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Two problems are dealt with : (1) Is a rearrangement of a convex function
on I = (0, a) always a convex function ?; (2) Is it possible to give conditions for
(1), if necessary?

A new concept called generators on Lebesgue space is first introduced and
the equimeasurable rearrangement ™ of a function f with respect to a generator
is defined, resulting generalization of the decreasing rearrangement f* of f. Then
the transmission function of a generator is defined, and the relation between the
convexities of functions f and f™ is studied. It is proved that f* is convex when-
ever f is convex on I. Conditions for generators are obtained which make f" convex

whenever f is convex.
1. Notations and Preliminaries

Throughout this paper, assume ¢ € (0, o), let X={0, a), &, m} be
Lebesgue measure space on I = (0, a), and denote by .# the set of all real
valued measurable functions on X. A function f on an interval K C R =
(—oo, o) is convex if and only if f satisfies the inequality

flex+ (1—a)y)<af (x)+ (1—a) fly), x, 9, € K, 0 = a=]1.
If f is a convex function on K, then K;={x: flx)<4} € K is a convex set
for each 2 € R, that is, K is an interval or empty set, and f is continuous
on any open intervals contained in K. Moreover, g is a concave function
on K if and only if —g(x) is convex on K.

Generalizing the “Stratus” of Takeuchi® and the “Family %7 of Crowe
and Zweibel,? we give the following definition:

DEFINITION 1. Assign a set B(s) € < to each s € [0, <] If a family
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of sets

Z={B(s):0<s=a)}

satisfies the following two conditions 1° and 2° then we call & a generator
on X:

1° B(s) € B(s') whenever 0 =s<s' =Za, and B{e)=1.

2° m(B(s)) = s for every 0=s=a.

Moreover, to each f € _# assign a measurable function

x=supls: v € Bldss),

where ds(t) = m({x: flx)>#}) is the distribution function of f. We call f~ the
equimeasurable rearrangement of f on X with respect to a generator & (in

short, &-rearrangement of f).

It is well known that ds{#) is a decreasing and right continuous function
of + € R and that functions f and f~ satisfy dr=ds". Such a pair of functions
g and 4 having the same distribution function is said to be equimeasurable
to each other (in symbols, g~4h). Put B(s)=(0, s), 0=s=ae. Then it follows
that

Fx)=suplt: dA>x)=Fx)

The above function f* is the well known decreasing rearrangement of f, which
is continuous from the right and decreasing on I. (See Chong and Ricel for
details. )

2. Convex Functions and #-Rearrangements

PROPOSITION 2. Let = {B(s): 0=s=a} be a generator on X. Then, &-
rearrangement f~ of f € & satisfiies the following 1° and 2°.

10 {x: f(x)>s}=Bldfls) m-a.e., hence f~~f.

20 If 0=s<s'=a, v € B(s) and x € B(s) 0 B(sf, then fx)=f(y).

Further, any functions f~ € & satisfying the above 1° and 2° coincide with
the &-rearrangement of f m-a.e.

Proof. The proof of the first paragraph is straightforward from the
definition of f* , while that of the second paragraph is not so hard and is

therefore omitted.
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PROPOSITION 3. Assume f € .# and put c=ess. inf{f(x): x € I}. Then
the following statements are true:

(1) If fis convex on I, then dr is convex on [c, o)

(i)  dr is convex on [c, o) if and only if f* and fv are convex on I,
where filx)=f*a—x) (x € I) is the increasing rearrangement of f.

Proof. Proof of (i): Suppose f is convex on I, and ¢ in the proposition is
finite. It is true, in general, that g{x) is convex on I if and only if glx)—c
is convex on I. Further, dg{t)=dg-c{t—c) on I and (g—c)*=g*—c. Therefore,
considering the function {f(x)—c}, if necessary, we may suppose without
loss of generality that f(x)=0 on I and that ¢ in the proposition is 0. Suppose
now that f(x)=0 and ¢=0. Then, there exist two non-negative convex fun-
ctions fi and f» such that f=fi+f, where f; is non-decreasing, f: is non-
increasing, and ess. inf{fi(x): x € I} =ess. inf {fo(x): x € I}=0. But then, it
follows that both ds, and dy, are convex on [0, o) since convex functions
f1 and fe are monotone. Therefore, ds{t)=dr,(t)+dr,(t) is convex on [0, oo),
which has completed the proof.

On the other hand, the statement (ii) is evident. Thus, the proof is com-
pleted.

DEFINITION 4. Let @={B(s): 0=s=a} be a generator on X. Define the

transmission function t(x) of the gemevator & by
tx)=inf{s: x € B(s), 0=<s=a)}.
It is easy to see that the transmission function #(x) satisfies

0=t(x)=a for any x&l

LEMMA 5. Assume f € # and put c=ess.inf{f(x): x € I!. If ds is con-
tinuous on [¢, o), then it is true that
Hx)=ds(f(x) for any x €I such that f(x) is finite.
Proof. 1t follows from the definition of f~ that there exists a fp € R
such that f™(x)— ¢ <ts and x € Blds(t,) for any € >0. Then, it follows from
the definition of #(x) that

Hx)Zd o) =d f(f " (x)—¢),

since dr{t) is non-increasing. Suppose now the continuity of ds on [c, o).
Then, it follows from the above inequality that
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Here, note that the assertion is clear if ds(f"(x))=0, as seen from the above
inequality. Therefore, it suffices to prove the assertion when ds(f (x) >0,
which condition yields #(x)>0.

Suppose now that 0<#(x)<ds(f"(x)), and f~(x)< f*#(x)), with contradiction.
Then, x & Blds(f*(t(x)) by the definition of f~. Hence it follows that

(1) d r{f () <tlx),

by the definition of #(x). But, since ds is continuous on [¢, o), it is true that
Hx)=ds(f*#x)), which is contradictory to (1). Thus, the assertion is true,

which has completed the proof.

THEOREM 6. Let @={B(s): 0=s=a} be a generator on X such that Bls)
€ & is concave for any 0=s=a and that the transmission function H{x) is concave
on I. Then,

Fx) is convex on I whenever f(x) is convex on I.

Moreover, it is true that

Fa)y=F*tx), x € I, with a convention f*a)=f*a-0).

Proof. First we claim that /" (x)<oo (x € I). Suppose f(x)=c0 for some x
e I, with contradiction. Then, there exists a sequence {s,} such that s,?
o and x € Bl(ds(s,)) for any natural numbers n. But, then m(B{dr(s,))=dr(s,)
-0, on our letting m—oco, which is contradictory to the assumption that
B(s) is concave for any 0=s=a.

Suppose now that f is convex. Then it follows that dr is convex and
hence continuous on (ess.inf{f{x): x € I}, ), by Proposition 3. Therefore,

it follows from Lemma 5 that

(2) Hx)=dsf(x)) for any x€l
Hence f*(t(x))=f"dsf (x))=f"(x), that is,

(3) )= f*t{x)) for any x&I.

Then, (3) vields the assertion that f™(x) is a convex function on I, since #x)
is a concave function on I and f*(x) is a non-increasing convex function on
I, by Proposition 3. Thus the proof is completed.

THEOREM 7. Let @={B(s): 0<s=a} be a generator on X such that B(s)
is concave for every 0=s=a, and denote by t(x) the iransmission function of <.



Convex Functions and ¥-Rearrangements on Intervals 5

Then, Hx) is concave on I if and only if B(s)=(0, ps] U (e—(1—p)s, a) m~a.e.
for some p & [0, 1]. Moreover, if t(x) is concave, then we can write down Hx)
as follows:

(1) If p=0, then t(x)=a—x.
(ii) If p=1, then t(x)=x.
(iii) If p540, 1, then
)= {x/p (0<x<pa)
(x—a)/(p—1) (pa=x<a).

Proof. The proof is so easy to be omitted.

THEOREM 8. Let @={B(s):0=s<a} be a generator on X. Then the foll-
owing statements (1) and (ii) are equivalent to each other.

(i) %) is convex on I whenever f(x) is convex on I.

(ii) B(s)=(0, ps] U a—(1—p)s, @) m-a.e. for some 0=p=l.

Proof. Put flx)=x. Then f(x) is a convex function on I such that /" (x)
~zx. Suppose (i), and then it results in only the following three cases:

~ a—x/p (0<x=pa)
¢l = {(x—paV(l—p) (pa<x<a)
for some 0=p=l.
C-2 f(x)=x on I
C-3 fx)=a—x on I

Then, it follows that B(s)=(0, ps] U (a—(1—p)s, a) m-a.e. for some 0=p=1,
by Proposition 2.

Further, if B(s) is defined as above, then #(x) is concave, and then, by
Theorem 7, it follows that f"(x) is convex on I whenever f(x) is convex on
I. Thus the proof is completed.
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