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Abstract

A new numerical method for incompressible non-Newtonian fluid flows based

on the lattice Boltzmann method (LBM) is proposed. The essence of the present

method lies in the determination of shear-dependent viscosity of the fluid by using

a variable parameter related to the local shear rate. Also, the relaxation time in

the BGK collision term is kept at unity taking account of numerical stability. The

method is applied to two representative test case problems, power-law fluid flows in

a reentrant corner geometry and non-Newtonian fluid flows in a three-dimensional

porous structure. These simulations indicate that the method can be useful for

practical non-Newtonian fluid flows, such as shear-thickening (dilatant) and shear-

thinning (pseudoplastic) fluid flows.
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1 Introduction

During the last two decades, the lattice Boltzmann method (LBM) [1–5] has

been developed into an alternative and promising numerical scheme for simu-

lating viscous fluid flows and multicomponent and multiphase fluid flows (see

reviews [6–9]). In particular, the LBM has been successfully applied to vari-

ous kinds of complex flows mainly for Newtonian fluids. On the other hand,

non-Newtonian fluid flows are also of great importance in many science and

engineering applications, such as complex flows containing surfactants and/or

colloids [10,11] and plastic flows including Carbon fiber [12,13] in industrial

devices.

One of the advantages of the LBM is that the shear tensor can be computed

locally, with no need of taking space derivatives of the velocity field [14].

Hence, the LBM is considered to offer excellent possibilities for simulating

non-Newtonian fluid flows. As for previous studies, Aharonov and Rothman

[15] first introduced a lattice Boltzmann model for power-law fluids [16], which

are non-Newtonian fluids based on the power-law model. Rakotomalala et al.

[17] proposed an LB model for non-Newtonian shear-thickening and shear-

thinning fluids whose viscosity depends on local shear rate. Giraud et al.

[18,19] also developed two- and three-dimensional LB models of simple vis-

coelastic fluid flows. Then, Boek et al. [20] showed the validity of the early

model by Aharonov and Rothman in two-dimensional fundamental flow prob-

lems. Gabbanelli et al. [21] also proposed similar but another LBM for the

truncated power-law fluids by setting lower and upper cut-off values of the
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fluid viscosity. More recently, Sullivan et al. [22] have extended such LBM to

a three-dimensional model, and applied it to non-Newtonian flow problems in

a porous structure.

In most of the above-mentioned techniques, a relaxation time in the BGK

collision term is varied as a function of the shear stress at each time step to

give the correct local viscosity. Indeed, such practices of varying the relaxation

time are very common in LB modeling of turbulent flows (e.g. see Ref. [23]) as

well as of non-Newtonian fluid flows. However, the relaxation time has influ-

ence on the numerical stability of the LB scheme, that is, the LBM with the

BGK model becomes unstable for the relaxation time close to 1/2 [24,25] (cor-

responding to small viscosities). In particular, for non-Newtonian fluid flows,

the relaxation time is also related to the local shear rate, so that numerical

instability can occur despite relatively large zero-shear-rate viscosity (which

is the viscosity when the shear rate tends to zero). To avoid this difficulty, for

example, Gabbanelli et al. set the lower and upper bounds on the viscosity in

Ref. [21]. For practical use, however, it is desirable to develop a new LB model

which is applicable in a wide range of shear-dependent viscosity.

In recent years, Inamuro [26] has proposed the lattice kinetic scheme for New-

tonian viscous fluid flows as an extension scheme of the LBM. In this scheme,

the relaxation time is set to unity so that the numerical stability can be ob-

tained for relatively high Reynolds number flows; nevertheless one is able to

determine the fluid viscosity using a constant parameter appearing in the

additional term of the equilibrium distribution function. Thus, taking advan-

tage of such a heuristic approach, one can construct a new LB model for

non-Newtonian fluid flows by regarding the constant parameter as a variable

parameter dependent on the local shear rate.
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The paper is organized as follows. In Sec. 2 we give preliminary description of

non-Newtonian fluids with shear-dependent viscosity. In Sec. 3 we propose a

numerical method for incompressible non-Newtonian fluid flows based on the

LBM. In Sec. 4 we investigate the appropriateness and accuracy of the method

in a channel flow. We present numerical examples, flow in a reentrant corner

geometry and flow in a three-dimensional porous structure, in Sec. 5. In two

problems, flow characteristics and local shear rate are calculated. Also, in the

latter problem the relation between pressure drops and fluid flux is examined.

Finally, concluding remarks are given in Sec. 6.

2 Background

An incompressible viscous fluid is assumed in the present study. For a non-

Newtonian fluid, effective viscosity μ is found to vary with local shear rate ė.

Here the shear rate is related to the second invariant of the symmetric strain

rate tensor eαβ as follows:

ė =
√

eαβeαβ (1)

with

eαβ =
1

2

(
∂uβ

∂xα

+
∂uα

∂xβ

)
, (2)

where u is the fluid velocity, and subscripts α and β represent Cartesian

coordinates and the summation convention is used hereafter.

A commonly used model for non-Newtonian fluids is the power-law, or Ostwald-

de Waele model [16], and they are often referred to as power-law fluids. The

effective viscosity of the power-law fluids is given by
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μ = μ1 |ė|(n−1) = μ1 |eαβeαβ|(n−1)/2 for n > 0, (3)

where n is the power-law exponent and μ1 is a proportional constant. Note

that the case where n = 1 is a Newtonian fluid, in which μ1 corresponds to the

viscosity of the Newtonian fluid. For a fluid with n > 1, the effective viscosity

increases with shear rate, and the fluid is called shear-thickening or dilatant

fluid. For a fluid with 0 < n < 1, the effective viscosity decreases with shear

rate, and the fluid is called shear-thinning or pseudoplastic fluid.

Another model used for shear-thinning fluids is the Carreau model [27], where

the effective viscosity is expressed by

μ − μ∞
μ0 − μ∞

=
[
1 + (λė)2

](n−1)/2
for 0 < n ≤ 1, (4)

where μ0 is the zero-shear-dependent viscosity (ė → 0), μ∞ is the infinity-

shear-dependent viscosity (ė → ∞), and λ is the time constant. The value of

μ∞ is often set to zero for simplicity.

3 Numerical method

Hereafter, we use non-dimensional variables defined by a characteristic length

H, a characteristic particle speed c, a characteristic time scale t0 = H/U where

U is a characteristic flow speed, and a reference density ρ0 [9]. In the LBM,

a modeled fluid composed of identical particles whose velocities are restricted

to a finite set of N vectors ci (i = 1, 2, . . . , N) is considered. Although the

15-velocity model (N = 15) is used in the following descriptions, they can

be directly applied to other velocity models. The velocity vectors in the 15-

velocity model are given by
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[c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 −1 0 0 0 1 −1 −1 1 1 −1 −1 1

0 0 1 0 −1 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Here, we introduce the lattice kinetic scheme, which is an extension method

of the original LBM [26]. In this method, the physical space is divided into a

cubic lattice, and the evolution of macroscopic variables, fluid density ρ and

fluid velocity u, at the lattice point x and at time t are defined as follows:

ρ(x, t) =
15∑
i=1

f eq
i (x − ciΔx, t − Δt), (6)

u(x, t) =
1

ρ(x, t)

15∑
i=1

cif
eq
i (x − ciΔx, t − Δt), (7)

where Δx is a spacing of the cubic lattice, and Δt is a time step which is

chosen so that Δt = ShΔx where Sh = U/c is the Strouhal number. Also, f eq
i

is given by [5,26]

f eq
i = Eiρ

[
1 + 3ciαuα +

9

2
ciαciβuαuβ − 3

2
uαuα

+AΔx

(
∂uβ

∂xα
+

∂uα

∂xβ

)
ciαciβ

]
(8)

where E1 = 2/9, E2 = E3 = · · · = E7 = 1/9, E8 = E9 = · · · = E15 = 1/72

with α, β = x, y, z, and A is described below. The pressure p is related to the

density by

p =
1

3
ρ. (9)

In this scheme, macroscopic variables are calculated without velocity distri-

bution functions. Thus, the scheme can save memory because there is no need
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to store the velocity distribution functions. Moreover, according to Ref. [26],

test calculations show that the scheme is more stable than the original LBM.

Therefore, the lattice kinetic scheme based on the LBM is suited to develop-

ment of the new method for non-Newtonian fluid flows.

For Newtonian fluids, A in Eq. (8) is a constant parameter of O(1) which

determines a constant viscosity of the fluid. For non-Newtonian fluids, on the

other hand, A is considered to be a variable parameter which depends on the

local shear rate as follows. Applying the asymptotic theory [28,29] to Eqs. (6)

and (7) with (8), the viscosity μ of the fluid is obtained by

μ =
(

1

6
− 2

9
A
)

Δx. (10)

Hence, for power-law fluids, A is specified as follows:

A =
3

4
− 9

2
μ1ė

(n−1)(Δx)−1. (11)

The same approach can be applied to other non-Newtonian fluids. In the case

of Carreau modeled fluids, for example, A is given by

A =
3

4
− 9

2
μ∞(Δx)−1 − 9

2
(μ0 − μ∞)

[
1 + (λė)2

](n−1)/2
(Δx)−1. (12)

The first derivatives of the velocity appearing in the above equations can be

approximated by, for instance,

∂uβ

∂xα

≈ 1

10Δx

15∑
i=2

ciαuβ(x + ciΔx). (13)

Using the Taylor series expansion, it is easily found that Eq. (13) is an ap-

proximation by the second-order central difference.
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It should be noted that in the present method, boundary conditions for the

macroscopic variables are the same as those in usual computational fluid dy-

namics (CFD) methods. For example, at stationary walls, u = 0 is directly

given as the no-slip boundary condition.

4 Appropriateness and accuracy

To verify the appropriateness and accuracy of the method, we calculate non-

Newtonian fluid flows between parallel walls. Here we use the two-dimensional

nine-velocity model (N = 9) for simplicity. The nine-velocity model has the fol-

lowing velocity vectors: c1 = 0, ci = [cos (π(i − 2)/2), sin (π(i − 2)/2)] for i =

2, 3, 4, 5, and ci =
√

2[cos (π(i − 11/2)/2), sin (π(i − 11/2)/2)] for i = 6, 7, 8, 9.

The basic idea and formulation for the nine-velocity model are the same as

those for the 15-velocity model except that the values of the constants Ei are

E1 = 4/9, E2 = E3 = E4 = E5 = 1/9, and E6 = E7 = E8 = E9 = 1/36.

A steady flow between stationary parallel walls at y = ±1/2 with a constant

pressure gradient is calculated for power-law fluids. A periodic boundary con-

dition with pressure difference is used at the inlet and outlet, and a no-slip

boundary condition is employed on the walls. In the case of power-law fluids,

the exact solution of the velocity normalized by the mean flow velocity is given

by [16]

u∗
x, exa(y) =

ux, exa

ūx, exa
=

2n + 1

n + 1

[
1 − |2y|(1+1/n)

]
, (14)

where n is the power-law exponent, and the subscript ‘exa’ and the superscript

‘∗’ indicate exact solution and normalized value, respectively.
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We first carry out simulations for power-law fluids with n = 0.5, 0.75, 1.25,

and 2 by setting Δx = 1/40. The calculations are repeated until the following

convergence criterion is satisfied:

|ux(x, t) − ux(x, t − Δt)|
|ux(x, t)| < δ (15)

for all ux(x, t) ≥ 0.01 × max {|ux(x, t)|} where the maximum is searched

over the whole domain. The tolerance δ is set to 1 × 10−8 in this problem.

The parameter related to viscosity μ1 is varied between 1.1 × 10−3Δx and

2.2 × 103Δx. The pressure difference between the inlet and outlet is fixed at

Δp = 1×10−4. Fig. 1 shows the calculated velocity profiles normalized by the

mean flow velocity for various values of n. The result for a Newtonian fluid

(n = 1) is also shown. In addition, the exact solution obtained by Eq. (14) for

each n is drawn by a solid line. It is found that the results for 0.5 ≤ n ≤ 2

agree fairly well with the exact solution.

We next perform the same simulations for Δx = 1/10, 1/20, 1/40, and 1/100,

and calculate errors of the numerical results from the exact solution. The error

norm is defined by

Er =

∑
y

∣∣∣u∗
x − u∗

x, exa

∣∣∣∑
y

∣∣∣u∗
x, exa

∣∣∣ . (16)

It should be noted that the sums in Eq. (16) are taken over the common

11 positions at y = ±j/10 (j = 0, 1, 2, 3, 4, 5) in all cases. The calculated

error norm is shown in Fig. 2. The slopes indicating the convergence rate

are 1.981, 2.002, 1.998, and 1.872 for n = 0.5, 0.75, 1.25, and 2, respectively.

These mean that the method is an almost second-order scheme, though small

deviation is found in the result for n = 2. It is also found that for Δx = 1/100
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the magnitude of every error in our simulations is less than 0.1%. Moreover,

in comparison with results by Gabbanelli et al. [21], the present method is

more accurate than their method; this is especially true of the cases for the

shear-thinning fluids (n = 0.5, 0.75). In fact, at the highest lattice resolution

(Δx = 1/100), the ratios of the errors in the present work to those in Ref. [21]

are 1/18, 1/27, 1/5, and 1/10 for n = 0.5, 0.75, 1.25, and 2.0, respectively.

One reason for their larger errors would be that they set the lower and upper

cut-off values of the viscosity in order to avoid numerical instability. Thus,

their results of velocity near the walls slightly deviate from the exact solution

due to the limited range of viscosity.

5 Numerical examples

5.1 Flow in a reentrant corner geometry

In contrast to the previous unidirectional flow, we now consider a more de-

manding geometry, namely, the reentrant corner geometry presented in Fig. 3.

The domain is divided into square lattice so that L = 80Δx. Initial conditions

are ρ = 1 and u = 0 in the whole domain. The periodic boundary condition

with pressure difference is used at the inlet and outlet, and the no-slip bound-

ary condition is used on the walls. The parameter μ1 ranges from 2× 10−3Δx

to 2×10−1Δx. Other parameters are fixed at Δp = 1×10−5 and δ = 1×10−6.

In this problem, the convergence criterion defined as the relative velocity dif-

ference in Sec. 4 is applied to the vertical component as well as the horizontal

component, and the calculations are repeated until both criteria are satisfied.

Fig. 4 shows flow fields for different power-law exponents n = 0.5, 0.75, and
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1. It should be noted that all arrows are drawn by an uniform length only for

visualization of flow direction. In fact, the magnitude of fluid velocity inside

the cavity is from 30 to 80 times smaller than that of the velocity in the

channel. Steady circular flow can be seen in the cavity region for all cases, and

the core of the circulation shifts toward the channel and slightly toward the

inlet, as n becomes smaller. Next, Fig. 5 shows the contour plot of the local

magnitude of shear rate. It is seen that the shear rate is very large around the

entrant and reentrant corners, which are both singular points. Fig. 6 shows

the velocity profiles of ux/ūx on the line x/L = 0.50 and of uy/ūx on the

line y/L = 0.40. Note that the enlargement in the region of 0.60 ≤ y/L ≤ 1

is also given in the inset. In Fig. 6 (a), plug-like velocity profiles which are

characteristic of shear-thinning fluids can be seen especially for n = 0.5. In

Fig. 6 (b), there is some fluid penetration into the cavity, i.e., entrant flow in

the first half of the channel and some reentrant flow in the second half. Also,

the flow fields are not symmetric about x/L = 0.50 owing to convection effects.

These phenomena are in good agreement with the results by Gabbanelli et al.

[21].

5.2 Flow in a three-dimensional porous structure

As an example of three-dimensional problems, power-law fluid flows in a

porous structure shown in Fig. 7 is considered. There exist rectangular bod-

ies in a cubic domain with the sides of length L. The domain is divided into

64×64×64 lattice. The porosity of the structure is ε = 0.75. Initial conditions

are ρ = 1 and u = 0 in the whole domain. The periodic boundary condition

with pressure difference is assumed at the inlet and outlet. A normal periodic
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boundary condition is applied to the other sides of the domain. Also, the no-

slip boundary condition is used on the bodies. The parameters are changed in

the range of 4.4×10−3Δx ≤ μ1 ≤ 2.2×10−1Δx and 1×10−6 ≤ Δp ≤ 1×10−3

for different power-law exponents. The same convergence criterion as Eq. (15)

is used with δ = 1 × 10−6.

Fig. 8 shows the calculated velocity vectors (left) and shear rate distribution

(right) on different planes (y/L = 0.375, z/L = 0.375, and x/L = 0.375) for

Δp = 1×10−3 and n = 0.75, after transitional flows. For comparison, the same

simulation is carried out for a Newtonian fluid, and the corresponding results

are illustrated in Fig. 9. Then the Reynolds number Re = ρu0L/μ1 where

u0 is the superficial velocity becomes 0.262, which belongs to the laminar

flow region. For the non-Newtonian fluid in Fig. 8, flow characteristics near

the bodies are influenced by the local shear rate. The shear rate distribution

is much more complicated and shows very steep gradients in the direction

perpendicular to the mainstream around the bodies. For the Newtonian fluid

in Fig. 9, on the other hand, parabola-like velocity profiles appear in the pore

regions between the bodies, and flow patters around each body are found to be

symmetric. Also, the shear rate is almost uniform and quite different from the

results for the non-Newtonian fluid. Next, the relation between pressure drops

and fluid flux is examined. The fluid flux q is defined as the volumetric flow

rate divided by the void area; it follows that the flux is equal to the superficial

velocity. In the laminar flow region, the generalized Darcy’s law [16,30,31] is

valid for power-law fluids flowing through porous media:

q = K
(

Δp

L

)1/n

, (17)

where K depends on the exponent n. Hence, the validation of the method is
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achieved by observing whether logarithmic plot of q versus Δp gives a straight

line with slope of 1/n. Fig. 10 shows the relation between these quantities.

The resultant slopes (1/n) are tabulated in Table 1. It is seen that each error

is less than 2% compared to the generalized Darcy’s law. Although the present

simulations yield accurate results with Δx = 1/64, higher lattice resolution

would be required for more complicated porous structures.

6 Concluding remarks

We propose a numerical method for incompressible non-Newtonian fluid flows

based on the LBM. In the simulation of power-law fluid flows between parallel

walls, the calculated velocity profiles are in good agreement with theory for the

power-law exponents of 0.5 ≤ n ≤ 2. The error analysis is carried out and the

method is more accurate than the standard approach of making the relaxation

time a function of local shear rate. Using the present method, we simulate

power-law fluid flows in a reentrant corner geometry and in a three-dimensional

porous structure. In addition, simulations of non-Newtonian Carreau modeled

fluids are performed and similar results are obtained for such problems, though

they are not shown in the paper. Therefore, it is expected that the method will

be a promising numerical scheme for simulating non-Newtonian fluid flows in

a wide range of shear-dependent viscosities.

Finally, in the problem of flows through porous structures, the accuracy of the

method would depend on the porosity ε and the lattice spacing Δx as well as

geometric structure of porous media. The study of the accuracy concerning

these parameters remains in future work.
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Nomenclature

A parameter determining a fluid viscosity

c characteristic particle speed [m/s]

ci particle velocity

eαβ strain rate tensor

ė shear rate

Ei constants in an equilibrium distribution function

Er error norm

f eq
i equilibrium distribution function

H characteristic length [m]

K proportional coefficient related to permeability

L length of domain

n power-law exponent

N number of particle velocity vectors

p pressure

q fluid flux

Re Reynolds number, ρu0L/μ1

Sh Strouhal number, U/c

t time

t0 characteristic time scale [s]

u fluid velocity, (ux, uy) or (ux, uy, uz)

u0 superficial velocity

ūx mean flow velocity

U characteristic flow speed [m/s]

x Cartesian coordinates, (x, y) or (x, y, z)
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Greek letters

δ tolerance of convergence criterion

Δp pressure difference between inlet and outlet

Δt time step

Δx lattice spacing

ε porosity

λ time constant

μ effective viscosity

μ0 zero-shear-dependent viscosity

μ1 viscosity of a Newtonian fluid

μ∞ infinity-shear-dependent viscosity

ρ density

ρ0 reference density [kg/m3]

Subscripts

exa exact solution

α Cartesian coordinates

β Cartesian coordinates

x x-component

y y-component

Superscripts

∗ normalized

eq equilibrium
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Figure captions

Fig. 1. Velocity profiles between parallel walls for power-law fluids with

n = 0.5, 0.75, 1.25, and 2. The result for a Newtonian fluid (n = 1) is also

shown. ūx is the mean flow velocity. The solid lines represent the exact solu-

tion.

Fig. 2. Error norm of flow between parallel walls for power-law fluids. The

closed and open symbols indicate results by the present study and by Gab-

banelli et al. [21], respectively: circle, n = 0.5; square, n = 0.75; triangle,

n = 1.25; diamond, n = 2.

Fig. 3. Two-dimensional reentrant corner geometry.

Fig. 4. Flow fields in reentrant corner geometry for different power-law ex-

ponents: (a) n = 0.5; (b) n = 0.75; (c) n = 1. Note that all arrows are drawn

by an uniform length only for visualization of flow direction.

Fig. 5. Contour plots of local magnitude of shear rate for different power-law

exponents: (a) n = 0.5; (b) n = 0.75; (c) n = 1.

Fig. 6. Velocity profiles: (a) horizontal component, ux, on the line x/Lx =

0.50; (b) vertical component, uy, on the line y/Ly = 0.40. ūx is the mean flow

velocity.

Fig. 7. Three-dimensional porous structure.

Fig. 8. Velocity vectors (left) and shear rate distribution (right) of power-law

fluid with n = 0.75 for Δp = 1×10−3: (a) on y/L = 0.375; (b) on z/L = 0.375;

(c) on x/L = 0.375. u0 is the superficial velocity. Contour interval of shear
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rate is 3.05 × 10−5.

Fig. 9. Velocity vectors (left) and shear rate distribution (right) of Newto-

nian fluid for Δp = 1 × 10−3: (a) on y/L = 0.375; (b) on z/L = 0.375; (c) on

x/L = 0.375. u0 is the superficial velocity. Contour interval of shear rate is

3.05 × 10−5.

Fig. 10. Relation between pressure drops and fluid flux of flows in three-

dimensional porous structure.
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Table 1

1/n slopes obtained from Fig. 10 of flows in three-dimensional porous structure

n 1/n slope error(%)

1 1 1.000 0.001

0.85 1.176 1.157 1.639

0.75 1.333 1.308 1.898
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Fig. 1. Velocity profiles between parallel walls for power-law fluids with

n = 0.5, 0.75, 1.25, and 2. The result for a Newtonian fluid (n = 1) is also shown.

ūx is the mean flow velocity. The solid lines represent the exact solution.
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Fig. 2. Error norm of flow between parallel walls for power-law fluids. The closed

and open symbols indicate results by the present study and by Gabbanelli et al.

[21], respectively: circle, n = 0.5; square, n = 0.75; triangle, n = 1.25; diamond,

n = 2.
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Fig. 3. Two-dimensional reentrant corner geometry.
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(c)

Fig. 4. Flow fields in reentrant corner geometry for different power-law exponents:

(a) n = 0.5; (b) n = 0.75; (c) n = 1. Note that all arrows are drawn by an uniform

length only for visualization of flow direction.
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Fig. 5. Contour plots of local magnitude of shear rate for different power-law

exponents: (a) n = 0.5; (b) n = 0.75; (c) n = 1.
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Fig. 6. Velocity profiles: (a) horizontal component, ux, on the line x/Lx = 0.50;

(b) vertical component, uy, on the line y/Ly = 0.40. ūx is the mean flow velocity.
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Fig. 7. Three-dimensional porous structure.
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Fig. 8. Velocity vectors (left) and shear rate distribution (right) of power-law fluid

with n = 0.75 for Δp = 1 × 10−3: (a) on y/L = 0.375; (b) on z/L = 0.375;

(c) on x/L = 0.375. u0 is the superficial velocity. Contour interval of shear rate is

3.05 × 10−5.
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Fig. 9. Velocity vectors (left) and shear rate distribution (right) of Newtonian fluid

for Δp = 1× 10−3: (a) on y/L = 0.375; (b) on z/L = 0.375; (c) on x/L = 0.375. u0

is the superficial velocity. Contour interval of shear rate is 3.05 × 10−5.
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