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                                  Synopsis

     The notion of graph was generalized to make the abstract networl< theory appli-

  cable to econemic networl<s, where multi-comrnodities are traded among productive

  sectors, intermediate sectors, and final demand sectors. The generalized graph, called

  the multi-terminal graph, has contributed to developing a new network theory,

  deriving that fiows of multi-cominodities correspond to electric currents in electric

  circuits. A well-known Leontief model has been reformulated in this generalized

  system. A notion of tension is defined to correspond the price ln economics to the

  voltage in electric circnits. The equilibrium problem of fiows and tensions is dis-

  cussed on the basis of new network, and solved under a general hypothesis that

  characteristics of branches are represented by complete increasing curves, which

 express demand and supply curves.

                            1. INTRODUCTION

    The theory of network fiows has many applications to various fields in diffe-

rent appearance, e.g., electrical networks, communication networks, the trans-

portation theory, hydraulic networks, and PERT networl<s.

    In thls work, we generalize the notion of graph to make the Retwork theory

applicable to economic networks, where multi-commodities are traded among

productive sectors, lntermediate sectors, and final demand sectors. Each branch

kas a characteristic abstractly represented by the so-called complete increasing

curve, which is also represeRted by the demand curve or the supply curve in

economics. When characteristics are given to each braRch, our first problem is

to find feasible flows and feasible tensions, wi}ich are compatibly defined on

the network. The second problem ls to' know whether quaRtities and prices of

commodities oR characteristic curves cafi be determined or not, which is a sort

of equilibrium problem.. 'l･ ''
    To solve the first problem, we present a method to examine the existence of

solutions for a general system of linear inequalities, which is discussed in Chap.

4.
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    To solve the second problem, we refer to Rockafeller's theorem in Chap. 5,

which reduces the second problem to the first. We did not discuss about the

method of getting coRcrete solutions of the first problem, while is not so difficult.

It will rather be more dithcult to get equilibrium solutions of the second problem,

but we will not discuss it here.

                    2. MXJLTI-TERMINALGRAPHS

   Let Ar aRd B be finite sets, the elements of which are called nodes and branches,

respectively, and the cardinarities of which are l and m, respectively. Let a+

and Om be multi-valued functions from B to N (i.e., 6+(b) sc Ar and 6m(b) gN),

which are callecl Positive incidence maPPing and negative incidence maPPing,

respectively. A node n is Positively incident to a branch b if nE a+(b) and

negatively incident to a branch b if nEiiOww(b). For simplicity we assume

                          O+(b)UO-(b) 7L ip (2. i)
for all bEi B, and

                       {b:nei O+(b)ua-(b)} 4¢ <2. 2)
for all n E N. The quadrupie g=(N, B, 6+, 6ln) is cailed a muUi-terminal groph.

   If the positive and negative incidence mappings 6+ and O- are single-valued

functions, fY becomes a usual graph. We define other multi-valued functions 6+

and 5- from Ar to B as

                         ti+(n) == {b :nE e+(b)} (2. 3)
and

                         o"'(n):= {b:nEa-(b)}, (2. 4)

hence for all nEN

                o"+(n) U tim(n> == {b :n Eii O+(b) U 6-(b>} #¢ (2. 5)

by (2. 2), and for all bEB there exists a node n such that nE a+(b) u a-(b) by

(2. 1), i. e.,

                    q2 nl n2             nl                          n3       n3

                                 b3                        b2    b2 b3
nu nts

          (a) (b>
Fig. 2-1 Diagrams of the rnulti-terminal graphs
   (a) and (b) which are dual to each other.

b Eill {b . a+(b)U 6-(b)} = ti+(n)U o-(n).

                         (2. 6)

Hence (B, N, o"+, 6-) is again a

multi-terminal graph, which is called

a dual graPh of [9 and is denoted by

9". Thus, the branch and the node

are completely dual concepts in the

multi-terminal graph. The multi-
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terminal graph is represented by a diagram shown in Fig. 2-1, where the branches

are denoted by circles and the nodes are by squares. An arrow is directed from

branch to node if the node is positively incident to the branch, and is directed

from Rode to braRch if the node is negatively incident to the branch <which is a

converse settlement frorn the electric circuit). Fig. 2-1 <b) represents the dual

graph of (a), where the arrows are reversed and the circles are converted to

squares.

   The multi-terminal graph is regarded as a usual graph wlth colored nodes

(say, red and green), the branches of which are positively incident to nodes of

one color aRd negatively incident to nodes of another color.

            3. FEASIBLE FLOWS AND FEASIBLE TENSIONS

   Let fll' =(N, B, a+, Orm) be a multi-terminal graph defined in Chap. 2., and

letP'-=(P,+,b) and Pww ==(PF,b> be lxm matrices, rows and columns of which are

indexed by the nodes in N and branches ii3 B, respectively. Moreover, we assume

that the elements are nonnegative and

                   nE O+ (b) if and only if Pfi, b>O (3. 1)

and

                  n(- O-(b> if and only if P,M,b>O. (3.2)

The rnatrices P+ and P- are called a Positive incidence matrix and a negative

incidence matrix, respectiveiy, and tlte matrix P uz P+ - Pww ls called simply as

an incidence matrix. The transpose matrices (P+)T and, (Pne)T are positive and

negative incidence matrices in fY*, respectively, because b E S+(n) if and only if

n E O+(b>.

  ･Now let R(B> be alinear space of al! real fuRctions on B, the dimension of

which is m, and let R(N) be another linear space of all real functions on N, the

dimension of which is l. We assume that a vector eG R(B) is a column vector,

i. e., e is written by

                             4== 6b,. (3.3>
                                 eb2

                                 6b.,

Accordingly, the positive (and negative) incidence matrix is considered as a liRear

transformation from R(B) into R(AX) if we define



                 P-"g:=: P,"',,b, ･････････P,±,,b., ebi･ (3.4)
                                         gb2

                        P?±iibi ''''''''' P'±itbin 6b.

The vector g" of R(B> is called a comPatible fiow if it belongs to the kernel of P,

i.e., 8E P-i({O}>, and the vector rp of R(B) ls called a comPatible tension if it

belongs to the range of PT (the transpose of P). The set of all cornpatible fiows

is Pnvi({O}) and the set of all cornpatible tensions is PT(R(N>), and they are both

subspaces of R(B) and are orthogonal compiements of each other.

   Let Jbj and IZ,be intervals (not necessariiy closed> in the real line Ri for

1'rm-1, 2,... , 7n, which represent the intervals within which the flow and the tension

can take the values. The product setsI=:ll9S.i Ib, and I' ==llY-Li Ib', are regardetl

as subsets (rectangles) of R(B>. A feasibldiow is a compatible flow in I and a

feasible tension is a compatible tension in I".

   If ci and dJ' are the left and rigkt end points of the iRterval l)', respectiveiy,

and c;i and d;i are defined similarly for ny', feasible flow g== (gb,) satisfies

     ･ ci (g$I)gbf(E:i$)di (]' --l, 2,..., m) (3. s)

and

                   X;?.Li Pn,b, gb,-=O (i--l, 2,..., l), (3. 6)

which is a system of iinear inequalities and equalities (ci''s and di's may take

-oo or +oo). The feasible tension rp =(vb,) satiSfieS

                            C:･ ({!S) vb,({:il) d:･ (3. 7)

and

                    Zf' -1 <･ni P}tib, == vb, (j' = 1, 2, ..., m), (3. s)

for some C=r(qn,) E!i R(N).

   EXAMPLE 1 (The Leontief Model) The weil kRown Leontief model in econo-

mics (LeoRtief [2]> may be expressed by the words of our multi-termiRal graph

thgory. The following is a three-dimensional case. Put B ={bi, b2, ..., b6} and

N= {ni, n2, n3}, and ' ,
            a'i-(bi>== {ni} i=1, 2, 3; O+(b?)=ip 1'=4, 5, 6, <3.9)

       O-(bi) = {ni, n2, n3} i=1, 2, 3; O-(b)')== {n)'} ]'=4, 5, 6. (3.10)

The braBclt bi represents theith･･ endogenous sector <i--1, 2, 3), the branch bi

represents d th exogenous sector (j =4, 5, 6), and the.node ni represents a

market of tkei th goods. Such a network is represented by Fig. 3-1. Let
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which is equivalent to the well kRown

impose restrictions on 6 such as

                         Ol;:ll xi (i -- 1, 2, 3> (3. 15)

and

                         Oliill ci (i -- 1, 2, 3), (3. 16)

i. e.,

                    Ii -- [O, oo) (i-1, 2, ..., 6). (3.17)

The fiow is feasible if g satisfies <3. 14), (3. 15), and (3. 16).

   The Leontief model treats the case in which each industrial sector produces

one kind o'f goocls. In general, it is probable that p}ural goods are produced

jointly by one sector, and our network is also able to represent such a general

case.

                     4. LINEARINEQUALITIES

   In the preceding section, we have seen that the feasible fiow and the feasible

                  :l62gl･ (3･i2)

                  a33 o o lj

   where aii 's are so-called input coeMcients.

   We write a flow on this network as

              g== xi, (3.13>
                  X2
                  X3
                  Cl

                  C2

                  C3

only if 6 e P-i({O}), i. e.,

 I"d,'l -ol -O1 81 .X,i ==O) ･ (3.14)

1-a33 O O-lj x3

                 i,

        Leontief fundamental equation. We can



tension satisfy some linear inequalities and equaiities. To know wkeather the

feasible flow or the feasible tension exist or not, let us study the existence problem

of solutions of a given system of liRear iRequalities. For this, we need some round-

about preparations. .
  ･ Let R'i be an n-dimensional Euclidean space, and R"' be its conjugate space,

i.e., a linear space of all reai IiRear functionals on R". Then for any fE R'i"

there exists a unique vectora E Rn such that .f<x) = <x, a> =:Z]l･t=i x(i)a(i), by

the Riesz representation theorem, where <. ,.> is an inner product ih Rn and

x(i) is tke i th coordinate of x cii R". Let ff -- {>, }lk, <, ;ill, ::::} be A ･set of

great and small relations among real numbers. Single-valued maps fa, ri, rO and

rc of r in E, the ranges of wklch are also in g, are defined by Table 4-1. These

operations -r, ri, ro, and rc for r are cal}ed closure, interior, o2tiposite, and com-

Plement, respectively. A relation r is closed if and only if r=: T and oPen if and

only if r== ri.

          Table 4---1 Definition of four kinds oi maps from r into l".

                A symbol ¢ means "not defined".
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   Letfbe in Rn',cbeareal Rumber, aRd rbe in ff. We assume that a
triplet (f, c, r) represents a linear inequaiity (or equality)

  '                           flx)rc, (4. 1>
i.e., it represents one of the equatiolts flx)>c, f<x) llic, f<x)<c, .f<x)Sc, and

flx) == c.

   A convex set K(f, c, r) iR I?n is defined as

                  K(f, c, r>= {x EIi R": ]`<x)rc}, (4.2>

which is a set of all solutioRs of the inequality (4.I>. Ciearly, K(f,c, r) is closed

if and enly ifris closed or f==OERn*, and open if and only lf r is open or

f=O EEE Rn*. The vaiidity of the following is clear:

  PROPOSITION 1. i) Ilff$O, then K(f, c, r) 7Lip,'ii) iff=O and the ine-

quality/(Q r c) is true, then K(L c, r) =: Rn, and iii> iff=O and the inequality
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(Orc) is not true, then K(f, c, r) :=¢.

   A line L(f, c) is defined as

                       L<L c) -= K(f, c, ==>, (4.3)

which is a closed convex set in Rn. A system A (of Iinear lnequalities) is defined

as A :{(fl, ci, ri): i -- 1, 2, ..., m}, which represents m linear inequalities;

                           fl(x) ri ci. (4.4)                          (xe) l'ii gji

   Kb(A) (or simply Kb) is a set of all solutions of (4.4), i.e.,

                  Kb =Kb(A) :fi ;･'ki K<]Cle, ci, ri). <4. 5)

   Let B be a convex set in Rn. For a vector b in B, we put Bb == B-b == {b'

-b: b' Ei B}. The dimension of the convex set B is the dimension of the subspace

spanned by Bb. The dimension is then independent of the choice of b. We denote

the dimension of B by dirn(B).

   PROPOSITION 2. if f40, then dim (L(f, c)) =n-1. ILf f40 and rik";",

then dim(K(f, c, r)) =n.

   PROOF. By Proposition I, there exists an xo in L(f, c), thus,

                  Lx. =:= L(L c)-xo =:.f:-i({O}), (4.6)

the dimension of which is n-1 if fij O, as well known. If r it! "=", then L<L

c+e)$ K<L c, r>, where e=: +1 if ri -- ">" and e= -1 if ri -- "<". Therefore

K(f, c, r) myst be n-dimensional. Q.E.D.

   The following two propositions are well known, but we give the proofs for

completeness' sake.

   PROPOSITION 3. Let K be an (n - 1)-dimensional convex set, and L be an

(n - 1)-dimensional linear manifold, il.e., L-l <l Eii L) is an (n - 1)-dimensional

subsPace. ILf KQL and xo eL, then

                A= {txo +(1-t)yo: yo E K, O<t<1} (4. 7>

is an n-dimensional convex set.

   PROOF. We can assumeOEs! K Linearly independent vectors yi, y2, ...,

and yn-i exist in K. Clearly xo, yi, ... ,and yn-i are also lineariy independent.

It is easy to brove that the vectors zo = gxo+-l;-yi and zi -- -ll-xo+ Syi (i-wwi, 2,

..., n- 1) are in A and linearly independent. Q. E. D.
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   PROPOSITION 4. ,llf K is an n-dimensional convex set in Rn, then Ki ik ¢.

   PROOF. We assume O E KL Then, there exist linearly independent vectors

xi, x2, ..., and xn in K. The convex hull co {O, xi, ..., xn} is contained in KL

A vector x in Rn is uniquely represented by a 1inear combination of xi's with

coMcients ai(i im- 1, 2, ..., n). If a mapping ¢ from Rn onto Rn is defined by

                          ip (x) =:Z] :･t.. icriei, (4. 8)

                                 '                                         '
wltere {ei} is an orthogonal basis in R", then ¢ is a one-to-one linear mapping

from Rn onto Rn, hence it is a homeomorphism (topologicai isomorphism) from Rn

onto Rn. Since co{O, xi, ..., xn} corresponds to an n-dimensional simplex co

{O, ei, e2, ..., en} by ip, it follows that Ki rrk di. Q. E. D.

   A sblbsystem Ai --{(st, cJ', zi): 1'=1, 2, ..., i-1, i+1, ..., m} of a

syseem A== {(Ile, ck, rh): k== i, 2, ..., m} (assuming fllj 7-o for all fe) is defined

by

            gy(pt> = fi(ip-i(y)), 1' -- 1, 2, ..., i-1, i+1, ..., m (4. 9)

for y in Rn-i, where ¢ is an isomorphism from L(fi, ci) to Rn-i (the existence

of which is assured by Prop. 2).' A subsystem is also a system,of linear inequa-

!ities of n - 1 variables.

   PROPOSITION 5. if ri ="=", then the subsystem Ai has at least one solution

if and only if A has at least one solution.

   PROOF. A has a solution x if and only (.f}'(x) 7v' ci) (y'7-i) and .f>'(x) =ci,

which is equivalent to (g)'(¢(x)) iti cj) (1' yA i) and xE L(fi,ci). Q. E D.

   Thus, we can remove the case rim-"==" from the system wheR the existence

problem is under cosideration. if fi mu- fb and ci -- cj' for i and 1' (i 7!j), we can

merge the two equations 2nto one or we can see that the system is void, e. g.,

fi(x) ;i{ci and L'(x)lik ci and therefore they are merged into fi(x)=ci and fb(x)<

ci and .11'(x)>cj' and therefore it is a void case. By such a method, we can

remove the case

                  L(.fl, ci) == L(fi, ci') forivi! j. (4. 10)

AIso, the case K(fi, ci, ri)gK(L', ci, rb') (is-g7') may easily be removed fyom the

system, even if L(.f?, ci)y!L(fli', ci Thus, we define that the system A is Prinzanyy

if kvdeO for all k, and ivkj implies L(ft, ci) y6L(.fi, cj> and K(]Q', ci, ri) gt K(fli,

cj, rd>. Therefore if the system is primary and m;l;i2, theR Kb $K<fi, ci, ri) for

all i. The i th closed side Si of Kb is defined by Si -- L(fV, ci) fi A K<]li, ci, ny').

                      '' J'SiThe i th c}osed side is aiso a convex set ln Rn. Tke following is easy

   PROPOSITION 6. if "i and .if'2 are (n - 1)-dimensional subspaces of Rn and
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ify-L .ifi andyiM2 for some nonzero vector y in Rn <yiM means that y

is orthogonal to each vector in M), then Mi ww- .if2.

   The following two propositions are key steps to the conclusion of this section.

   PROPOSITION 7. .lf the system A is Prima2:y, then Si･ =:¢ for all i imPlies

KS==ip, tvhere SI･ is an interior of Si, tqPology of which is relative one on L(fi,ci).

   PROOE If KS l¢, there exists a vector xo in KS. As well known, we can
find a unique vector pti in L(fi, ci), which gives the minimum distance between

xo and L(f?, ci). Let io be a number such that

                  llxo-yi.ll = m,'n[]xo-Yill･ (4. 11)

The relation xo-yi. Jrm L(f?., ci..) - pti. is also well known. The vector yi. belongs

to K(L', cJ', ri> for all ]' (pt io), because if yi. e K(.fi, ci, rj), then, since xo eK

(.fli, ci, ri), txo+(1-t)Ni, must be in L(.fli, cj) for some t (O<t<1), which

contradicts to (4.11). Hence if yi. et K(.fli, ci, rti)i for sorne ]' (iyk io), then pti, Eiii

L(.fli, ci), so

              IIxoHYi,1] =min {llxo'Yl]: YEL(.fli, ci)} (4.12)

aiad xo-yi,±L(.lfli, ci)-yi,, then by Propositlon 6,

                  L(fie, Cie)-Nie ":: L(]fli', Ci) ww Yio, (4･ 13)

thus
                            '
                      L( fie･ Cio) :== L< .fli･ C)'), (4･ 14)

wkich contradicts to the primary condition.

   Hence yi. e K(]li, cd, rj)i for all i (ptio). Then there exists 6>O, and for all

y'

                      Ss(yi.)9K(fli, ci, rJ'), (4. 15)

which implies

            S,s(yi.) n L(fi,, ci.> g fiK(]fli, c]', ri)nL(fV., ci.) =Si.. (4. 16)

                             J"''L7'ie

Therefore (Si.>i ffe ¢. Q.E. D.

   PROPOSITION 8. if the system A is Primary and m }) 2, then KS l! ip if and

only if Si･, ffkip and SI･, #¢ for at least two indices ii and i2 (ii :ik i2).

   PROOF. :l>) If Kb vdeip, then there exists xo Eff KS . By Proposition 7, we can

assttme that SI･,#¢ for some ii. If 8(>O> is taken as Se(xo)9KS (S,(xo) is a

sphere with center xo and radius s), we put



                  LJ･ -- {zt: 2t =t(y - xo)+xo, tlii} 1} (4. l7)

for any y such that ]lxo -y]i == s. AccordiRgly, there exist yo and leo (gAii) such

that

                     Ly.nL(flie,, Ck,) == {Zt.} 7k¢ (4･ 18>

and t<to implies

                        2t E71iUkM--, L(]C)lr, ck). (4. 19)

If (4.19> is false ((4.18) is clear as S,(xo) spans R" and the system is primary),

then yoEL(fk, ch) for some k, hence yo es K(.Lle, ck, rk>i and

                    yoGK<.fh, cfe, rfe)i -D KS, (4. 20)

which contradicts to the fact Se(xo) g KS.

   We can assume zt,{iiiK(.ft,ci,ri)i. Hence, for some 6>O, S6(zt,>gK(.ICIii, cii,

rii)i. Putting xo'm 6'xo+(1-o"')zt. where 5' = 51(21Ixo-zt.II), we get

                                                   6           min {llx'o-Ml :yG L( .flLi., ck., rk.)} ;$!IIx'o - zt. Il <7. (4･ 21>

On the other hand,

           min{Ilx'o-yl] : y Eiii L(]Cli!, cii, rii)}

                      lli min{1lat.-yli-Hxo-zt.II}>fi-g==3 (4. 22)

Hence, if we choose x'o for xo in Prop. 7, then io, which gives the minimum

distance, can not be ii. Thus we get another side Si2.

<:=) Put A={zt: zt == txo+(l-t)yo, O<t<1, xo EEg S},}, where yoeSI･,, and

AgKb (which is easy as 2t E K(fli, cii, rii), 2t EK(fi2, ci2, ri2), and zt Ei n
                                                             i74tii,i2
K(]Zi, ci, rf)) and A is n-dimensional by Proposition 3. Hence K is also n-dimen-

sional and KS 7A¢ by Proposition 4. Q.E.D.

   We can determine by the above propositlon whether the interior of K is

empty or not. The following proposition gives a light to the case when the

interior of Kb is empty.

   PROPOSITION 9. I17e the system is Primary and K ==¢, then, Kb =: ¢ if and

only if for any i Si -- ¢ or the relation ri is oPen.

   PROOF. >> If Si # ¢ and L( fb, ci) g K( fi, ci, ri), then di #Si = Si n L( fle,

ci) g Si fi K(A, ci, ri) =: Kbn L(fi, ci) g Kb.

c=) In general, Eb fl E==¢ and Ei =¢ implies E=¢ <Eb is a boundary of E>.
Hence, with K)=:K(L', ci, zi) and Li -- L(fi, ci),
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     K9 fl Kb =: il} fl MKC, fi Kb= Kb n-KZ -o Ki n(o K}>c== o Ki fi u KZ

                                   J I j k
            =9. Kj fi WKZ=:w<?Ki)nK(k, ck, rcle) (4.23)

            == U(nK)･) A Lk == U(Sk fi Kle n Lk)=¢, <4. 24)              kl' k
since Sh n Kfe = n K>'nLfe nKk ==¢ if Sh==¢ or rk is open. Thus Kb =¢. Q. E. D.
             ]'iLle
   Let us introduce a notion of degree of system. If A is a primary systern, the

deg}'ee of a system A, denoted by deg<A), is defined by

           deg(A> ==( 02t l.i lllli. t-,,ipg'. and Kb ,de ¢, (4' 25)

Summing up the above propositions, we can determine the degree of system by

redttclng the problem to its subsystems.

   THEOREM 4.1 Let A be a Prima2y system and m>2. Then,

(1) if deg(Ai,)=2 and deg(Ai,)==2 for some ii, i2(ii vG i2), then deg(A) = 2,

(2) otherzvi.se, if deg(Ai,) ;l) 1 and ri, is closed for some ii, then deg(A) == 1,

(3) otherwise, deg(A) == O.

   EXAMPLE 4.1 Let us again consider the Leontief model, and let us treat

some concrete valttes such as

                  P-=l ss ･ (4. 26)
                        g r6 g 1 o o

                        115                        ---O1O                           88                        4

                        311                        ---O O 1                           88                        l6

Restrictions on xi's and ci's are6<ci, 8<c2, 2<c3, O<xi<36, O<x2<36,

and O<x3<28. Therefore, to know the existence of feasible flows, we must

examine the followlng linear inequalities and equalities;

                      755                     -g-Xlwwiil76X2-ff{i'X3-Cl =O (Al),

                           75                      1                    "'2i-Xi +-g-X2 -'g"X3 - C2 =O (A2),

                      317                    -iilT6X! nv -g-X2+-g-X3 - C3 =O (A3),



ci>6 (A4), c2>8 (A5>, c3>2 <A6), xi>O (A7), xi<36 (A8), x2>O (A9), x2

<36 <AIO), x3>O (All), and x3<28 (A12>.

To make the system primary, we remove <Al>, (A2), aRd <A3), and we call the

resulting system A:

     A: gxl-86x2--gx3 >6 (Bl),

                   -txi+-ll-x2--g-x3>s (B2),

                   -gx, -lx, +Zx, > 2                                          (B3),
                          88                    16

              xi > O (B4), xi < 36 (B5>, x2 > O (B6), x2 < 36 (B7),

              x3>O <B8), and x3<28 (B9>.

The first subsystem Ai is written as (the formula in brackets means the i th

formula giving the i th subsystem)

     Ai : ' [xi = -iil- (6+fl61x2+-ll-x3>]

                    44x2 - 45x3 > 544,

                     -43x2 + 166x3 > 736,

                    480 > 5x2 + 10x3 > -96,

                    36>x2>O,

whlch is a two-dimensional case, and we can easily clerive that deg(Ai) == 2.

   For the second subsystem A2:

     A2 : [xi =l': -4(8--ll-x2 -i- gx3)]

                     44x2-45x3>544, -

                    -25x2 + 43x3 > -128,

                    136 > 7x2 - 5x3 > 64,

                    36>x2>O,

                    128 > x3 > O,

the degree is also 2. }Ience deg (A) = 2 by the theorem, and feasible flows exist.

One of the soiutions is amiddle poiRt between a point in Sj･, (it!¢) and a point in

Si･,(7!ip). In this casee=<32 32 16 8 10 4)T is one of the solutions. In a

higher dimensionai case, we caR also use the theorem to determine the degree
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of system by induction, but the kumber of subsystems increases in a geomeeric

progresslon at each step of induction.

        5. BRANCH CHARACTERISTICS AND FEASIBLE FLOWS

   In tkis section, we formulate additional characteristics of braRches and nodes,

which correspond to tlie notioR of demand curve aRd supply curve in economics.

The 2-dlmensional Euclldean space R2 is ordered by

            (xi, yi)<(x2, y2) if and only if xi$x2 and yi$y2. (5. 1)
                                                        '
The subset l" of R2 is called a comPlete increasing curve if it is a maximal totally-

ordered subset of ' (R2, <>. Then, r is a continuous increasing curve, which

crosses each of the lines witlt siope =1 6xactly once. The inverse l'* is defined

by

                , l-"=:{<x", x):'(x, x") EIi r}, (5.2)

which is also a complete increasing curve. Let ri (j'--1, 2, ..., m) be complete

increasing curves, and K and K* be subspaces of RM orthogonally complemeRtary

to each other, and let Ji and I,"･ be domalns of 4andr:-,ie.,

                   b={x: (x, y) e4 for some y} (5. 3)

and

                   I,*･ ={x': (x", y*) E l"l･ for some y'}. (5. 4)

Let I and I* be rectangles similarly defined from I)' aRd I:･ (instead of f bJ and

I$,) as in chap. 3. The following theorem by Rockafeller [3] is well known,

which has been proved by lri [1] partially when Us are closed.

    THEOREM (Rockafeller) J)" there are vectors xEii Ifi K and x"EI"nK",

there are x*e == <x:･") E K* and xo = (x,O･> EEK such that

                   (xf, x,"･O) E!I l"J' for 1' nv- 1, 2, ..., m. (5. 5)

    The pair <xo, x*O) which satisfies the theorem is called an equilibrium soiution.

This theorem provides an interpretation to our network of multi-commodity fiows.

Each branch of a multi-terminal graph is assigned such a rJ" as its characteristic

curve. Choose R-i({O}) as the subspace K and PT(R(N)) as the subspace K",

and the theorem is rewritten into the foilowing form:

    THEOREM LILf there are a feasible flow and a feasible tension on a multi-

terminal .ataPh, there exist a comPatible flow (gOb,) and a comPatible tension (vOb,)



such that (g"Ob,, qOb,)'s are on the comPlete increaing curves rj's (1'--1, 2, ..., m>.

   As we have shown in chap. 4., we have a method to determine whether the

conditions of the theorem are satisfied or not. Thus we have a method to know

the existence of equilibrium solutions.

   At the conclusion, iet us give some examples which are instructive to show

the relation between a multi-terminal graph with characteristic curves and econo-

mic networks.

                                   n! n2((iii)

[ill]

o

Fig.5-1 A simple networl<, where bi is

    consumers and b2 is suppliers.

   EXAMPLE 5.1 Let us consider the

== {bi, b2}, N== {ni}, a+(bi) =0ww(b2)=ip, and

(O 1> and P-= (1 O), so P= (-1 1>. The

&+g2 =Oand the tension v is compatible

cteris£ic curves are shown in (a) and (b>

<-oo, oo), h== [O, oo>, and f5 --(-oo,

only if & == g2 and OgS gi. The tension v

-rp2. Clearly such a g" and such an o exist

solution exists. Indeed, with l' K = {(8, -rp>

no) of ri and r2 gives an equilibrium solution,

and v=:(-no rpo)T. If we interpret the branch

suppliers, and the node ni as a market,

a commodity, and the tension rpi (i =1, 2)

input and output commodities, the vector

presents prices on each market. Fig. 5-3

textbooks of economics.

   EXAMPLE 5.2 The network showR iR Fig.
intermediate sectors exist. It is an important poiRt

ter of an intermediator is also represented by the c

Such a characteristic curve plays twofold roles in

Fi

    .rz                        r2

     gle[o co)                         g2e[e ee)
                         n2e(-ca co)     nze(-co co)

                                g2
                  e･
                   , (b)        (&)

 Fig. 5-2 Characteristic curves of bi and b2.

simple case shown in Fig. 5-1, where B

   O-(bi) == O+(b2) ={ni}. We have P+=

  fiow 6 is compatible if and only if -

  if and only if vi + rp2 = O. The chara-

of Fig. 5-2, and thus Ii == (O, oo), Il nv-

oo). The flow g= (6i 82)T ls feasible if and

 = (vi v2)T is feaible if and only if m :::

' aRd by the coroilary, the equilibrium

  : <8, rp)Er}, the intersecting point (go,

       which is written asg=:(eo sCo)T

     bi as consumers, the branch b2 as

the flow g"i (i-un1, 2) as the quantity of

  as the difference between the prices of

  gGR(N) is such that PT(C) ==o re-

  is a well-known figure appearing in

5-4 represents tke case that

 of our theory that the charac-

haracteristic curve of a branch.

the network: the first is that



      Multi-Termlnal Graphs and Equillbrium Problem of Flows and Tenslons 63

                                   (iil)

                   ,,, [iiEllll[{ii)l (!il<Ei]N(ziisfEii'iSE}'i

Fig.5-3 Reversal of axis n Fig.5-4 The case that thein- Fig.5-5 A supplier b3 pro-
    results in a demand termediate sector b2 duces two ldnds of
    curve. exists. goods jointly.
it works as a sort of supply curve when considered from the side of consumers,

and the second is ehat it works as a sort of demand curve, wheR considered from

the side of suppliers.

   EXAMPLE 5.3 The preceding examples are single-commodity cases. On the

other hand, a simple networ}< showR in Fig. 5-5 is a multi-commodity case. The

supplier b3 produces two kinds of goods jointly. Tke supply curve at a market ni

is dependent on the characteristic curve r2 of another consumer b2 which is a

pecuiiar phenomenon in the multi-commodity case.
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