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SUMMARY

The lattice Boltzmann method (LBM) for a binary miscible fluid mixture is applied to problems of

transport phenomena in a three-dimensional porous structure. Boundary conditions for the particle

distribution function of a diffusing component are described in detail. Flow characteristics and

concentration profiles of diffusing species at a pore scale in the structure are obtained at various

Reynolds numbers. At high Reynolds numbers, the concentration profiles are highly affected by the

flow convection and become completely different from those at low Reynolds numbers. The Sherwood

numbers are calculated and compared in good agreement with available experimental data. The results

indicate that the present method is useful for the investigation of transport phenomena in porous

structures. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Transport phenomena in porous media are important subjects of many science and engineering

fields. The problems of flow and heat/mass transfer in porous media are found in hydraulics,

biomechanics, soil mechanics, geothermal operations, packed-bed chemical reactors, drying

processes, and so on. In the past studies, volume-averaged approaches are usually used to

obtain macroscopic properties such as pressure drops, effective thermal conductivities and

effective mass diffusivities in porous media. For fluid flows through porous media, for example,

Ergun [1] proposed the empirical equation based on experimental data to estimate pressure

drops through packed columns. As for heat transfer in porous media, on the other hand, Vafai

and Tien [2] utilized the local volume-averaging technique and investigated the boundary and

inertial effects upon flow and heat transfer in porous media. Buonanno and Carotenuto [3]

proposed a method to calculate the effective thermal conductivity of a two-phase isotropic

porous medium by means of a volume averaging technique.

However, for complex porous structures with spatially non-uniform porosity, it is essential to

investigate microscopic behaviors occurring at a pore scale in the porous structure. Particularly,

as for heat/mass transfer in porous media at high Reynolds numbers, the volume-averaged

approaches often give incorrect estimates of macroscopic properties due to the appearance of

unsteady vortices. In addition, according to [4–7], one should take account of the effect of

dispersion, which is a convection–diffusion phenomenon peculiar to fluid flows through porous

media at high Péclet numbers. Thus, it is needed to investigate the relation between heat/mass

transfer and fluid flow characteristics from the microscopic point of view.

In recent years, the lattice Boltzmann method (LBM) [8–11] has been used for many

kinds of simulations of incompressible viscous flows. The main advantages of the LBM over
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FLOW AND HEAT/MASS TRANSFER IN A 3D POROUS STRUCTURE 3

conventional Navier–Stokes codes are the simplicity of the algorithm and the flexibility for

complex boundaries [12, 13]. Hence it is particularly successful in fluid applications involving

dynamic interface and complex boundaries such as porous media. As for fluid flows through

porous media, for example, Cancelliere et al. [14] studied the permeability as a function of

solid fraction in a system of randomly positioned spheres by using the LBM. Inamuro et

al. [15, 16] carried out LB simulations of fluid flows in a three-dimensional porous structure

relatively at high Reynolds numbers, and investigated unsteady flow characteristics at a pore

scale in the structure. Zeiser et al. [17] employed the LBM and examined the pressure drops

in fixed-bed reactors, taking account of all effects of flow characteristics caused by the radial

and circumferential inhomogeneities of the packings.

On the other hand, the LBM has also been applied to problems of viscous flows with heat and

mass transfer [18–22]. Recently, Inamuro et al. [23] have proposed an LBM for a binary miscible

fluid mixture with a simpler equilibrium distribution function for the concentration than that

of [21, 22], and have demonstrated the validity and the accuracy of the method theoretically

and numerically. This LBM can also be applied to thermal fluid systems by utilizing the formal

analogy between the concentration of a diffusing component and the temperature of the fluid.

Therefore, it is considered that the proposed LBM is useful and efficient for the microscopic

investigation of transport phenomena in porous structures.

In this paper, the above-mentioned LBM for a binary miscible fluid mixture is applied

to the problems of transport phenomena in a three-dimensional porous structure in order

to investigate the characteristics of heat/mass transfer at a pore scale in the structure. Also,

boundary conditions of the particle distribution function of a diffusing component are presented

in detail.
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4 M. YOSHINO AND T. INAMURO

2. LATTICE BOLTZMANN METHOD

In the LBM, a modeled gas, which is composed of identical particles whose velocities are

restricted to a finite set of vectors, is considered and the evolution of the particle population

at each lattice site in physical spaces is computed. The main advantage of the LBM over other

numerical approaches is considered as follows.

In the case of conventional numerical methods such as the finite difference method, the

discretized macroscopic equations are directly solved. Since the macroscopic equations are

nonlinear and the solutions of nonlinear equations are highly related to boundaries, it should

be difficult to solve the equations especially if the physical system has complex geometries.

Moreover, when the incompressible Navier–Stokes set is computed by using the conventional

methods, the pressure satisfies a Poisson equation and solving this equation for the pressure

often produces numerical difficulties requiring special treatment such as iteration or relaxation

(e.g., see [24]). In the LBM, on the other hand, one takes advantage of an analogy with the

kinetic theory of gases and solves the kinetic equation which is called the lattice Boltzmann

equation. Due to the simple linear form of the differential term of kinetic equation, the

algorithm of the LBM is very simple. Therefore, it is considered that the LBM can be an

efficient and attractive tool for simulating the fluid flows including complex phenomena.

2.1. Method of Computation

The three-dimensional fifteen-velocity model [11] is used in the following calculations, where

the physical space is divided into cubic lattices. Hereafter, non-dimensional variables, which

are defined by a characteristic length L, a characteristic particle speed c, a characteristic time

scale t0 = L/U where U is a characteristic flow speed, a reference density ρ0 and a reference
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FLOW AND HEAT/MASS TRANSFER IN A 3D POROUS STRUCTURE 5

mass concentration ρσ0 are used as in [23, 25]. The fifteen-velocity model has the following

velocity vectors:

[ c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 ]

=




0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1

0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1

0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1




. (1)

In the following, we consider a mass transfer problem in a binary miscible fluid mixture under

the condition that the fraction of diffusing component, σ-species, is negligibly small. However,

it should be noted that the following analysis can be applied to heat transfer problems by

taking advantage of the formal analogy between the mass concentration of the σ-species and

the temperature of the fluid. The evolution of the particle distribution functions, fi(x, t) for

the fluid and gi(x, t) for the σ-species, with velocity ci at the point x and time t is computed

by the following equations [23]:

fi(x + ci∆x, t + ∆t) − fi(x, t) = − 1
τf

[fi(x, t) − feq
i (x, t)], (2)

gi(x + ci∆x, t + ∆t) − gi(x, t) = − 1
τg

[gi(x, t) − geq
i (x, t)], (3)

for i = 1, 2, 3, . . . , 15, where ∆x is a spacing of the cubic lattice, ∆t is a time step, feq
i and geq

i

are equilibrium distribution functions, and τf and τg are single relaxation times which are of

O(1). Note that ∆t is chosen so that the particles travel one lattice spacing during the time

step. Suitable equilibrium distribution functions of the fluid mixture are given by [11, 23]

feq
i = Eiρ

[
1 + 3ci · u +

9
2
(ci · u)2 − 3

2
u · u

]
, (4)

geq
i = Eiρσ (1 + 3ci · u) , (5)
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6 M. YOSHINO AND T. INAMURO

for i = 1, 2, 3, . . . , 15, where E1 = 2/9, E2 = E3 = · · · = E7 = 1/9 and E8 = E9 = · · · =

E15 = 1/72. The density ρ of the fluid, the flow velocity u and the mass concentration ρσ of

the σ-species are defined in terms of the particle distribution functions as follows:

ρ =
15∑

i=1

fi, (6)

u =
1
ρ

15∑
i=1

fici, (7)

ρσ =
15∑

i=1

gi, (8)

and the pressure p is related to the density ρ by

p =
1
3
ρ. (9)

2.2. Governing Equations for Macroscopic Variables

Hereafter, the summation convention is used for the subscript γ and δ (γ, δ = x, y, z). As

shown in [23, 25], applying asymptotic theory [26] to Equations (2), (3) and (6)–(9) with (4)

and (5), we find that

u′ = εu(1) + ε2u(2), p′ = ε2p(2) + ε3p(3), ρ′σ = ρ(0)
σ + ερ(1)

σ ,

with ε being a small parameter which is of the same order as ∆x, satisfy

∂u′
γ

∂xγ
= 0, (10)

St
∂u′

γ

∂t
+ u′

δ

∂u′
γ

∂xδ
= − ∂p′

∂xγ
+ ν

∂2u′
γ

∂x2
δ

, (11)

St
∂ρ′σ
∂t

+ u′
γ

∂ρ′σ
∂xγ

= Dσ
∂2ρ′σ
∂x2

γ

, (12)
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FLOW AND HEAT/MASS TRANSFER IN A 3D POROUS STRUCTURE 7

where St (= U/c) is the Strouhal number, and the kinematic viscosity ν of the fluid and the

mass diffusivity Dσ of the σ-species in the fluid are given by

ν =
1
3

(
τf − 1

2

)
∆x, (13)

Dσ =
1
3

(
τg − 1

2

)
∆x. (14)

Equations (10)–(12) correspond to the continuity equation, the Navier–Stokes equations for

the incompressible fluid and the convection–diffusion equation for the concentration of the

σ-species, respectively. Therefore, it is found that using Equations (2)–(9) one can obtain the

flow velocities, the pressure gradient for incompressible fluid and the mass concentration of

diffusing species with relative errors of O(ε2). Also, it can be shown that the mass flux of

σ-species, j′σ = εj(1)σ + ε2j(2)σ , is given by [27]

j′σ = ρ′σ(u′
σ − u′), (15)

where u′
σ = εu(1)

σ + ε2u(2)
σ is defined as follows:

u′
σ =

1
ρ′σ

15∑
i=1

gici. (16)

In the case of heat transfer problems, the temperature T , the thermal diffusivity α and heat

flux q of the fluid are given by Equations (8), (14) and (15) with (16), respectively. Moreover,

the thermal conductivity k is given by [27]

k =
1
3
τg∆x. (17)

2.3. Comparison between LBM and other numerical methods

To compare the accuracy and computing time of the LBM with those of other numerical

methods, we calculate natural convection flows in a square cavity with insulated top and

bottom walls and with side walls maintained at constant but different temperatures, as shown
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8 M. YOSHINO AND T. INAMURO

in Figure 1. It is assumed that the temperature of the left-hand side wall is higher than that

of the right-hand side wall. The Boussinesq approximation is used for the gravitational term.

In the calculations, the two-dimensional nine-velocity model [11,28] is employed for simplicity,

but the basic theory and equations are the same as those for the fifteen-velocity model except

values of the coefficients, Ei.

Figure 2 shows results for a case with Ra = 105 and Pr = 0.71 calculated on an 80 × 80

lattice, where Ra and Pr are Rayleigh and Prandtl numbers, respectively. It is seen that two

clockwise rotational regions appear in the cavity and the temperature field is distorted by

the flow. The accuracy of the result is checked by examining the mean Nusselt number Nu,

which is defined as the ratio of the actual heat flux across the cavity to the heat flux by pure

conduction without flows. The present results give Nu = 4.50, which agrees within 0.5% with

the grid-independent value of Nu = 4.52164 found by Hortmann et al. [29] using the finite

volume multigrid method. In addition, the velocity vectors and the isotherms are in good

agreement with their results. As for the computing time, the calculation requires 50 minutes

to obtain the steady-state results on a Pentium 4 processor with 1.4GHz clock speed. Next, as

an example for comparison, the same problem is calculated by a fourth-order finite difference

method (FDM) based on the SIMPLER algorithm [30]. The calculated mean Nusselt number

is Nu = 4.56 and slightly inferior to the result by the LBM. Also, the calculation by the FDM

requires 69 minutes on the above-mentioned computer, and hence it takes about 1.4 times as

much as the LBM to obtain almost the same accurate results. It should be noted that in the

case of problems with complicated geometries such as porous structures, these differences will

be more significant than in such a cavity flow problem. Thus, the LBM is more accurate and

efficient than the conventional numerical methods in complex flow problems.
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FLOW AND HEAT/MASS TRANSFER IN A 3D POROUS STRUCTURE 9

3. PROBLEM

We consider the problem of flow and mass transfer in a three-dimensional porous structure

shown in Figure 3. There exist nine identical spherical bodies in a rectangular domain whose

size is Ly = Lz = 0.945Lx. The body is made up of a lattice block. The equivalent diameter dp

of the bodies is 0.403Lx, which is determined by the same method as in [15]. Then the porosity

of the structure is 0.654. The centers of the bodies are located at (x/Lx, y/Ly, z/Lz) =

(0.21, 0.29, 0.22), (0.21, 0.74, 0.81), (0.22, 0.71, 0.22), (0.23, 0.32, 0.80), (0.48, 0.49, 0.49),

(0.75, 0.80, 0.29), (0.78, 0.23, 0.70), (0.78, 0.78, 0.70) and (0.80, 0.23, 0.29).

A periodic boundary condition with pressure difference is used at the inlet and outlet. A

slip wall condition is applied to the other sides of the domain.

4. BOUNDARY CONDITIONS

Boundary conditions in terms of the distribution function for σ-species are described. Boundary

conditions for the fluid are referred to [15].

4.1. On the Body

On the body, two types of boundary condition for σ-species are considered. One is the case

that the concentration of σ-species is given at the surface of the body, and the other is the case

that the normal mass flux of σ-species is zero at the surface. At a boundary node on the body,

let n be the unit normal vector along the line connecting the node with the center of the body.

The distribution functions of σ-species such that ci ·n > 0 are unknown at the boundary node.

When the concentration of σ-species is given at the boundary node, the unknown distribution

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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10 M. YOSHINO AND T. INAMURO

functions are assumed to be given by

gi = Ei ρ′σ for ci · n > 0, (18)

where ρ′σ is an unknown parameter. Note that the counter slip velocity [31] is set to zero so

as to maintain numerical stability at high Reynolds numbers [15]. The unknown parameter is

determined so that the concentration of σ-species at the boundary node is equal to a given

value ρσ |w. Substituting Equation (18) and the known distribution functions gi for ci ·n ≤ 0

into Equation (8), the unknown parameter ρ′σ is specified as follows:

ρ′σ =

ρσ |w −
∑

i(ci·n≤0)

gi

∑
i(ci·n>0)

Ei

. (19)

On the other hand, when the normal mass flux of σ-species is zero at the boundary node, the

unknown distribution functions are also assumed to be Equation (18). From Equations (15)

with (16), the normal mass flux jσn (= jσ · n) on the body at rest is given by

jσn =
15∑

i=1

gici · n. (20)

Hence, substituting Equation (18) and the known distribution functions gi for ci · n ≤ 0 into

Equation (20), the unknown parameter ρ′σ is specified as follows:

ρ′σ = −

∑
i(ci·n≤0)

gici · n
∑

i(ci·n>0)

Eici · n
. (21)

4.2. On the Side of Domain

On the sides of the domain except for the inlet and outlet, we assume that the normal mass

flux of σ-species is equal to zero. Thus, the above-mentioned boundary condition on the body

with zero mass flux is also applied to this case. For example, at the lattice node on the face

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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FLOW AND HEAT/MASS TRANSFER IN A 3D POROUS STRUCTURE 11

CDHG in Figure 3, we express the unknown distribution functions g3, g8, g9, g11 and g14 by

using Equation (18). The unknown parameter ρ′σ is given by Equation (21), i.e.,

ρ′σ = 6(g6 + g10 + g12 + g13 + g15). (22)

On the corner line, e.g., on the line CG, g3, g4, g8, g9, g10, g11, g14 and g15 are unknown

distribution functions. Since g10, g11, g14 and g15 are the distribution functions whose velocity

points from the outer to outer region, one can not determine these unknown distribution

functions even though the line is regarded as a common part of the two faces. In the following

calculations, all the distribution functions including known distribution functions on the CG

are set to the averaged value of the corresponding distribution functions at the two nearest

neighboring lattice nodes in the y- and z-directions. The same procedure is used on the other

three corner lines and at every vertex from C through J.

4.3. At the Inlet and Outlet

At the inlet and outlet, a periodic boundary condition with a concentration difference is

assumed. Hereafter, the subscript ‘in’ and ‘out’ represent quantities at the inlet and outlet,

respectively. It is noted that under the periodic boundary condition, the concentration

distribution of σ-species at the inlet is unknown quantity in advance. In the following

calculations, the concentration difference ∆ρσ between the inlet and outlet is specified.

The unknown distribution functions at the inlet and outlet are determined as follows. At

the inlet, the unknown distribution functions are g2, g8, g10, g11 and g13. Taking account of

the form of the equilibrium distribution functions given by Equation (5), we assume that the

unknown distribution functions at the inlet can be written by adding constant values to the
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12 M. YOSHINO AND T. INAMURO

corresponding known distribution functions at the outlet as follows:

gi|in = gi|out + Ei(K1 + cixK2 + ciyK3 + cizK4) for i = 2, 8, 10, 11, 13, (23)

where K1–K4 are constants, and cix, ciy and ciz are the x-, y- and z-components of the

velocity vector ci, respectively. Similarly, at the outlet, the unknown distribution functions

g5, g9, g12, g14 and g15 are assumed to be written by subtracting constant values from the

corresponding known distribution functions at the inlet:

gi|out = gi|in − Ei(K1 + cixK2 + ciyK3 + cizK4) for i = 5, 9, 12, 14, 15. (24)

Then the constant values K1–K4 are determined by the following conditions. First, the

concentration difference of σ-species between the inlet and outlet is equal to the given

∆ρσ (= ρσ |out − ρσ |in). By using Equation (8), we obtain

15∑
i=1

(gi|out − gi|in) = ∆ρσ. (25)

Next, considering the mass flux of σ-species at the inlet and outlet and using Equations (15)

with (16), we get

15∑
i=1

ciγ(gi|out − gi|in) = ∆ρσuγ |in for γ = x, y, z, (26)

where uγ |in is the γ-component of the flow velocity at the inlet. Therefore, we finally obtain

four equations for four unknowns. The solutions are obtained as follows:

K1 = 3
[
g1|out − g1|in + g3|out − g3|in + g4|out − g4|in

+ g6|out − g6|in + g7|out − g7|in − ∆ρσ

]
, (27)

K2 = −3 ∆ρσ ux|in, (28)

K3 = 9
[
g3|out − g3|in − g6|out + g6|in − ∆ρσ uy|in

]
, (29)

K4 = 9
[
g4|out − g4|in − g7|out + g7|in − ∆ρσ uz|in

]
. (30)
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FLOW AND HEAT/MASS TRANSFER IN A 3D POROUS STRUCTURE 13

Substituting Equations (27)–(30) into Equations (23) and (24), all the unknown distribution

functions for σ-species at the inlet and outlet are determined for the given ∆ρσ.

In addition, the unknown distribution functions on the corner lines of the inlet and outlet

except for the vertices are calculated by the combination of the above-mentioned boundary

conditions at the inlet and outlet and those on the sides of the domain. For example, on

the lines CF and GJ in Figure 3, taking account of the fact that uz = 0, we first assume

g2|in, g11|in, g13|in, g5|out, g12|out and g14|out to be written by the following equations with

constant values K5–K7:

gi|in = gi|out + Ei(K5 + cixK6 + ciyK7) for i = 2, 11, 13, (31)

gi|out = gi|in − Ei(K5 + cixK6 + ciyK7) for i = 5, 12, 14. (32)

Then, the other unknown distribution functions are expressed by using Equation (18) with

parameters ρ′σ|in and ρ′σ|out. The unknown parameters are determined by Equations (25), (26)

for γ = x, y and (21) at the inlet and outlet. Hence, we obtain five equations for five unknowns.

The solutions are given by

K5 = 3
[
g1|out − g1|in + g3|out − g3|in + g6|out

− g6|in + 2(g7|out − g7|in) − ∆ρσ

]
, (33)

K6 = −18
5

∆ρσ ux|in, (34)

K7 = 18
[
g3|out − g3|in − g6|out + g6|in − ∆ρσ uy|in

]
, (35)

ρ′σ |in =
1
6
(K5 + K6) + 6

[
g7|in + g11|out

+ g12|in + g13|out + g14|in
]
, (36)

ρ′σ|out = −1
6
(K5 − K6) + 6

[
g7|out + g11|out

+ g12|in + g13|out + g14|in
]
. (37)
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14 M. YOSHINO AND T. INAMURO

The same method is used on the other corner lines of the inlet and outlet.

5. RESULTS AND DISCUSSION

We first consider a mass transfer problem under the condition that σ-species is diffused from

only the body M whose center is located at (x/Lx, y/Ly , z/Lz) = (0.48, 0.49, 0.49) and that

the normal mass flux of σ-species is zero on the other bodies. The computational domain is

divided into 73 × 69 × 69 cubic lattice in the x-, y- and z-directions. The pressure difference

∆p between the inlet and outlet and the kinematic viscosity ν of the fluid are changed so that

the range of the Reynolds number Re = ū|indp/ν is 2.21 ≤ Re ≤ 212 where ū|in is the time-

and space-averaged velocity at the inlet after transitional flows. Here it should be noted that

in the LBM errors caused by the compressibility effect are proportional to the Mach number

squared. Hence a small value of ū|in is desirable, since the errors are proportional to (ū|in)2.

In the following calculations, we choose ∆p so that ū|in becomes less than 0.05 in all cases.

The Schmidt number Sc = ν/Dσ is fixed at 1. The concentration of σ-species on the body M

is kept at ρσ |w = 2.5. The concentration difference of σ-species between the inlet and outlet

is fixed at ∆ρσ = 0.1. The initial conditions for the macroscopic variables are ρ = 1, u = 0,

ρσ = 1 and jσ = 0 in the whole domain.

As in [15], when preliminary computations with the coarser grids (38×35×35 and 49×46×46

cubic lattices) were performed, numerical instabilities occurred and the computations did not

converge at high Reynolds numbers, though almost grid-independent results were obtained

at lower Reynolds numbers. Also, the computation time for the present calculation with

73×69×69 cubic lattices required about 100 minutes per 1,000 time steps on a single processor

of the COMPAQ Alpha Station with 667MHz clock speed.
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FLOW AND HEAT/MASS TRANSFER IN A 3D POROUS STRUCTURE 15

Figures 4–6 show the calculated results of flow velocity vectors (left) and concentration

profiles of σ-species (right) on the different planes (y/Ly = 0.36, y/Ly = 0.88 and x/Lx = 0.51)

at various Reynolds numbers (Re = 2.21, 38.1 and 212) after transitional flows. In these figures,

the length of vectors is normalized so that the ū|in has the same length in spite of different

Reynolds numbers, and the bodies in the structure are depicted by the spheres with the

equivalent diameter dp = 29.4∆x. Also, it is noted that in Figures 4 and 6 the dark gray body

in the center represents the body M from which σ-species is diffused. Figures 4 and 5 show the

results on the two different planes parallel to main flow. It is found from Figure 4 that at low

Reynolds number of Re = 2.21 the fluid flow avoids the bodies and goes through open spaces,

and the σ-species spreads in every direction mainly by the effect of diffusion. At moderate

Reynolds number of Re = 38.1, on the other hand, it is seen that the flow speed becomes

a little larger and σ-species is diffused together with fluid flow. At high Reynolds number

of Re = 212 the flow separations occur and several vortices appear behind the bodies, and

the concentration of σ-species is highly affected by the flow convection. In addition, σ-species

diffuses mainly through the central region of the domain. Figure 5 shows the calculated results

on the different plane. It should be noted that this plane has no cross-section of the body

M. At Re = 2.21 the concentration of σ-species increases almost linearly in the x-direction.

On the contrary, at Re = 212 the concentration of σ-species varies three-dimensionally and

is completely different from those at lower Reynolds numbers. Figure 6 shows the results on

the plane vertical to main flow. It is seen that at Re = 2.21 the concentration of σ-species is

almost uniform on the y–z plane, while at Re = 212 the steep concentration gradient exists

around the body M and the concentration profile becomes more complicated.

We next consider a mass transfer problem in Figure 3 under the condition that σ-species is
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diffused from all the bodies in the structure. In the following, , the concentration of σ-species

at the boundary nodes on the bodies is increased linearly from the inlet to outlet. The value of

ρσ |w at the inlet is kept at 1. The concentration difference ∆ρσ between the inlet and outlet is

fixed at 0.5. In addition, the Schmidt number is fixed at 0.6. The other conditions are the same

as the previous ones. The Sherwood number Sh between the inlet and outlet can be calculated

by the following equation:

Sh =
∆ρσ

(ρσ |w − ρ̄σm)in
Re Sc

LyLz

Stot
, (38)

where ρ̄σm is the bulk concentration of σ-species, and Stot is the total surface area of all the

bodies in the structure. Figure 7 shows the comparison of calculated results with experimental

data (Sc = 0.6) for packed beds by Petrovic and Thodos [32]. In Figure 7, the solid circle and

the cross indicate the calculated results and the experimental data, respectively. It is found

from this figure that the calculated values agree well with the experimental data at low and

high Reynolds numbers.

6. CONCLUDING REMARKS

The LBM for a binary miscible fluid mixture is applied to the problems of transport phenomena

in a three-dimensional porous structure. Flow characteristics and concentration profiles of

diffusing species are obtained at various Reynolds numbers. The Sherwood numbers are

calculated and compared with the experimental data for packed beds. The results indicate

that the calculated Sherwood numbers are in good agreement with experimental data at low

and high Reynolds numbers. Finally, it should be noted that by introducing other particle

distribution functions, one can perform the calculations for the problems of simultaneous
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heat/mass transfer and of multicomponent convection–diffusion systems in porous structures.

Therefore, the present method is useful for the investigation of transport phenomena in porous

structures.
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FIGURES

Figure 1. Geometry of natural convection example problem.

Figure 2. Calculated results for Ra = 105 and Pr = 0.71 on an 80 × 80 lattice: (a) velocity vectors;

(b) isotherms.

Figure 3. Three-dimensional porous structure.

Figure 4. Flow velocity vectors (left) and concentration profiles of σ-species (right) on the plane of

y/Ly = 0.36 at various Reynolds numbers: (a) Re = 2.21, ∆Π = 4.25× 10−1, δρσ = 1.18× 10−2; (b)

Re = 38.1, ∆Π = 6.55×10−2, δρσ = 7.63×10−2; (c) Re = 212, ∆Π = 4.56×10−2, δρσ = 1.10×10−1,

where ∆Π = ∆ρσ/(ρσ|w − ρσm|in), and δρσ is a contour interval. The dark gray body in the center is

M from which σ-species is diffused.

Figure 5. Flow velocity vectors (left) and concentration profiles of σ-species (right) on the plane of

y/Ly = 0.88 at various Reynolds numbers: (a) Re = 2.21, ∆Π = 4.25× 10−1, δρσ = 1.18× 10−2; (b)

Re = 38.1, ∆Π = 6.55×10−2, δρσ = 7.63×10−2; (c) Re = 212, ∆Π = 4.56×10−2, δρσ = 1.10×10−1,

where ∆Π = ∆ρσ/(ρσ|w − ρσm|in), and δρσ is a contour interval. This plane has no cross-section of

the body M.

Figure 6. Flow velocity vectors (left) and concentration profiles of σ-species (right) on the plane of

x/Lx = 0.51 at various Reynolds numbers: (a) Re = 2.21, ∆Π = 4.25× 10−1, δρσ = 1.18× 10−2; (b)

Re = 38.1, ∆Π = 6.55×10−2, δρσ = 7.63×10−2; (c) Re = 212, ∆Π = 4.56×10−2, δρσ = 1.10×10−1,

where ∆Π = ∆ρσ/(ρσ|w − ρσm|in), and δρσ is a contour interval. The dark gray body in the center is

M from which σ-species is diffused.

Figure 7. Comparison of calculated Sherwood numbers with experimental data: •, the present

calculated results; ×, the experimental data by Petrovic and Thodos [32].
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Figure 1. Geometry of natural convection example problem.
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(a)

(b)

Figure 2. Calculated results for Ra = 105 and Pr = 0.71 on an 80 × 80 lattice: (a) velocity vectors;

(b) isotherms.
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Figure 3. Three-dimensional porous structure.
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Figure 4. Flow velocity vectors (left) and concentration profiles of σ-species (right) on the plane of

y/Ly = 0.36 at various Reynolds numbers: (a) Re = 2.21, ∆Π = 4.25× 10−1, δρσ = 1.18× 10−2; (b)

Re = 38.1, ∆Π = 6.55×10−2, δρσ = 7.63×10−2; (c) Re = 212, ∆Π = 4.56×10−2, δρσ = 1.10×10−1,

where ∆Π = ∆ρσ/(ρσ|w − ρσm|in), and δρσ is a contour interval. The dark gray body in the center is

M from which σ-species is diffused.
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Figure 5. Flow velocity vectors (left) and concentration profiles of σ-species (right) on the plane of

y/Ly = 0.88 at various Reynolds numbers: (a) Re = 2.21, ∆Π = 4.25× 10−1, δρσ = 1.18× 10−2; (b)

Re = 38.1, ∆Π = 6.55×10−2, δρσ = 7.63×10−2; (c) Re = 212, ∆Π = 4.56×10−2, δρσ = 1.10×10−1,

where ∆Π = ∆ρσ/(ρσ|w − ρσm|in), and δρσ is a contour interval. This plane has no cross-section of

the body M.
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Figure 6. Flow velocity vectors (left) and concentration profiles of σ-species (right) on the plane of

x/Lx = 0.51 at various Reynolds numbers: (a) Re = 2.21, ∆Π = 4.25× 10−1, δρσ = 1.18× 10−2; (b)

Re = 38.1, ∆Π = 6.55×10−2, δρσ = 7.63×10−2; (c) Re = 212, ∆Π = 4.56×10−2, δρσ = 1.10×10−1,

where ∆Π = ∆ρσ/(ρσ|w − ρσm|in), and δρσ is a contour interval. The dark gray body in the center is

M from which σ-species is diffused.
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Figure 7. Comparison of calculated Sherwood numbers with experimental data: •, the present

calculated results; ×, the experimental data by Petrovic and Thodos [32].
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