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Embedding Paths and Circuits into the Hypercube
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The importance of the Boolean #n-dimensional hypercube as a basis for the
architecture of future highly parallel computers is now widely recognized among
the computer architects. It is very important to know how to map communication
and computation trees on the hypercube in order to minimize the communication
overhead during parallel computations. This problem seems to be rather difficult,
but it is possible to solve it for some special kinds of trees. Here we will consider
the simplest kind of tree, the path. The hypercube is a Hamiltonian graph and
there are many ways how to construct its Hamiltonian paths or circuits. In this
paper, several new algorithms for constructing the Hamiltonian paths and circuits
in the #n-dimensional Boolean hypercube under given constraints are presented.
Qur main result can be stated as follows: Given a path p, 2”-1in length, with end
vertices # and v and with two inner vertices x and » such that the distance between
u# and x is odd and the distance between v and y is even, it is possible to embed
this path into an #n-cube so that the vertices x and v become neighbors of # in
the n-cube and the distance between v and y becomes two. An analogous result
is proved for another path, defined in the same way, except that the distance
between # and x is also even. Since the end vertices of embedded paths are neigh-
bors in the hypercube, these results have corollaries on embedding Hamiltonian
circuits, Another corollary of the main result is that the balanced 3-quasistar with

2" vertices is a spanning tree of the n-cube.

1. Introduetion

Among the proposed architectures for parallel computers, those based
on the Boolean n-dimensional hypercube (usually called only hypercube or,
when the dimensionality is important, z-cube) are considered to be the most
promising. The n-cube is a graph with 27 vertices labelled 0, 1,..., 2"-1
and with an edge joining two vertices whenever their binary representations
differ in a single coordinate. Hypercube multiprocessors are the first highly
parallel computers produced commercially and by them, researchers have been
given a real possibility to experiment with parallel programming. In con-
trast to this technological progress, mathematical theories of the methods
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how to exploit effectively this massive parallelism are far from well deve-
loped. One of the most crucial problems arising on all levels of hypercube
architectures is that of the optimal mapping the tree structures into the
hypercube. Its difficulty is given by the high regularity of hypercube on
the one hand and by the arbitrary irregularity of general trees on the other
hand. Especially, the characterization of spanning trees of hypercubes is
important. But this problem is one of those still unsolved problems. Ref.
1 contains a comprehensive survey of the state of art in this field and a
detailed bibliography.

The most simple trees are paths. A hypercube is a Hamiltonian graph,
hence its Hamiltonian path is at the same time its simple spanning tree.
If the end vertices of a Hamiltonian path are adjacent vertices in the hyper-
cube, the path becomes a Hamiltonian circuit. Problems of embedding paths
and circuits into the hypercube under various constraints and conditions
are interesting in themselves. But more importantly, they arise naturally
when we solve embedding problems for more complicated trees. Embedding
a balanced #-quasistar into the n-cube can serve as a good example. The
n-quasistar is a graph homeomorphic to a star K(1,#). A graph is balanced
if it has 2X % vertices and there exists a 2-coloring of its vertices such that
k vertices are colored with one color and % vertices are colored with the
other color. It was conjectured® that any balanced n-quasistar with 2" ver-
tices is embeddable into the z-cube, but the proof was given only for n=
3, 4, 5. Solving this problem for any # leads to a series of path embedd-
ing problems.

Very few results on embedding paths have been published until now
(see, e.g. Ref. 2). Here, we present several new results on embedding Hami-
Itonian paths and circuits. The relations between paths and other trees will
be illustrated by a case of balanced 3-quasistar. Its embeddability into the
#n-cube appears to be a corollary of one of our theorems.

2. Definitions and terminology

G=(V, E) is a general graph with vertices V=V(G) and edges E=E(G).
Edge <u, v> is an edge joining vertices » and v of G. A graph H isa sub-
graph of G if V(H)SV(G) and E(H)CE(G). If VIH=V(G), H is a spanning
subgraph of G. A mneighbor of vertex u€VI(G) is any v€V(G) such that
<u, v>€E(G). nblyv) will denote the set of all the neighbors of v in G. The
degree of a vertex vEV(G), deg(v), is the number of its neighbors in the
graph G, hence deg(v)=|nb(v)|. 4G is the degree of the graph G, defined
as max{deg(v); v=V{(G)}.
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The path of length m with end vertices u# and v, p<lu, v: m>, is a
graph with m-+1 vertices wu=uwo, u1,..., wm=v and for all i€{l,...,m},
vertex u,_; is joined by an edge with vertex u; (hence deglu) =deg(v)=1
and the degree of the remaining vertices is 2). If m=1, we write simply
<u, v>; an edge of a graph can be considered to be a path with unit
length. Path p<lu, %, y,...,v: m> is a path p<u, v: m> with the vertices
x, ¥,... between u and v in this order. If we join the end vertices of a
path by an edge, we get a circuit. Our notation for circuits is compatible
with that for paths. For example, p<lu, x, »,..., v: m>U<p, u>=c<
u, %, V,..,v: m+1>, ¢lu: m> specifies that one of vertices of the circuit
is u#, ¢<m> denotes just a circuit with length m, and ¢c<lw, x, v: m> and
c<v, u, x: m> are equivalent specifications.

The path of G is a path which is a subgraph of graph G. A graph G is
said to be conmected if there is at least ome path between any two vertices
of G. The Hamiltonian path of G is any path of G which is a spanning
subgraph of G. hp<u, v: G> denotes a Hamiltonian path of graph G with
end vertices u, v, hp<u, x, y,..,v: G> is hp<u, v: G> passing through
the vertices x, v,... in this order. If the vertices #, v in hp<lu, v: G> are
neighbors in G, the graph hp<u, v: G>U<u, v> is called a Hamiltonian
circuit of G, he<G>. If the order of vertices along the Hamiltonian circuit
is important, we can write again, for example, hc<u, v, %,..,:G>.

A distance, diste (u, v), between any two vertices #, v of a connected graph
G is the length of the shortest path between # and v». Since there are two
distances between any two vertices along the circuit, the value of distc
(4, v), where ¢ is a circuit, is a set of two values. If p=hp<ot, w,.., v :
G> is a Hamiltonian path of G such that distp (u, w)=distc(n, w) (p connects
vertices # and w in the shortest possible way), we use notation p=hp<u—
wy.., v G>.

2-Coloring of vertices of graph G is an assignment of 2 colors, e. g.
black and white, to the vertices in such a way that no two neighbors have
got the same color. The bipartite graph is a graph for which there exists a
2-coloring. 2-Coloring means that the set of vertices V can be partitioned into
two subsets V1 and V: in such a way that every edge of the graph joins Vi1 with
Ve If every vertex of Vi is joined with every vertex of Ve the bipartite
graph is complete. K(m, n) denotes a complete bipartite graph with |[Vi[=
m and | V2| =n. Graph K(, ») is called @ star S.. A Dbipartite graph is
balanced whenever |V,|=|V:. Hence, if G is a balanced graph, |V(G)| is
even. If |Vi] 55 |[Ve|, the graph is imbalanced and the imbalancement of
G, imb(G), will be defined as abs(|V:|—]Vz|).
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Two graphs are homeomorphic if they can be reduced to the same graph
by omitting some or all vertices of degree 2. For example, any two paths
are homeomorphic. The n-quasistar, R,, is a graph homeomorphic to a star
K(1, n). The n-quasistar consists of a central vertex, centfer, and n rays. Even
(odd) ray is a ray with even {odd) length. The n-quasistar is balanced if and
only if it has exactly one odd ray.

The n-dimensional Boolean hypercube @, is a graph with 2" vertices label-
led 0, 1,..,2"—1 and with an edge joining two vertices whenever their binary
representations differ in a single coordinate. There are #x2"7" edges in @y,
every vertex has » neighbors, and 4Q, is » The distance between two
vertices u, v of Q. is the Hamming distance o{u, v) between the binary
representations of # and v. If u€V(Qu), nblu)={veV(@Q,), olu, v)=1}. The
hypercube is a connected balanced bipartite graph. For u, v=V(Q.), u, v)
will be the set of all dimensions i€ {l,..,%}, in which the binary represen-
tations of u, v differ. &, ») is on the contrary the set of all dimensions,
in which the coordinates of # and » are the same. Hence &, v)={1,..,n}—
6(u, v) and 9u, v)=|p{u, v)|. The definition of function ¢ can be extended
to any subset of V(Qu). If VEV(@,), then &V’ )=nN {&u, v); u, v V’}. The
2-cube is usually called @ sguare. The square is isomorphic to a circuit
c<4>.

The basic property of the hypercube is its recursively defined structure.
Given any /={l,..,n}, @, can be decomposed into two copies of (n-1)-cubes
Q' and Q% in such a way that all the vertices in each copy have the
same value of the 7-th bit in their binary representation. This decomposition,
called the i-canonical decomposition, will be written: @Y1 | ;Q% 1. The indices
n-1 can be omitted if they can be understood from the context. Similarly,
7 can be omitted if it does not matter along which coordinate the decomposition
is made. Every vertex # of one subcube matches exactly one vertex # in
the other subcube. If e.g. u=V{(Q?!), we write #=u(Q? and say that % is an
image of ue V(@) in Q% plu, #)=1 and 6u, #)= {{} and there are 2%7!
edges joining vertices in one subcube with their images in the other
subcube.

The embedding of a graph G into @, is a mapping ¥ V(G)— V(Q.) such
that if <w, v>€E(G), then p¥(x), ¥(w)=1. To simplify the notation we
will identify the names of vertices of an embedded graph with the labels of
their images in the hypercube, whenever it will not lead to ambiguity.

3. Previous results

In Ref. 2, the following two basic results were proved. For the com-
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pleteness of our paper, we will repeat the proofs here using our notation.

Lemma 3.1: Let n>2, let u,v be two different vertices of Q,, and let
k=p(u,v) (mod2) be an integer such that p(u,v)<k<2—p(u, v). Then there exists
c=hc<u,v:Q ;> such that dist{u,v)={k, 2"—Fk}.

Proof: The case of #=2 is obvious. Let #> 2 and assume the lemma
holds for all »’<n. In other words, we can construct a Hamiltonian circuit

=he<u,v:Q,,> such that dist{u,v)={(k, m}, whenever k+m=2" and k=p (4, )
(mod2). Let k2, m be two integers, k+m=2" k=p(u, v)mod2).

1. o(u,v)=1 (Fig.3.1). Then %k is odd and ks#m. Let k<m and m’=m—2""1
Then m'>,0 k+m’ =2""%, and m' = p(u, v)mod2). Let @,=Q'| Q% such that
u, veV(@). Let cl=hclu,v:Q >such that distci(u,v)= {k,m'} (by induction).
Let w be a vertex of ¢l such that 1€distes(u, w), m’ —1€distcalv, w). Let 4, w
be images of u,w in Q% and let c2=hc<ldi, W:Q*>, dist:2it, w)={1,2""*—1}. Let
c=clUc2U<w, w>U<u, @ >—<u, w>—<i,W> Then c=hcu, v:Q,> with
distu, v)={k, m}.

Qt Qz Q! Q2
Wo——oW Xo——oX
uo—i—5T d we 5w d

u U

C1 c2 Cl

ce
Fig. 3.1: Hamiltonlan circuit Fig. 3.2: Hamiltonian circuit
between vertices of @, with between vertices of @5 with
Hamming distance 1 odd Hamming distance grea-

ter than 1.

2. plu,v)>1 (Fig.3.2). Let @,=Q' || @% such that ue V(@) and ve V(Q2). Let @
=p(@"), #=u(Q*?). Then % # v and ¥ =% u. Suppose k<m. Let d=p(u,»)—1 and
cl=he<u,0:Q"> with distci{u, 9)=1{d, 2" '~d}. Let ¢Z be a mirror image of
cl in Q% Since k>d and k=(d-+1)(mod2), there exists an integer ¢=>0, ¢=(k
—d—1)/2. Let x,w be two vertices of the part of ¢I with length 2 '—4 in
the distance ¢ and ¢-+1 from «. Let £,% be their images in Q2 and let c=cI
Uc2Uu<w, 2> U<w, 0>—<x,w>—<%, w>. It is easy to see that distlu,v)=
{k,m} and hence ¢ is the solution. [
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Q" Q2 Lemma 3.2: Let n>2 and let u, v be ver-

tices of @, such that olu,v) is odd. Then there
/-\ p exists p=hp<u,v:Q,>.
v Proof: The case =2 is obvious. Suppose
My o—+—0 Uy n>2.
pl P2 1. olu,v)=1. Let c=hcu,v:Q,> with di-
stlu, v)=1{1,27—1} (by Lemma 3.1). Let p=c—
<u,v>. Then p=hp<u,v:Q, >
\,/ 2. olu,v)>3. Then there exists a decom-
le Q22 position Qn___:Ql ” QZ’ QIZQII H QIZ, QZ:_.QZJ ” QZZ
Fig. 3.3: Hamiltonian path be-  Such that #€V(Q™) and veV(Q*) (Fig. 3.3). Let
tween vertices of @, with odd = (@) and uq = uu(Q%). Then ux,v and

Hamming distance. olus, v) is odd. Let pl=hp<u, ui:Q'> and
p2=hp<us, v:Q¥> (by induction). Let p=pIlup2U <wuy, us>. Then p=hp
<u,v:Q, > 1

We will need the two following corollaries of Lemma 3.1.

Corollary 8.1: Let n>2. Let u,v,2€V(@Q,), olu, v)=1. Let k be an integer
such that k= p(u, x)(mod2) and olu,x) < k2" —1—p(w,x). Then there exists a
Hamiltonian path p=hp<u,x,v:Q,> such that distylu,x)=k.

Corollary 3.2: Let n>2. Let u, vE V(Qu), 0w v)=1. Let k be an integer,
1<k<(2"~1. Then there exist a vertex x€V (Q,) and a Hamiltonian path p=
hp<lu, x, v: Qun> such that distplu, x)=k, plu, x){l, 2} and k=p(u, =x)
(mod2).

4. Embedding paths and circuits

Remark: The technique used in the case 1 of the proof of Lemma 3.1
will be applied very often in the following proofs, since the situation when
we can construct a solution in one subcube by induction and then add a Hamil-
tonian path or circuit of the other subcube, is common. This type of sol-
ution will be called the solution by induction and expansion in the following
text.

Lemma 4.1: Let n>2, and let u, v, w be three different vertices of @,
such that p(u, v) is odd, Then there exists p=hp<u—w, v: Qu>.

Proof: The case of n=2 is obvious. Let »>2 and assume the lemma
holds for all »'<n. Let M=¢{u, v, w}.

1. 7¢. Then there exists a decomposition of @, such that all three
vertices #, v, w belong to the same subcube and the solution is by induc-
tion and expansion.

2. M=¢.
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2.1. &u,w)=¢. Then &u,v)s%¢. Leticelu,v), Q.=Q' | :Q% u, vEVIQY), we
V(QY, #=u(Q? (Fig. 4.1). Let x=V(@3)Nub(@)— {v(Q?)} and £==x(Q'). Then %
#p. Let pl=hp<u—%,v:Q>, p2=hp<i—w,x:Q*> (by induction). Let p=
pIUp2U<x, 2>U<u,>—<%,u>. Then p=hpu—w,v:Q, >

2.2. n is odd and &(u, v)=¢. Then &u, w)s:p. Letice(u, w), @,=Q:Q% u,
weV(Y), veV(Q?) (Fig. 4. 2). Let xV@YNnbu)—{w} and £=x(Q%. Then
olv, £)=n—2 is odd. Let pI=hp<u—w, x:Q*> (by induction), p2=hrp<v, £:Q*>
(by Lemma 3.2). Let p=plup2U<x,%>. Then p=hpu—>w,v:Q,>.

Q! Qz

aNa

Cs 3
0 b
( < X

Fig. 4.1: Hamiltonian path p= Fig. 4.2: Hamiltonian path p=
hp<u—>w, v: Qn> when u hp<u—w, v: Qn> when u
and w are opposite vertices and v are opposite vertices
of Qn. of Qn.

Q! Q®

[
el i

C < js

Fig. 4.3: Hamiltonian path p= Fig. 4.4: Hamiltonian path p=
hp <u—w,v:Qn> when x and hp<u—w, v: @n> in a ge-
w are neighboring vertices neral case.
of Qu.

2.3, &(u, v)79, &u, w)F9, clu, v, w}=9¢. Letice(y, v), Q,=Q' Q% wu,ve
V@), weV(Q3.
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2.3.1. &lu,v)=1{) and v, w)=¢. Then u(@¥)=w (Fig. 4. 3). Let x=V(@)N
nb(u) and £=x(@%. Then x%4v. Let pI=hp<u—x,v:Q"> (by induction) and p2
=pp<w, £:Q%> (by Lemma 3.2). Let p=plUp2uU<x, £>U<u, w>—<x,u>.
Then p=hpu—-w,v:Q, >

2.3.2. |&(u,v)|>1 or slv, w)s%¢. Assume there exists at least one neighbor
x of « in Q! different from v and from w(Q') (Fig. 4.4). Let £=1x(Q%, #=u(Q?.
Then £55w. Let pI=hp<u—x,v:Q'> and p2=hp<d—-w, £:Q*> (by induction).
Let p=plup2U<x, £>U<u, #>—<x, u>. Then p=hpu—w, v:Q,>. The
case that there is no such neighbor can happen only for n=3 and the solu-
tion is trivial. [

Lemma 4.2: Let n>3, let ml, m2 be positive even integers such that ml
+m2=2"—2, and let pl and p2 be two paths pl=p<x1, x3:m1>, p2=p<x2,
xd:m2>. Then there exists an embedding of pl and p2 into Q, such that p(x1,
x2)=p(x2, x3)= p(x3, x4)=1 and o(x1, x4)=23.

Proof: The case of #=3 is easy. Let »>3 and assume the lemma holds
for all n'< n. Without loss of generality, assume mI<m2.

1. m2>2"", Then the induction and exp-
Qt Q2 ansion can be applied.
2. ml=2""1—2, m2=2""1 LetQ,=Q'| Q%

Let 21, 22, x3€V(Q") and x4 V(Q? be mapped
N 4 on vertices of @, as implied by Fig. 4.5. Let
£2=x2(Q%. Let p'=hp<x2—x1,x3:Q*>(by Lem-
x2c§>——— 35 ma 4.1) and p"=hp<x4, £2:Q*> (by Lemma
! 3.2). Then p'—<xI, x2> and p"U<x2, £2>

xlé are the required embeddings. []
\j Theorem 4.1: Let n>>2, p be a path p<ul,
v1:27—1> and u2, v2 be vertices on p such that

Fig. 4.5: Two vertex disjoint  gisty(ul, u2)>0 is even and distp(vl, v2)<2"—1 is
paths in a Qn. odd. Then there exists an embedding of p into

Q. such that olul, u2)=2 and p(vl, v2)=p(ul, vl)

Proof: The case of =2 is trivial. Let #»>>3 and assume the lemma holds
for all »'<a.

1. distylul, u2)-+distplvl, v2)=2"—1. Immediately from Corollary 3.2, since
u2=y2.

2. distpul, u2)+distplvl, v2)<2"—1. Let ml=distplul, u2), m3=distyvl, v2),
and m2=2"—1-ml—m3 (Fig. 4. 6). Then mI>0, m2>0 are even, m3>0 is odd.

2. 1. mI>2""" or m3>2""' or m2>2""". The induction and expansion can
be applied.



Embedding Paths and Circuits into the Hypercube 9

L on-
0 mi=even . me =even M3 =odd 5
ul u2 ve vl

Fig. 4.6: Path p=p<ul, u2, v2, vi:2"—1>
with disiplul, wu2) even and distp
(w1, v2)odd.

2.2. mI<2"! and m3<2""'—1. Let Q,=Q'| @ uleV(QY), and vI=ul(Q?.
Let x=V(QY) be any neighbor of #I, and £=x(Q% (Fig. 4.7). Let pIl=hp<ul,
2, x:Q"> such that distsr(ul, u2) = ml and olul, u#2) =2 (by Corollary 3.2.).
Let p2=hp<vl, v2, £:Q*> such that distrzlvl, v2)=m3 and p(vl, v2)=1 (by
Corollary 3.2.). Then p=plUp2U<x, £> is the required embedding.

2.3. mI=2""1, The construction is the same, but in this case, u2 is iden-
tical with x(Q?% (Fig. 4.8).

Ot Q2 Q!
oue x X ove X
1
Fig. 4.7: Embedding the path Fig. 4.8: Embedding the path
p=p<ul, u2, v2, vi: 2"—1> p=p<ul, u2, v2, vi: 2" —1>
with disty (ul, u2)<2""! even with distp (¢, u2)=2""! and
and distp (v1, v2)<2""1—1 odd. distpy (w1, v2)<2"1—1 odd.

2.4, m3=2""'—1. The construction is the same, but in this case, »2 is
identical with x(Q? (Fig. 4.9).

3. distplul, u2)+distp(vl, v2)>2"—1. Let ml=2"—1—distpvl, v2), m3=2"—
1—distplul, u2), and m2=2"—1—ml—m3=disty(ul, u2)-+distpvl,v2)—2"+1 (Fig.
4.10). Then mI>0, m2>0 are even and m3>0 is odd.

3.1 mI>27" or m3>2""t or m2>2""% The induction and expansion can
be applied.
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Qt Q=
QuZ X ve
u l O vl

Fig. 4.9: Embedding the path
p=p<ul, u2, v2, vi: 2#—1>
with distp (ui1, 72)<2”! even
and distp (v1, v2)=27"1—1,

: ml=even
o

3.2. m1 =2""' Then distp(ul, u2) >2"7,
distpwl, v2)=2""1—1, and m2<2" '—1. Let @,
=QYQ% vI€V(QY, and let u2, v2=V(Q? be any
two neighbors of v»Il. Let #I, y,x be images
of vl, u2, v2 in @', respectively (Fig. 4. 11).
Let pI=hp<ul—y,x:Q> (by Lemma 4. 1). Let
p2=hp<v2,u2, v1:Q%> such that distp2(v2, u2)
=m2 (by Corollary 3.1). Then p=pIUp2U<x,
v2> is the required embedding.

3.3. m3=2""'—1. Then distpul, u2)=2""1,
distplvl, v2)>2""1, and m2<2"", Let @,=Q'}|Q?%
uleV(QY, and let v1, x=V(QY) be any two ne-
ighbors of #l. Let #2,v2,y be images of x,v1,
ul in QF, respectively (Fig. 4.12). Let pI=hp

2n-

m2=even m3=0odd

O

ul

) u2 vl

Fig. 4.10: Path p=p<ul, v2, u2, vi: 2"#—1> with
distp (w1, u2)even and distp (v1, v2) odd.

Fig. 4.11: Embedding the path Fig, 4.12: Embedding the path
p=p<ul, v2, vi: 2% —1> with p=p<lul, v2, u2, vi: 2"—1>
distp (w1, u2)<2"' even and with distp (ul, u2)=2""' and

distp (v1, v@)=2%"1-1,

<ul-vl,x:Q"> (by Lemma 4.

(w2, u2)=m2 (by Corollary 3. 1).

distp (v1, v2)<2%1—1 odd.

1). Let p2=hp<u2,v2, y:Q*> such that distrz
Then p=plup2U<x, u2>U<ul, y>—<ul,

vI> is the required embedding.
3. 4. mI<2" ! and m3<2" ! and m2<2""'. Then distplul, u2)>2""* and
distplvl, v2)>2""1. Let Q,=Q'| Q% uleV(Q"), and let x=V(Q') be any neighbor
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of ul. Let pl=hp<ul, u2, x:Q*> such that
distpr{ul, u2)=m3+1 and p(ul, u2) =2 (by Corol-
lary 3.2). Let vl €V(QY) be the neighbor of
ul such that distpr{ul,vl)=1. Let £,41, v2 be
images of x, ul, v1 in Q% respectively (Fig.
4.13). Let p2=hp <al, u2, £:Q*> such that
. ) distpa(#tl, v2)=mI—1 (by Corollary 3.1). Then p
F 15;;.22.1’13:2113?;111& :ﬂ;?, Bi;h =plUp2U<x,i>U<ul,al>—<ul,vl> is the

with distp (ul, u2)>27"1 even required embedding. []

and distp (01, v2]>2""~1 odd. Lemma 4. 3: Lef #>2, and p be a path
p<ul, u2, v2, v1:27 —1> such that ml=dist(ul, u2)>0 and m3=distpvl, v2)>0
are even and ml-+m3<2"—2. Then there exists an embedding of p into @,
such that plul, u2)=pwl, v2)=2 and plul,vl)=o(ul, v2)=p(vl, u2)=1.

Proof: The case of n=2 is trivial. Let »>3 and assume the lemma holds

for all w<{a. Let m2=2"—1—ml—m3 (Fig. 4.14). Then m2>1 is odd. Without
loss of generality, assume mI>m3.

2 n . 1 .........
ml=even mzZ =odd m3 =even
O O O e]

ul u? ve vl

Fig. 4.14: Path p=p<ul, u2, 02, vi: 2%—1>
with mi=distp (!, ©2)and m3=distp
(v1, v2) even, mI+m3<2"—2,

1. mI>2""1. The induction and expansion can be applied.

2. mI=2""' Then m3<2" '—4 and m2<2"!' —3. This case can happen
only for >3 Let @,=0Q'| Q2 Let ul,v1,22,yeV(Q") be four different ver-
tices of @' such that p(vl, ul)=p(ul, v2)=p(v2, y)=1 and p(vl, y)=3 (Fig. 4. 15).
Then there exist two vertex disjoint paths pI, p2 in @', pI=p<vl,v2:m3>
and p2=p<ul, y:2® '—m3—2> (by Lemma 4. 2). Let u2=01(Q?, x=0v2(Q?,
and 7=y(Q% Let p3=hp<x, u2,7:Q%> such that distss(x, u2)=m2—1 (by Corol-
lary 3.1). Then p=pIlUp2Up3U<x,22>U<y, 7> is the required embedding.

3. mI<2"'. Then distp(ul,v2)=ml+m2 is odd. Since mI>m3, distpul,
v2)=2""141. Let @,=@QY1Q%, ulsV(Q"), and let v1,22€V(Q") be any two neigh-
bors of ul (Fig. 4. 16). Let pI=hp<ul, v2, v1:Q*> such that distpi{ul, v2)=
mI-+m2—2""" (by Corollary 3.1). Then distpi(vl, v2)=m3. Let y be the neig-
hbor of #I such that distpi{ul, y)=1 (if mI+m2=2""'+1, then y is identical
with »2). Let u2,x,7 be images of vl,ul,y in Q?, respectively. Let p2=hp
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Q! Q2
m3

Q! Q®

Fig. 4.15: Embedding the path Fig. 4.16: Embedding the path
p=p<ul, u2, v2, vi: 2%—-1> p=p<ul, u2, v2, vi: 2"—1>
with distp (ul, u2)=2%"1 and with dist, (wi, u2)<2""! even
disty (v1, v2)<2% 1 —4 even. and distp (v1, v2) even.

<x,u2,v:Q%> such that distpz(x, u2)=mI—1 (by Corollary 3. 1). Then p=pIU
p2U<ul, x>U<y,7>—<ul,v> is the required embedding. []

Lemma 4. 4: Let n>3, and let p be a path p<ul, u2, v2, v1:2"—1> such
that ml=distpul, u2)>0, and m3=disty(vl,v2)>0 are even, mI>m3 and ml+
m3=2"—2. If m352, then there exists an embedding of p into &, such that
olul, u2y=pwl, v2)=2 and olul, vI)=p(ul, v2=pwl, u2)=1. If m3=2 and ml=
2% —4, p can be embedded only in such a way that plul, u2)=plvl, v2)=2, p(ul,
vI)=1, and either o(ul, v2)=1 and plvl, u2)=3 or olul, v2)=3 and plvl, u2)=1.

Proof: For n=3, ml=4, and m3=2, the lemma holds. Let »>3.

1. m3=2,mI=2"—4. Then all the three vertices #2, v2, and vl have to
belong to one subcube @; of ©,, so the situation is the same as for n=3.

2. m3>2. For n=4, the only two
possibilities are mI=10 and m3=4 or ml
=8 and m3=6. In both the cases, there
exists an embedding with o(ul, «2)=p(v1,
v2)=2 and plul, vI)=p(ul, v2)=p(vl, u2)=

. 1. Let n>4.
1“2 2. 1. mI>2""' The induction and
expansion can be applied.
vi

2. 2. mI=2""1and m3=2""'—2. The
Fig. 4.17: Embedding the path construction is trivial by double induc-
p=p<ul, u2, v2, vi: 22—-1>
with distp (ul, u2)=2""1 and
distp (v, v2)=27"1-2, Lemma 4.5: Let n>2, and let p be a

tion and expansion (Fig. 4.17). ]
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path p<ul, u2, v2, v1:2"—1> such that distances ml=dist,(ul, u2) and m3=
disty{vl, v2) are odd, and ml+m3<2". Then there exists an embedding of p
into Qn such that olul, u2)=p(vl, v2)=plul, vI)=1.

Proof: The case of n=2 is trivial. Let #>>3 and assume the lemma holds
for all #’<n. Let m2=2"—1—ml—m3 (Fig. 4.18). Then mZ2>0is odd. Without
loss of generality, assume mI>=m3.

et .
" Mmleodd m2=odd  m3=odd o
ul UVE \;12 vl

Fig. 4.18: Path p=p<ul, u2, v2, vl: 2"—1> with
distp (ul, u2) and distp (v1, v2) odd.

1. mI>2""'. The induction and expan-

Q' Q® sion can be applied.

2. mI<2"". The construction is tri-

vial by Corollary 3.2. Let Q,=Q'1Q? ule

oug  xC oK ove V@Y, vi=ul(@?), x=V(Q") be any neighbor

T R of ul, £=xQ") (Fig. 4.19). Let pI=hp<

ul 51 wl, u2, x:Q"> such that distps{ul, u2)=ml

and o(ul, u2)=1 (by Corollary 3.2.). Let p2

=hp<vl,v2, £:Q*> such that distp=(v]l, v2)

! =m3 and o{vl, v2)=1 (by Corollary 3. 2.).

Fig. 4.19: Embedding the path Then p=pIUpZU<x,%> is the required

p=p<ul, u2, ve, vi: 2"—1> embedding. If mI=2"""'—1, the constru-

with distp (1, u2) and distp ction is the same, only #2=x. Similarly,
(v1, v2) odd.

m3=2""'—1 implies v2=%. []

Theorem 4.2: Let n=>2, and let p be a path p<ul, v1:2"—1>. Let u2,v2
be vertices of p such that mIl=distul, u2)>0 and m3=distp(vl, v2)>0 are even,
ml=>m3. Then there exists an embedding of p into Q. such that olul, u2)=
owl, v2)=2 and plul,vI)=p(ul, v2)=p(vl, u2)=1 with the only exception for n=>3,
m3 =2, and ml=2"—4, when p can be embedded only in such a way that
olul, u2)=plvl, v2)=2, o(ul,vI)=1, and either o(ul,v2)=1 and olvl, u2)=3 or o(ul,
v2)=3 and ovl, u2)=1.

Proof:

1. ml+m3<2"—2. Immediately from Lemma 4.3 and Lemma 4. 4.

2. ml+m3>2"—2. Immediately from Lemma 4.5, since any path p=p
<ul,v2,u2, v1:2"—1> with ml=distplul, u2)>0 and m3=distp(vl, v2)>0 such
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that mI and m3 are even and mI-+m3>2"—2, can be considered in the same
time to be a path p=p<ul,v2, u2, v1:2"—1> with ml'=dist,(ul, v2)=2"—1—
m3 and m3 =distp(vl, u2)=2"—~1—ml, where ml' and m3 are odd and miI'+
m3<2". [

Corollary 4.1: Let n>2, and let p be a path p<ul,vl:2"—1>. Let u2,0v2
be wvertices of p such that ml=distplul, u2)>0 and m3=disty(vl, v2)>0 are odd,
mlz=m3. Then there exists an embedding of p into @ such that olul,vl)=
oul, u2)y=po(vl, v2)=1, hence also p(ul, v2)=pvl, u2)=2, with the only exception
Jor n=>3, m3=3, and mI=2"—3, when p can be embedded so that either p(ul,
v1)=pvl, v2)=1 and olul,u2)=3 or plul, vI)=plul, u2)=1 and p(vl, v2)=3.

Because the Hamming dis tances between the end vertices of Hamiltonian
paths of @, in Theorems 4. 1 and 4. 2 were always 1, these two theorems
have the following corollaries:

Corollary 4. 2: Let n>3. Let ¢ be any circuit c<u, ul, u2:2"> such that
distances between u, ul and u2 are even (Fig. 4. 20). Then there exists an
embedding of ¢ into @, such that o(u, ul)=plu, u2)=2.

Proof: Immediately from Theorem 4. 1.

Corollary 4.3: Let n>2. Let ¢ be any circuit c¢<au, ul, u2:2"> such that
distances between u and ul are even and distances between u and u2 ave odd
(Fig. 4.21). Then there exists an embedding of ¢ into Q, such that olu, ul)=2
and olu, u2)=1.

Proof: Immediately from Theorem 4. 2.

e . . ‘-‘.‘:
Ve » K 0
u
Fig. 4.20: Circuit ¢<u, ul, u2: Fig. 4.21: Circuit ¢<lu, ul, u2:
27> with even distances bet- 27> with even distances bet-
ween #, ul and u2, ween z and #I and odd distan-

ces between u and 2.

Another corollary of Theorem 4.1 relates to the 3-quasistar. This result
is not a new one, it was proved by Havel® recently, but his proof was based
on another idea.

Corollary 4.4: Balanced 3-quasistar with 2" vertices is a spanning tree of
Q.. Moreover, it can be embedded into @, So that the end wvertices of even
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rays have Hamming distance 2 in @,.

o 8-S e Proof: Let R; be a balanced 3-quasistar
Iy with 2" vertices. Let w be its center, and 71,
w; 72,73 its two even rays and the odd ray, res-
v pectively. Let wl, w2, w3 be the end vertices
o O_yo /-/,m'//?IZ of rays »I1,72,73, respectively. Let x,y be the

P neighbors of center on the rays 72, r3 (Fig.

s 4.22.). Then the graph R;U<w2, w3>—<w,

Fig. 4.22: Embedding the 3- x> is a path pl=p<wl, w, w3, w2, x:2*—1>

quasistar. with odd distance between w and x and it can

be embedded in @, so that p(w, x)=1 (by Corollary 3.2). By removing <w2,

w3> and by adding <w, x>, we get the original quasistar. But there is

another way, how to transform R; into a path. Let p2=R;U<w2, w3>—<w,

y>. Then p2 is a path p<<wl, w, w2, w3, y:2"—1> with even distrz (wl, w2)

and odd distpz(w, y) and by Theorem 4. 1, there exists an embedding such
that o(wl, w2)=2 and plw,y)=1. [

5. Conclusions and further work

Our results did not exploit all the possibilities how to embed paths and
circuits into the hypercubes. We can strengthen the constraints on the
embeddings so that our results can be considered to be simpler cases of
more complex theorems which are to be proved vet énd can be formulated
only as conjectures now.

Conjecture 1: Let n>4, and let ¢ be a circuit c<uo, #y. ., Un-2:2"> such
that distluo, u)>1 and distlie, ttn-2)>1 are odd, and distlu;, wis)) >1 are even
Sfor all i=1,2,..,n—3. Then ¢ can be embedded in Q, so that plus, u;)=1 for
all i=1,2,..,n—2 (Fig. 5.1).

&wen

Fig. 5.1: Circuit ¢<#o, uy,.., Fig. 5.2: Circuit c<luo, #uy,..,
Ung: 2P >, un: 27>,

If proved, this conjecture has a corollary generalizing Corollary 4. 2.
Conjecture 2: Let n>>3, and let ¢ be a circuit c<uo, s, .., 1n:2" > such that
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the distances between vertices o, ty,..,uy are even. Then ¢ can be embedded
in Qn so that olu;, ui+)=2 for all i=1,2,.., n—1 and ol u,)=2 (Fig. 5. 2).

The solution of this problem seems to be a key to the proof of the con-
jecture® that a balanced n-quasistar with 2” vertices is a spanning tree of

Q?I'
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