and m =2, then Ké ¢ if and
only if Si ¢ and Si, ¢ for at least two indices i1 and iz (i1 7 i2).

PROOF. =) If K! +£¢, then there exists x, € Kf, By Proposition 7, we can

assume that S! # ¢ for some i If &(>0) is taken as Sc(x)S K. (Se (xo) is a

sphere with center x, and radius &), we put
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Ly= {211 2t = Hy — x0)+ %0, t =1} (4.17)

for any ¥ such that ||x, — y|| = &. Accordingly, there exist y, and & (11) such
that

Ly, N L fr,, cr) = {22} % ¢ (4.18)
and f <{, implies
2 & UYL Life, cr). (4.19)

If (4.19) is false ((4.18) is clear as S:(x,) spans R” and the system is primary),
then yo= L(f%, ck) for some k, hence y, & K(fr, cr, r:)’ and

Yo & K(fr, cr, 71} 2 K., (4. 20)

which contradicts to the fact Se(x,) & Ké.
We can assume z;,€K(fi,c¢i,ri).. Hence, for some 6 >0, Ss(z:,) € K(fi,, ¢i,
ri)i. Putting xo' = d'xp -+ (1 — 0") zt, where &' = /(2|}xo — 2:,11), we get

min Il — 311 € L(fi, ch., 70} Sll'o — 21, 1| <2 (4. 21)
On the other hand,

min {{|x'o — y|| : y € L(fi,, ¢iy, 7ii)}
. d 0
= min{||z;,— yli—flxa—z;oil}>5——§:~é«. (4. 22)

Hence, if we choose x'y, for x, in Prop. 7, then i,, which gives the minimum

distance, can not be #1. Thus we get another side Si,.

<) Put A={z: 2zt =tx0+ 1 — DY, 0t 20 E Sﬁl}, where ¥, € S;:z, and

A CK, (which is easy as z: € K(fi, ¢i, #i)), 2t € K(f1,, €iy, 7ip), and 2z € .#D‘
JF5t1, 12

K(fi, ¢j, 7)) and A is n-dimensional by Proposition 3. Hence K is also #-dimen-

sional and K # ¢ by Proposition 4. Q.E.D.

We can determine by the above proposition whether the interior of K is
empty or not. The following proposition gives a light to the case when the
interior of K, is empty.

PROPOSITION 9. If the system is primary and Ki=¢, then, K, = ¢ if and
only if for any 1 Si = ¢ or the relation v; is open.

PROOF.=) If Si+#¢ and L(f:, ¢i) € K(fi, ¢i, i), then ¢+#S; =S 0N L(fi,
ci) € SinNK(fi, ¢i, i) = Ko L(f4, €3) © K.
<=) In general, E®* N E = ¢ and E? = ¢ implies E = ¢ (E? is a boundary of E).
Hence, with K;=K(f;, ¢;, #;) and L;= L(f;, cj),
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KnK,=K NK,NKo=FKoNK;=nK; N(NKj)¥*=n Kj N 31_1?7
J K 7 %

=nK;n y“ngy(nKj)nK(fk, ey, 74) (4. 23)
7 i 4 7

= %J(ﬂK]) N Lk = L’J(Sk N K/e n Lle) = ¢, (4 24)
k7 fe

since Sr N K = 'Q/I{j NLy,NKr=¢ if Sk=¢ or r, is open. Thus K, =¢. Q.E.D.
IR
Let us introduce a notion of degree of system. If 4 is a primary system, the

degree of a system 4, denoted by deg(4), is defined by

deg()=( 0 if Ko=g, (4. 25)
1 if K!=¢ and K, # ¢,
2 if K #¢.

Summing up the above propositions, we can determine the degree of system by
reducing the problem to its subsystems.

THEOREM 4.1 Let A be a primary system and m > 2. Then,
(1) if deg(di))=2 and deg(4;,)=2 for some i1, ixi1 + i2), then deg(d) = 2,
(2) otherwise, if deg(d:;) =1 and ri, is closed for some i1, then deg(4) =1,
(38) otherwise, deg(A) = 0.

EXAMPLE 4.1 Let us again consider the Leontief model, and let us treat
some concrete values such as

P-= (4. 26)
1 5 5 1 0 0
8§ 16 8
1 1 5
7 8 8 0 1 0
3 1 1
% 8 8 0 0 1

N

Restrictions on x:'s and c¢i's are 6 <c1, 8<cz, 2<c3, 0<x1<(36, 0<x2< 36,
and 0<x3<(28. Therefore, to know the existence of feasible flows, we must
examine the following linear inequalities and equalities:

7 5 5

gxl—‘l‘éxz— 8x3 —ca=20 (A1),
—n +%xz—%x3 — =0 (A2),
—'-3—x1 —}-xz +lx3 —c3=0 (A3),

16 8 8
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c1>>6 (Ad), ¢2>8 (A5), ¢c3>2 (46), x1>0 (A7), x1<36 (A8), x2>0 (A9), x2

<36 (A10), x3 >0 (Al1l), and x3 <28 (Al2).
To make the system primary, we remove (Al), (A2), and (A3), and we call the
resulting system /:

7 5 5
1 L2y
/ gH g g >6 (B,

1 7.5
—— e [ A
g g g > 8 (B2),

—%m —é-xz +—g—x3 >2 (B3),
x1 >0 (By), x1 <36 (B5), x2>0 (B6), x2< 36 (BY),
x3 >0 (B8), and x3 <28 (BY).

The first subsystem i is written as (the formula in brackets means the ¢ th
formula giving the { th subsystem)

. _ 85,05
Ay : [x1= 7(6 F16x2+8x3)]

44x9 — 45x3 > 544,
—43x2 + 166x3 > 736,
480 > 5x3 + 10x3 > —96,
36 > x>0,

which is a two-dimensional case, and we can easily derive that deg(4;) = 2.
For the second subsystem A3:

Ay [x1= —4(8—%}62 +~Z~x3)]
44y — 45x3 > 544,
—25x2 + 43x3 > —128,
136 > 7x2 — 5x3 > 64,
36 > x2 >0,
128> %3 >0,
the degree is also 2. Hence deg (4) = 2 by the theorem, and feasible flows exist.

One of the solutions is a middle point between a point in Sfl (#¢) and a point in

sz(#gé). In this case é=(32 32 16 8 10 4)7 is one of the solutions., In a

higher dimensional case, we can also use the theorem to determine the degree
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of system by induction, but the number of subsystems increases in a geometric
progression at each step of induction.

5. BRANCH CHARACTERISTICS AND FEASIBLE FLOWS

In this section, we formulate additional characteristics of branches and nodes,
which correspond to the notion of demand curve and supply curve in economics.
The 2-dimensional Euclidean space R? is ordered by

(x1, y)<(x2, y2) if and only if x1 =< x2 and y1 < ya. (5. 1)

The subset 7" of R? is called a complete increasing curve if it is a maximal totally-
ordered subset of (K2, <). Then [I' is a continuous increasing curve, which
crosses each of the lines with slope —1 exactly once. The inverse I'* is defined
by

I = (&, 2): (x, 2 € T}, (5.2)

which is also a complete increasing curve. Let ['; (j=1, 2, ..., m) be complete
increasing curves, and K and K* be subspaces of R orthogonally complementary

to each other, and let I; and I} be domains of I'yjand I}, ie.,

Ii={x: (x, ) € I'; for some %} (5.3)

and

It ={x*: (x*, y*) € I} for some y*}. (5.4)

Let I and I* be rectangles similarly defined from I; and [} (instead of I 5, and

I;) as in chap. 3. The following theorem by Rockafeller [3] is well known,
which has been proved by Iri [[1] partially when I;’s are closed.

THEOREM (Rockafeller) If there are vectors x & I N K and x* € I*NK*,
there are x** = (x%¥') € K* and xo = (x7) €K such that

(x5, el for j=1, 2, ..., m. (5.5)

The pair (x°, x*°) which satisfies the theorem is called an equilibrium solution.
This theorem provides an interpretation to our network of multi-commodity flows.
Each branch of a multi-terminal graph is assigned such a ['; as its characteristic
curve. Choose R—-1({0}) as the subspace K and PT(R(N)) as the subspace K*,
and the theorem is rewritten into the following form:

THEOREM If there are a feasible flow and a feasible tension on a mulfi-
terminal graph, there exist a compatible flow (&) and a compatible tension (v3)
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such that (§5,, 1%,)'s are on the complete increaing curves I'j's (j=1, 2, ..., m).
As we have shown in chap. 4., we have a method to determine whether the
conditions of the theorem are satisfied or not. Thus we have a method to know
the existence of equilibrium solutions.
At the conclusion, let us give some examples which are instructive to show
the relation between a multi-terminal graph with characteristic curves and econo-

mic networks.

n; Na
; 2
Iy r
’
£1el0 =) £,e[0 »)
nye (e @) nge(~= =)
@ o :
' (@) ()
Fig.5-1 A simple network, where b, is Fig, 5-2 Characteristic curves of &, and b..

consumers and b is suppliers,

EXAMPLE 5.1 Let us consider the simple case shown in Fig. 5-1, where B
={b, b2}, N={m}, 0+(b1) =0-(b2)=¢, and 9~ (b1) = 9+(b2) = {m1}. We have P+=
(0 1) and P—=(10), so P=(—11). The flow & is compatible if and only if —
& -+ & = 0and the tension 7 is compatible if and only if 7 + 52 = 0. The chara-
cteristic curves are shown in (a) and (b) of Fig.5-2, and thus I1 = (0, o), I} =

(—o0, o), Ip=1[0, o), and I; =(—o0, o0). The flow é=(& &2)7 is feasible if and
only if & = & and 0= &1. The tension y = (y1 72)7 is feaible if and only if n =
—n2. Clearly such a & and such an 7 exist and by the corollary, the equilibrium
solution exists. Indeed, with I'{ ={(¢, —»): (¢, p)&l'}, the intersecting point (&,

7o) of 'Y and I’z gives an equilibrium solution, which is written as & = (& £)7
and 5y =(—no p0)T. If we interpret the branch &) as consumers, the branch b2 as
suppliers, and the node #1 as a market, the flow & (i=1, 2) as the quantity of
a commodity, and the tension 7; (i=1, 2) as the difference between the prices of
input and output commodities, the vector { & R(N) is such that PT({) =7 re-
presents prices on each market. Fig. 5-3 is a well-known figure appearing in
textbooks of economics.

EXAMPLE 5.2 The network shown in Fig. 5-4 represents the case that
intermediate sectors exist. It is an important point of our theory that the charac-
ter of an intermediator is also represented by the characteristic curve of a branch.
Such a characteristic curve plays twofold roles in the network : the first is that
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Fig.5-3 Reversal of axis y Fig.5-4 The case that the in- Fig.5-56 A supplier b; pro-
results in a demand termediate sector b, duces two kinds of
curve. exists, goods jointly.

it works as a sort of supply curve when considered from the side of consumers,

and the second is that it works as a sort of demand curve, when considered from

the side of suppliers.

EXAMPLE 5.3 The preceding examples are single-commodity cases. On the
other hand, a simple network shown in Fig. 5-5 is a multi-commodity case. The
supplier &3 produces two kinds of goods jointly. The supply curve at a market m
is dependent on the characteristic curve Iz of another consumer bz which is a

peculiar phenomenon in the multi-commodity case.
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