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Effects of Electron-Electron Interaction
on the Magneto-Optical Rotation in Coupled Oscillators

Yuji KATO*
(Received May 24, 1993)

For a system composed of three-dimensional electron harmonic-oscillators, the
electron-electron interaction is exactly ineffective on the magneto-optical rotation. It
is exactly shown that the Frenkel exciton does not contribute to the magneto-optical
rotation and the anomalous optical rotatory dispersion at a helix-coil transition does
not occur, being different from the result of natural optical rotation. For a system
composed of electron anharmonic-oscillators, the electron-electron interaction has a
little effect on the magneto-optical rotation. The magneto-optical rotatory power in
the anharmonic oscillators is obtained for the Faraday configuration by using approx-
imation.

1. Introduction

Theories of natural optical rotation have been worked out by a number of authors
from various points of view.'"® The Faraday effect has long been studied both
experimentally and theoretically.®~*® The expressions for the Faraday rotation®?®
obtained hitherto are rather complicated in comparison with that for the natural
optical rotation. It seems that the calculations of an actual molecule by these formulae
are very difficult even by using approximations. On the other hand, the general
formula for the Faraday effect!'? derived by us is a exact and lucid expression on the
basis of the first principle in contrast with the conventional formulae. Furthermore, by
making use of our theory the effects of various interactions (for example, electron-
phonon interaction!® or electron-electron interaction'®) on the magneto-optical rota-
tion can be theoretically investigated by no use of the complicated assumptions as is
seen in the conventional calculations. When we calculate these effects on the magneto-
optical rotation in a polymer composed of similar monomers using our general
formula,'® it is not necessary for us to have the knowledge of the magneto-optical
rotatory power of those monomers. Since our theory of the magneto-optical rotation
encompasses that of the natural optical rotation, these effects can be discussed for both
phenomena from the same point of view.

Moffitt, Fitts and Kirkwood® have theoretically investigated the anomalous
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dispersion in the natural optical rotation by making use of the Frenkel exciton model
for a polymer. The Frenkel exciton originates in the electron-electron interaction. For
the magneto-optical rotation we have investigated this interaction in the previous
paper.'® It has been seen that the electron-electron interaction hardly contribute, in
general, to the magneto-optical rotation.

In the present paper, we investigate the effects of the electron-electron interaction
on the magneto-optical rotation in the system composed of coupled oscillators.

In sec. 2 we formulate the theory of the magneto-optical rotation as is shown in
the previous paper'® and in sec. 3 we show calculational procedure for the system
composed of the coupled oscillators. In sec. 4 it is proved exacﬂy for the system
composed of the three-dimensional electron harmonic-oscillators that there is no effect
of the electron-electron interaction on the magneto-optical rotation and that the Voigt
effect does not occur as far as only the first order term in the constant magnetic field
is considered. In sec. 5 we investigate the effect of the electron-electron interaction for
the anharmonic-oscillator system by similar fashion as is demonstrated in the preced-
ing section. The last section is devoted to a sammary and discussion.

2. Formulation

Formerly the general theory of the Faraday effect is developed by us'**? from the
same viewpoint as the natural optical rotation. The genaral formula for the magneto-
optical rotation is expressed in terms of a correlation function of the spatial Fourier
components of total electric currents.

Let us take the direction of the propagation of an incident monochromatic light of
angular frequency @ to be parallel to the z-axis in medium. As far as only the
lowest-order term in the wave-number of light, the magneto-optical rotational angle
#(w) of the plane of polarized light per unit path length* is expressed as'®

() =gt [ dre ™ 90 AW, O, M

where no(w) is the refractive index in the absence of a constant magnetic field and
J () and p(#) are the operators for the total electric current and the total electric
dipole moment at time ¢, respectively. The triangular brackets denote the canonical
ensemble average under the total Hamiltonian. The symbol 4(¢) is defined by

1 for t >0

6(t) =
@ {0 for t <0,

where V is the volume of the system and ¢ is the speed of light in vacuum.

* The sense of rotation is defined so that positive ¢ corresponds to counterclockwise rotation as
seen by an observer against the z direction of propagation of the incident light.
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The rotational angle ¢(w) can be represented in terms of the Fourier component
Gxw(w) of the Green function Gy, (#) in the form

21

#(0) = = 2E— (@), @
where

Go(@) = [ dte™ GO ®
with

Ga(1) = = 8O LA, (D). @

The system under consideration is a polymer composed of similar monomers in the
presence of a constant magnetic field H. The total electric current poperator 7 (¢)
and the total electric dipole moment operator p(¢) at time ¢ are

70 =28 pald) ~£ ACru(t)} ®

and

20D =;§;erm(t), ®)

respectively, where ¢ is the charge of an electron, m the mass of the electron, p:, and
ri the momentum and the co-ordinate of the jth electron in the xnth monomer,
respectively, and A (r;,) is the vector potential satisfying a relation

1ot A(rin> =H. <7)

When we take an angle ¢ between the directions of the constant magnetic field H and
the z-axis, we can assume without loss of generality that the x-, y- and z-components
of the constant magnetic field H are Hsing, 0, Hcosa, respectively. Hence the
components of A are

Ax= -—THycos a, ®
Ayzag*(xcosawzsina), )
A=Eysine a0

3. Electron-Electron Interaction in Oscillators

In the resent paper, we consider a polymer composed of similar monomers, which
are composed of oscillators of electrons in the presence of the constant magnetic field.
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The total Hamiltonian # of the system under consideration is expressed as

#=SEB {5 G =L A+ huCatn — M}
+ 5 IS5 0k — ) + 5 DI VinCrin — rin), an

n ot 7 n
{ixJ) (nxm)

(u=x92 M=XY, Z 1=123")

where the term 3! A, (um — M:)? is the potential of the jth electron oscillator in the
“

nth monomer located at Ri(Xum, Yin, Zin), va(r: — rin) the interaction between the jth
and the jth oscillators in the same wth monomer and V,,(r» — ri) is the interaction
between the 7th oscillator in the xth monomer and the jth oscillator in the mth
MONOMmer. :

By differentiating the Green function (4) with respect to time ¢ the equation for
the Green function G,y (#) is presented by making use of the Hamiltonian (11), that is

— £ 4G _ _ko:g 5+ 2l Lenwm), a2
where
Gu() = =8O LAD, 1 OD, a
Gl(D) = =8O (T2 (vin (D) = N, (O] o
and
_ eH, . —
wy=-_- (v=x,y,zand N=X, Y,Z) (15

with H, = Hsine, Hy=0, H.= H cos «. The equations for Green functions G,,(¢) and
GL,(¢) of new types appeared in eq. (12) can be obtained by similar calculations shown
in the previous paper*® and the successive procedure of the calculations for these new
Green functions creates the coupled equations for the Green functions of many various
types.

Thus a set of equations for the Green functions is written in the form

_h dGu(t) _ n Ne 5t + P h“’z () — h“’x Gzy(t)+2l L6410, U6

i d¢ i
_ J/ dGzy(l‘) ha)x _ﬁ____ei 1

2 4G G + 2022 G0, an
~24Ge® - p - (B L §<t>—<2z—1>@—1—c;5§<t>, as)

i dr

~2dGeD _ g3~ 4>(1)Z— cum-a@-»tlewn,  aw
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_hdGEW _ 4 h e o v
LT = 8y L (SIS ky (i — Y™ 8(D)

_(21_2>_7_?_, 321(t> 3220)_,_2[71' e 323@)

+———-G32“(t)+ € —GEW,  (v=x,9,2)

where N is the number of electrons in the system and

B(D = — -0 (D5 by D) = Nad™ ™, (D),
G = = 0D [TB ko Win(D) = N fon (D), O],

G = ~ -+ 0T by in (D) = N, 15D,

G = =L 0D [Tk (D) = Nod* ™ Aon (D), (O,

CED = = 20O UTT kb Win (D) = N (D) un (D), 1 (O,
G0 = -5 0OAZR{ @ - @ = (L) 5k D) — N )

+ b in() = N (B2 £ (0)} (@D,

GED = — 0O (T2 K (D) = Nad =, 1,0,

324(t> = ———6(1‘) <[222 kU{(Vant) - i:z)u_z_ (an(t) - Mn)“mz}
(1-«1)
X (puin Ué(rin(l‘) - rjn(t>)), /ly(0>:|>,
G = “'—6’(1‘) <[2222/€u{(1/m@) ~ Ni)? 72— (i (t) — Njm)* %}
(n+m)

X (Pum Vam (nw(f) - rjm(t)D)y ﬂy(O)]>

0

@D
(22)
@3
@4

@25

(26)

@n

(28)

(29)
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In order to solve these equtions it is necessary for us to have the equations for the
Green functions defined by egs. (23)-(29). By a series of calculations of these Green
functions, thus, the infinite simultaneous equations are finally obtained. It should be
noted that the Green functions GI2(#) and G¥°(¢) related to the electron-electron
interaction have appeared for the first time on only the right-hand side of eq. (20). This
implies that there is hardly effect of the electron-electron interaction on the magneto-

optical rotation.

For investigation of the magneto-optical rotatory dispersion we calculate the

simultaneous equations in the simple models (see also Appendix).
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4. Harmonic Oscillator Model

Let us consider a system composed of similar monomers, which consists of the
three-dimensional harmonic oscillators. Then, we take / =1 in the Hamiltonian (11).
By making use of this Hamiltonian, a set of equations for Green functions is found to
be

~ 2 dCeD) _ _heeg 4322 Gup, 30
~ B dCD RN gy 4 Bz () - BOx g 12t Lo, gD
_ 7? dGéyt(z‘) _ hciux Go(D) +ZT% GL(D, (32)
~RAC D) _ kg p, (33)
_RAGHD bk (3
~28G(1) Jlﬁ Ga (D), (35)

where G,,(f) (v =x, y, z) are defined by eq. (13) and GL,(¢#) now reduced to

G = =+ 8D (D b v (D, 5D, =2, 3, 2 @36

These simultaneous equations in sets of six for the Green functions in the form of
a finite chain of coupled equations can be exactly solved and the magneto-optical
rotational angle ¢(w) given by eq. (1) becomes

Hlw) = — 2r Nh*e*H cos a <<h - h2k2> <E;£_Z>2 . @D
Vi o) (ﬁw)eK Chw>2”’;§; Chs + by + kz))Z

hz 2
- (—) B2t B4 B2 — s — e — kaky)}

<2h ) Fkoks

Here it should be noted that the electron-electron interaction is inffective on the
magneto-optical rotation and, furthermore, ¢ = 0 in the case of the Voigt configuration
(e g= %). It is very important that the results are exact in regard to the electron-
electron interactions.

5. Anharmonic Oscillator Model

In order to investigate the effects of the electron-electron interaction on the
magneto-optical rotation, we consider now the system in the case of /=2 in the



Effects of Electron-Electron Interaction on the Magneto-Optical Rotation 19

Hamiltonian expressed as eq. {(11). By the similar calculations demonstrated in sec.
3, the coupled equations for the Green functions can be written for an anharmonic-
oscillator system

— B 4Gl _ sy 14l gup, (38)
_1dGy() _ 1 Ne e NO hwz Go(D — 2226, +4 22640, ()
-2 4Gl _ hox g ) +4—.—e~c;y<t>, (40)
—B4GelD) 3 gy 32 L grp, (41)
-2 det(t) 7lz kequm, (42

hdGEW) _  hé B ,
= O S (e — Y (D
—22lepw - oo +4t-Lopw
+‘—"‘G324(t) + G, (v=1x, 3, 2) )

where G,,(¢) (v=1x, y, 2) is defined by eq. (13) and

Gl() = = ODASE e win(D) = N, s O], (40
(D = — 0O ATT o wn(D) = Niod, 16 O], “5)
GH(D = = 0D [T o in(D) = Nao a8, (O], 46)
GED = = 0O USE by Win(D) = Nad on (D) Son (D), (O], D)
e =Ll + (22 x gp) (48
G (D) = =+ 0 (DS K vin(D) — NiY’, s (O, (49)

GBI = = 40D (T bl un () = Nid? = (vnt) = N}

(i%j)

X (puin U;t(rin<t> - rjn(f))), #y(O)]>; (50)
GO = =0 (ZTES (Gn(®) = Nk = m(D) — Nan)?)
(n#=m)

X (puin Voam (h’n(t) - rjm<t))), ﬂy(o)]> <51)

with a vector w(wsx, wy, w.) and a vector G2(1) (GE(1), GE(t), GEW)).
By making the approximations that the Green functions G'(#), G (¢, Gi'(#),
G¥(t), are replaced by
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B ~ (L) () + T heoslym pun) + (L) B oM} GBWD, G2
G2 (0 = (-2) (B — 22 havatin on) — hoin pin)
+ () (o) + o)
= 2 (hwa) (o) (e xin)) } GHCD, 53

30 = (L)) = T reontyimpan) + () RodXoid} GBB, G0

323<t> =~ ku((%n - z‘n)4> Guy(t), (55>

324<t) ~ <<1/zn — Nin) ; (Zbuin(v;l(rm - rjn) + va(rm — rm>>>> Gl <t> (56)
(G%i)

325(t) ~ <<Vm in)%]?(ﬁuin(%zm(rin - rjm} + an(rjm - rin>>>> IZA'(L‘), (57)
{m=n)

we can solve the simultaneous equations for G, (¢) expressed by egs. (38)-(43). Since
the result is complicated, we confine ourselves considering in the case of the direction
of the incident light to be parallel to the constant magnetic field (i.e. for the Faraday
configuration).

As the constant magnetic field is parallel to the z-axis (i.e. ¢ =10), wx = w, =0 and
wz = eH /mc. The simultaneous equations for the Fourier components of the Green
functions can be written in the form

10 Go(@) = = 222 G + 422 Gl (), (58)
~ 10 Glw) =22 ﬁ?’—zcxy(w) +4 22 Giw), 59)
~ o G =3L ¢ 32 L o500, (60)
~ 0 Gy =32 63w ~ 321 63w, D)
—ho Gh(w) = —ﬁ-ﬁi Gy @), (62)
—hoGi(w) = — =+ fy ny(w) (63
1w Gy =2 kx Guo(e) = K G (@) — 222 65w, (64)
— o GEw) =2 Ne C+2E Gole) - K GB) — B2 6B, (69

where

C= XSS b — Vi), 66)
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_ h e <p%in> 4
K, = 4“1—-;2—{[—%’— — kl{vin— Nad®)

_ #((Vin - Nin){ ZJ} vinonlrm — rin) + vn(Fim — rm)))
(i%1)
+ gz(pyi'l(V"”Z(r"" - rf"I) + an(rjm - rzn)))}>:|

(mx;z)

+ h;;: 7}, v==x, 6D

here y = <y pxin> and — {xix pyin> When v = x and y, respectively.
For approximate calculations the formula for the Faraday rotation ought to be of
the form, instead of eq. (1),

#(w) =Wio(w>f_:dte”m 0O KIAWD, O] = LAWD, 1D} 68

because of the loss of the antisymmetry property in respect to x and y by the
acceptance of the approximations. As far as we confine ourselves to considering the
linear term in the constant magnetic field H, the result becomes

Kxo"KyO 2
{hw+2 b }
/Y 4 35t (Kxo — Ky)?
2r Ninte*H 6<m> kx"‘ky{ m Cot kx— ky }
p(w) = Vmicina) (ha)? Py , (69
MCHAW) RO (hw)* + (hw)  24° - (ke + k)
2\2
+48<1}n—) Ko+ Kro)
where
Co = "I“N<§21 (/i’achXm - Xz'n>2 - k§<yin - }/in>2>>» <70>
2.
Kuo = ku{ <§;;;l> — ku<(Vin - Niﬂ>4>

_$<(Vin - Nin)[ 2 (ﬁuiu(v;z(rin - r,-,,) 4 U;l(rjn _ rin)))

J
(%)

+ S5 Gun VanCrn = rn) + Van(rim = riddD}, =2, D)

(m=n)

and the conditon k. = &, has been used. It should be noted that there is no effect of 4,
on the Faraday rotation ¢(w).
When by = ky=k, ¢(w) is written in the form
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h_2>2 _
sy 2ENIEH 24 (LY (Ko — K0
Vi cne(w) Grw)®
n* 1
hw— BW—Kxo _ Ky() Co

2 2 .
h k + 48 <%>2 (Kxo + Kyo)

X 72

(hw)*+ (hw) - 48%

For ky=k,=k and K= Ko 'E Ko, ¢(w) can be reduced to a simpler formula,

hz 3
() = — 2ENIeH 72<m> G 1
_ 2.2 3
Vrem@) ROX Gyt (o) 487 k496

o 73)

6. Summary and Discussion

We have investigated the effects of the electron-electron interaction on the
magneto-optical rotation. It has been exactly proved that the electron-electron interac-
tion is ineffective on the magneto-optical rotation for the system composed of the
electron harmonic-oscillators. This states that the Frenkel exciton does not contribute
to the magneto-optical rotation for the harmonic-oscillator system. Since the Frenkel
exciton plays the essential role for the anomalous optical rotatory dispersion in the
natural optical rotation, this conclusion also implies that the anomalous magneto-
optical rotatory dispersion at a helix-coil transition does not occur for this system in
contrast with the case of the natural optical rotatory dispersion discussed by Moffitt,
Fitts and Kirkwood.?

The calculation to prove no effect of the electron-electron interaction is very
difficult by making use of the conventional formula®!'® instead of ours.!? For the
natural optical rotation, Moffitt, Fitts and Kirkwood have presented theoretically the
anomalous dispersion by complicated calculation of a perturbation of the inter-
monomeric interaction.

It should be noted that when the constant magnetic field is perpendicular to the
direction of the propagation of light (i.e. in the case of the Voigt configuration), the
magneto-optical rotatory power is zero as far as we take account of the first order in
the constant magnetic field.

For also the system composed of electron anharmonic-oscillators we have discuss-
ed the effects of the electron-electron interaction. The formula for the magneto-optical
rotation is expressed in terms of the Fourier component of the Green function. By
calculating the equations for the Green functions, the Green function with the electron-
electron interaction does not appear in the first stage of calculation as is seen in egs.
(38)~(42). It can be considered that the electron-electron interaction has a little effect
on the magneto-optical rotation.
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In the present paper we have neglected the electron-phonon interaction. This
interaction is discussed for the natural optical rotation in the previous paper'® and
hardly contributes to the natural optical rotation.

Appendix

When a potential v,(r;) of the electron oscillator located at R;(Xin, Yin, Zin) i
of the form

Un(rin) = ;kplﬂm — M, (p=x,y,zand M =X, Y, 2D (A-D

the equations for the Green functions can also be calcutated similarly by the way as
is seen in sec. 3. Although the electron-electron interactions contribute to the
magneto-optical rotation, the coupled equations for the Green functions is more simple
as compared with the case of the anharmonic-oscillator model (/ = 2). The required
equations are found to be

1 m
?dcé;@ ’?Ne 5CH) + h“’f Gort) — hwx Co(H 3 C 0l (A-3)

1 1 m
7 dGa(t) _ hus zi 1 .

_hdG®) o]l .
: d}li =—2 : Guy(t), (A-5)

?der@ _.auyﬁ e’ AT k| yin = Yin) 5

Llogpw-cxw+3tiopon
+ o GH WD + 52 G, (v=x,,2) (A-6)

where

Gun(1) = = 8O LA, (O, 4D
Giy(f) = — %‘(9(10 <[;21 ku(%‘n(l‘) - Nin>25ign (Vin - Nz'n), #y(o)]>, (A . 8)
GED = ~ L0 IS lyin(D) = Nl D), 1O, (A-9)

GO = = 0D (S5 kb wan D) — Nop?
X Sign (Vin - Nin)/uin(t) ///i/izz(t>, ﬂy<0>]>y (A ¢ 10)
322(l‘)—-< X G2 > ) (A-1D
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GO = — 0O AT k(D — N, 15D, (A-12)

GHA(p) = — % OIS IAPROEIA

(i%J)

X GunCorCra(D) = 1n() + i(rn(D) = ra (D), m(OD,  (A-13)
GEW = =4 0D (ZTTT &l vin(t) — Nanl
(n%m)

X Puin Van(ranlt) = rin(D)) + Van(rim () — ran(O)), 15O, (A - 14)
(v=x,9, 2

It should be noted that, as has been shown in sec. 3, the electron-electron interactions
are encompassed with G2'(#) and G2 (¢) alone on the right-hand side of eq. (A - 6) in
the first stage of the calculation.
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