
      Journal of the Faculty of Engineering, Shinshu University, No. 66, l989 1
                         fitiiMJi<S}fiIe}EiYSfiEas gg66g

   Convex Functions and g-Rearrangements on Interuals

                                by

                            Yuji SAKAI*

                        (Received May 31, l989)

     Two problems are dealt with : (1) Is a rearrangement of a convex function

  on I fii! (O, a) always a convex function?; (2) Is it possible to give conditions for

  (1), if necessary?

     A new concept called generators on Lebesgue space is first introduced and

  the equimeasurable rearrangement fA of a function f with respect to a generator

  is defined, resuking generalization of the decreasing rearrangement f* of I Then

  the transmission function of a generator is defined, and the relation between the

  convexities of functions f and fA is studied, It is proved that f* is convex when-

  ever f is convex on L Conditions for generators are obtained which make fA convex

  whenever f is convex.

                 1. Notations and Preliminaries

   Throughout this paper, assurne a G (e, oo), let Xm---{(O, a), ta, m} be

Lebesgue measure space on I iEi (O, a), and denote by .ts' the set of all real

valued measurable functions on X. A function f on aR interval K c ]R imai

(-oo, oo) is convex if and only if f satisfies the inequality

        f(esx+ (i-a) y) ;$; af (x) + (1-at) fly), x, y, E K, O {$ cr $1.

If f is a convex function on K, then K2wr {x: f<x)<2} c K is a convex set

for each 2 E R that is, K2 is an intervai or empty set, and f is continuous

on any open intervals contained in K Moreover, g is a concave function

on K lf and only if -g(x) is coRvex on K.

   Generalizing the "Stratus"of Takeuchi3) and the "Family S-" of Crowe

and Zweibel,2) we give the following definition:

   DEFINITION 1. Assign a set B(s) E ue to each s ffI [e, a]. If a family
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of sets

                        y G- {B(s) : Oi!lsiS{a}

satisfies the following two eonditions 10 and 20, then we call g a ge7?eralor

on X:

   10 B(s) c B(s') whenever O;$s<s' E:$ a, and B(a)==L

   20 m(B(s)) [== s for every O$sEil a･
    Moreover, to each f E ..if' assign a measurable function

                 fA(x)ii=sup{s: x E!I B(df(s))},

where df(t) ve." m({x: f<x)>t}) is the distribution function of f. We cali f" the

equimeasurable rearrangement of f on X with resPect to a generator fY (in

short, Ee7-rearrangement of f>.

   It is weli known that df(t> i'sa decreasing and right continuous function

of t E IR and that functionsfand fA satisfy df=dfA. Such a pair of functions

g and h having the same distribution function is said to be equimeasurable

to each other (in symbols, g-h). Put B(s)=<O, s), O:Els.<,.,a. Then it follews

that

                 f"(x)=sup{t: df<t)>x}iiif"(x).

The above function f* is the well known decreasing rearrangement of f, which

is continuous from the right and decreasing on L (See Chong and Ricei) for

details. )

                 2. Convex gellnetions and EY-Rearrangements

   PROpOSITIoN 2. Let EY==' {B(s): O::lls:llla} be a generator on X. Then, {Y-

rearrangement fA of f Eil ," satisfiies the fbllowing le and 20.

   10 {x: fA(x)>s}=B(df(s)) m-a.e., hence fArs-f.

   20 Lf O$s<s'$a, y E B(s) and x E B(s') ft B(s)C, then fA(x);ElfA(y>.

   Further, any functions fA E M satis]lying the above le and 20 coincide with

the EY-rearrangement of f m-a. e.

   ProofL The proof of the first paragraph is straightforward frorn the

definition of fA,while that of the second paragraph is not so hard and is

therefore omitted.
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   PRoposllhloN 3. Assum,e f Ei " and Put c==ess. inf{f(x): xe f}. Then

the following statements are true:

    (i) ILf f is convex on I, then df is convex on [c, oo).

   <ii) df is convex on [c, oo) if and only ilf f" and f* are convex on I,

where f*(x)ii!f"(a-x) (x E I) is the increasing rearrangemenl of fZ

   Proof. Proof of <D: Suppose f is convex on I, andcin the propositioR is

finite. It is true, in general, that g(x) is convex on I if and only if g(x)-c

is convex on L Further, dg<t)=:dg-c(t-c) on I and (g-c)":= g*-c. Therefore,

consideriRg the function {f(x)-c}, if necessary, we may suppose without

loss of generality that f(x)ille on I and that c in the proposition is e. Suppose

now that f(x)lllO aRd c==O. Then, there exist two non-negative convex fun-

ctions fi and f2 such that f=fi+f2, where fi is non-decreasing, f2 is non-

increasing, and ess. inf{fi(x): x E I} ==ess. inf {f2(x): x E I} =O. But then, it

follows that both df, and df, are convex oR [O, oo) since convex functions

ft and f2 are monotone. Therefore, df(t)"df,(t)+df,(t> is convex on [O, oo),

which has completed the proof.

   On the other hand, the statement (iO is evident. Thus, the proof is com-

pleted.

   DEFINiTIoN 4. Let g= {B(s): OEEIs;$a} be a generator on X. Define the

transmission function t(x) of the generator fl9 by

                  t(x)av inf{s: x E B<s), e;;$snta}.

   It is easy to see that the transmission function t(x) satisfies

                    O{;;lt(x)giSa for any xEEiL

   LEMMA 5. Assume f E" andPut c=:ess. inf{f(x>: x E I}. ILf df is con-

tinuous on [c, cx)>, then it is true that

          t(x)zadf(f"(x)) fbr any x El such that fA(x) is .17nite.

   Proo.L It follows from the definition of f" that there exists a to E iR

such that fA<x)- s <to and x e B(df(te)) for any s >O. Then, it foilows from

the definition of t(x> that

                                '
                     t(x)Sdf(te))Edf(f"(x)-s),

since df(t) is non-increasing. Suppose now the continuity of df on [c, oo)･

Then, it follows from the above inequality that



                      t(x>i:;ldf(fA(x>), x E L

Here, note that the assertion is clear if df(f"(x)>=e, as seen from the above

inequality. Therefore, it sufllces to prove the assertion when df(f"(x)>>O,

which condition yields t(x)>e.

    Suppose now that O<t(x)<df<fA(x)), and fA(x)< f"(t(x)>, with contradiction.

Then, x G B(dfCf"(t(x))) by the definition of fA. Hence it follows that

  (1) df<f'(x))<t(x>,
by the definition of t(x). But, since df is continuous on [c, oo), it is true that

t<x)==dfif'(t<x)), which is contradictory to (i). Thus, the assertion is true,

which has completed the proo£

   THEoREM 6. Let g== <B(s>: O::SsEEa} be a grtenerator on X such that B(s)

E 9 is concave for any O$s$a and that the transmission function t(x) is concave

on L Then,
          fA(x) is convex on I whenever f(x) is convex on L

   Moreover, it is true that

          fA(x>=f'(t(x)), x Ei! I, with a convention f*<a)==f*(a-O)･

   Proof: First we claim that fA(xKoo (x E I). Suppose fA(x)== oo for some x

E I, with contradiction. Then, there exists a sequence {sn} such that snt

oo and x EmaB(df(s.)) for any natural nurnbers n. But, then m(B<df(s.)))==df<sn)

--.e, on our letting n-oo, which is contradictory to the assumption that

B(s) is concave for any O;;{s::la.

   Suppose now that f is convex. Then it follows that df is convex and

hence continuous on (ess.inf{f(x): x E I}, oo), by Proposition 3. Therefore,

it follows from Lemma 5 that

 (2) t(x)=df<f"(x)) for any xEwaL

Hence f*(t(x>) =f*(df(fA(x>)==fA(x), that is,

 (3) fA(x)=f"(t<x)) for any xEL

Then, (3) yieids the assertion that fA(x> is a convex function on I, since t(x)

is a concave function on I and f*(x) is a non-increasing convex function on

I, by Proposition 3. Thus the proof is completed.

   THEoREM Z Let fg7=={B(s>: OjiSsESa} be a generator on X such that B(s)

is concave for every Oi:$siE;la, and denote by t(x) the transmission function of fY.
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Then, l(x) is coneave on I if and only iLf B(s) =(e, Ps] U (a-(1-P)s, a) m--a.e.

.for some P E [O, 1]. Moreover, if t(x) is concave, then we can write down t(x)

as follows:

    (i) ILIC`P:=O, then t(x)=a-x.

    (ii) Ilf` P=:1, then t(x)=x.

   (iii) ILfpykO, 1, then
                   t(x)-rmIi./2.)/(,-i) lpO;g2Z').

   Proof. The proof is so easy to be omitted.

   TIffEoREM 8. Let [Y== {B(s):O$s$a) be a generator on X. Then the foll-

owing statements (i) and (ii) are equivalent to each other.

    (i) f"(x) is convex on I whenever f(x> is convex on L

    (iO B(s>=(O, Ps] U (a-<l-P>s, a> m-a.e. fbr some OiEIP$1.

   Proof. Put f(x)==x. Then f<x) is a convex function on i such that f"(x)

Nx. Suppose <i), and then it results in only the following three cases:

                                      (O<x$pa)     c-1 f"(x)- ((a.ZXp/.P)/a-p)
                                      (Pa<x<a)

for some O$P{fll.

     C-2 f"(x) =x on L
     C-3 f"(x)xa-x on L
Then, it follows that B(s) =(O, Ps] U (a-(1-P)s, a) m-a.e. for some O$P:i{1,

by Proposition 2.

   Further, if B(s) is defined as above, then t(x) is concave, and then, by

Theorem 7, it follows that f"(x) is convex on I whenever f(x) is convex on

L Thus the proof is completed.
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