
Lattice Boltzmann simulation of liquid-gas

flows through solid bodies in a square duct

Masato Yoshino ∗, Yusuke Mizutani 1

Department of Mechanical Systems Engineering, Faculty of Engineering,
Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

Abstract

The lattice Boltzmann method for two-phase immiscible fluids with large density
differences proposed by Inamuro et al. [J. Comput. Phys. 198 (2004) 628–644] is
applied to the problem of liquid-gas flows through solid bodies in a square duct. A
wetting boundary condition is introduced so that partial wetting on solid surfaces
is realized to agree with Cahn theory. Using this method, we investigate the char-
acteristics of wettability in terms of dynamic contact angles between two fluids and
a solid wall. Also, we carry out simulations of liquid-gas rising flows through solid
bodies in a square duct. It is found from these simulations that the present method
can be useful for the problems of liquid-gas flows through complicated geometries.
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1 Introduction

The problems of liquid-gas two-phase flows are of great importance in many
engineering and industrial fields, such as boiling systems, nuclear reactors, and
chemical plants. In the past studies on bubble flows, for example, Grace [1] and
Bhaga and Weber [2] made experimental investigation into shapes and termi-
nal velocities of bubbles rising in viscous liquids. With the aid of remarkable
progress in computers, numerical simulations are currently used to understand
fluid dynamics in two-phase fluid flows which cannot be readily examined by
experimental approaches. In particular, the lattice Boltzmann method (LBM)
has been developed into an alternative and promising numerical scheme for
simulating multiphase fluid flows. Swift et al. [3] developed an LBM model
for multiphase fluid flows using the free-energy approach. Inamuro et al. [4]
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proposed an LBM for incompressible two-phase flows with large density dif-
ferences. It is reported in [5] that one can simulate two-phase fluid flows with
the density ratio up to 1000 using this method. On the other hand, two-phase
flows through solid bodies, such as porous media, are also interesting subjects.
Although the above-mentioned methods can be applied to such problems, it
is needed to take account of wettability on solid surfaces and to incorporate
an appropriate condition into the lattice Boltzmann scheme.

In this paper, the LBM for two-phase immiscible fluids with large density
differences [4], together with the wetting boundary condition proposed by
Briant et al. [6,7], is applied to the simulations of liquid-gas flows through
solid bodies in a square duct. The bubble behavior and velocity fields around
solid bodies are simulated under different wetting conditions.

2 Numerical Method and Conditions

2.1 Two-phase lattice Boltzmann method

Non-dimensional variables, defined by using a characteristic length L, a char-
acteristic particle speed c, a characteristic time scale t0 = L/U where U is
a characteristic flow speed, a reference order parameter φ0, and a reference
density ρ0, are used as in [4]. The fifteen-velocity model is used in the compu-
tations. The algorithm of computation is described in detail in [4].

2.2 Wetting boundary condition

Recently, Briant et al. [6,7] have proposed a wetting boundary condition which
enables the contact angle of the interface to be controlled in a way consistent
with Cahn theory [8]. In their method, the derivative of the density normal
to the wall, ∂ρ/∂n, is specified using the wetting potential which is calculated
according to a desired static contact angle, θw. In the following computations,
the specified value of ∂ρ/∂n at wall sites is substituted for the first and second
derivatives in the Chapman–Enskog type functions, f c

i and gc
i , defined in [4].

To confirm the validity of the method, we conducted preliminary calculations
of a bubble on a flat plate with different wettability. Figure 1 shows the com-
parison of calculated static contact angles with theoretical values by Young [9].
It is found that the present results are in good agreement with the theoretical
ones for 70◦ ≤ θw ≤ 110◦.

2.3 Computational domain and conditions

We apply the method to problems of a rising bubble past a solid body and of
a rising bubble through multibodies. In both problems, a rectangular domain
whose size is Lx = Ly = 0.5Lz is considered. The domain is filled with liquid
from bottom up to 0.94Lz height, and the rest of the domain is regarded as gas
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phase. The gravitational force is assumed to act in the negative z-direction.
In the first problem, a thin body of 0.050Lx × 0.85Ly × 0.38Lz is considered
and the center is positioned at (x/Lx, y/Ly, z/Lz) = (0.50, 0.50, 0.59) in
the domain. Then, a single bubble with diameter D = 0.3Lz is placed at
(x/Lx, y/Ly, z/Lz) = (0.50, 0.50, 0.20) and is released at time t = 0. In the
second problem, ten identical cubic bodies with sides of 0.075Lz are arbitrarily
arranged in the square duct. The centers of the bodies are (x/Lx, y/Ly, z/Lz)
= (0.25, 0.25, 0.38), (0.25, 0.75, 0.38), (0.75, 0.25, 0.38), (0.75, 0.75, 0.38),
(0.40, 0.50, 0.49), (0.50, 0.73, 0.55), (0.60, 0.35, 0.64), (0.23, 0.55, 0.70), (0.85,
0.63, 0.63), and (0.35, 0.23, 0.71). A single bubble with diameter D = 0.35Lz

is placed at (x/Lx, y/Ly, z/Lz) = (0.50, 0.50, 0.21) and is released at time
t = 0. The periodic boundary condition is used on the sides of the domain.
The bounce-back boundary condition is used at the top and bottom walls and
on the surface of the bodies. In addition, the wetting condition in Sec. 2.2 is
imposed on the surface of the bodies.

The conditions in the present simulations are as follows. The whole domain
is divided into a 40 × 40 × 80 cubic lattice. The parameters determining the
maximum and minimum values of the order parameter are a = 1, b = 1, and
T = 2.93 × 10−1; it follows that these values are φmax = 4.031 × 10−1 and
φmin = 2.638 × 10−1, respectively. The cut-off values of the order parameter
for obtaining the density in the interface are φ∗

L = 3.80×10−1 and φ∗
G = 2.75×

10−1. The other parameters are fixed at τf = 1, τg = 1, ε = 10−5, ρL = 50,
ρG = 1 (ρL/ρG = 50), μL = 1×10−2Δx, μG = 2×10−4Δx, κf = 0.5(Δx)2, and
κg = 1×10−5(Δx)2, where τf and τg are dimensionless single relaxation times,
ε is the convergence criterion for the pressure correction, Δx is a spacing of
the cubic lattice, ρL and ρG are the densities of liquid and gas, μL and μG are
the viscosities of liquid and gas, and κf and κg are constants determining the
width of the interface and the strength of the surface tension, respectively.
As in [10], the dimensionless parameters for these phenomena are the Bond
number B = ρLgD2/σ, the capillary number Ca = μLV0/σ, and the Reynolds
number Re = ρLV0D/μL, where g is the gravitational acceleration, σ is the
surface tension, and V0 is a superficial velocity of gas phase in the steady state.

3 Results and Discussion

3.1 A rising bubble past a solid body

First, in order to investigate dynamic contact angles, we calculate behavior of
a rising bubble past a solid body. We carry out the simulations for three static
contact angles (θw = 70◦, 90◦, and 110◦). Hereafter, let θa and θr be advancing
and receding dynamic contact angles, respectively. Figure 2 shows the time
variation of θa and θr while the whole bubble is in contact with the body. In
all cases, θa remains almost constant as time goes on. On the other hand, θr

decreases in the early stages and then approaches a certain value. Moreover, it
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Fig. 1. Comparison of calculated static
contact angles with theoretical values
by Young [9]. The dashed line repre-
sents an incline of 1.
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Fig. 2. Dynamic contact angles of rise-
ing bubble past solid body. The open
and closed symbols indicate θa and θr,
respectively.

is seen that the rate of decrease is larger as θw becomes lower. The calculated
terminal contact angles become (θa, θr) = (79.2◦, 63.8◦), (97.3◦, 68.8◦), and
(113.8◦, 94.4◦) for θw = 70◦, 90◦, and 110◦, respectively. It is found that the
relation of θr < θw < θa is obtained and that the tendency of time variation
in dynamic contact angles is similar to that in experimental results by Šikalo
et al. [11]．

Figure 3 shows the calculated results of bubble behavior and velocity fields
on y = 0.5Ly for θw = 70◦ and 110◦. Note that the bubble is apart from the
body in the initial state. In both cases, it is seen that after the collision with
the body, the bubble slides on the solid surface and then goes up to the free
surface at the top. Comparing with these cases, we can see that the shapes
of the bubble are different. In the case of θw = 70◦, the bubble spreads along
the body until it reaches the top surface. In the case of θw = 110◦, on the
other hand, the bubble tends to keep the spherical shape in spite of slight
deformation.

3.2 A rising bubble through multibodies

Next, we perform simulations of a rising bubble through multibodies in a
square duct. Figure 4 shows the calculated results of bubble behavior and
velocity fields on y = 0.37Ly for θw = 70◦ and 110◦. It is seen that the bubble
is deformed by the bodies and the velocity fields around the bubble are very
complicated in both cases. However, as for the path of the rising bubble, there
are differences between these cases. In the case of θw = 70◦, the bubble rises
in the relatively central region of the duct, while in the case of θw = 110◦,
the bubble avoids the bodies and goes up through open spaces. Thus, it is
found that differences in wettability on solid surface give quite different bubble
behavior and flow fields in such a problem.
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Fig. 3. Time evolution of bubble shape (left) and velocity vectors and density con-
tours on y = 0.5Ly (right) for (a) θw = 70◦, (b) θw = 110◦. The dimensionless
numbers are B = 3.60, Ca = 3.88 × 10−3, and Re = 372 (t∗ = tV0/D, where V0 is
the superficial velocity).
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Fig. 4. Time evolution of bubble shape (left) and velocity vectors and density con-
tours on y = 0.37Ly (right) for (a) θw = 70◦, (b) θw = 110◦. The dimensionless
numbers are B = 9.80, Ca = 4.55 × 10−3, and Re = 510 (t∗ = tV0/D, where V0 is
the superficial velocity).
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4 Concluding Remarks

The LBM for two-phase immiscible fluids with large density differences, to-
gether with the wetting boundary condition, is applied to simulations of liquid-
gas flows in a square duct including solid bodies. The bubble behavior and
complicated velocity fields around the bodies are obtained for different wet-
tabilities on the solid surface. From these results, it is found that the present
method can be a useful tool for simulating liquid-gas flows through compli-
cated geometries. Finally, the effect of dimensionless numbers such as the Bond
number on bubble behavior and velocity fields was not carefully examined in
the present work. Also, the porosity of porous structures would depend on
these phenomena. The studies of such investigations are required in the fu-
ture.
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