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Abstract

In the present paper, a vibration isolation control problem is considered for the case
in which forced vibration disturbances that have a narrow-band frequency compo-
nent are applied to a system. Such a control problem appears in the vibration isola-
tion control of a rotating machine. Velocity feedback control including notch-filters
attenuates the effects of such narrow-band frequency disturbances, but parameter
tuning of a controller is difficult because the vibration isolation performance changes
dramatically according to slight discrepancies in the controller parameters. In such
cases, a direct frequency shaping method such as the H∞ control is suitable for
the controller design. In the present paper, a vibration isolation control problem
for a mechanical experimental system, which simulates the characteristics of a ro-
tating machine in space, is considered. A system model was created by performing
system identification experiments, and a controller was designed by a frequency
shaping method based on the H∞ control. Control experiments were carried out
successfully, and the controller was verified to provide the expected performance.

Key words: Vibration Isolation, H∞ control, Frequency Shaping, System
Identification, Subspace Method, Controller Order Reduction

1 INTRODUCTION

In the present paper, a vibration isolation control problem (Mizuno, et al.,
2007, Daley, et al., 2006, Zhu, et al., 2006, Teel, et al., 2006, Zhang, et al.,
2005) is considered that arises when forced vibration disturbances that have
a narrow-band frequency component are applied to a system. Such a con-
trol problem appears in the vibration isolation control of a rotating machine
that generates disturbances having frequencies that are synchronized with ro-
tational speed. Velocity feedback controls that include low-pass filters and
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notch-filters are effective for the attenuation of disturbances such as narrow-
band disturbances. However, parameter tuning of a controller is difficult be-
cause the vibration isolation performance changes dramatically according to
slight discrepancies in the controller parameters (Ishihara and Chida, 2003,
Chida, et al., 2004). In the first part of this paper, a number of problems in
conventional design methods that involve parameter tuning by trial and error
concerning this point are considered. In order to overcome these problems, sys-
tematic controller design methods, such as the frequency shaping technique
based on the H∞ control, are effective. A design method that employs fre-
quency shaping based on the H2 control has been proposed by Sievers, et al.
(1988), but frequency shaping based on the H∞ control is suitable because it
can shape the frequency response more directly. There are several application
results of position control using the H∞ control. However, closed-loop char-
acteristics of velocity feedback systems are considerably different from those
of position control cases, so it is important to be careful when specifying an
augmented system and frequency-dependent weighting functions for the H∞
design. In the present paper, a simple two-inertia experimental system is used
as a controlled system and a vibration isolation control problem is considered.
The control problem for the experimental system is essentially the same as
the vibration isolation problem of the rotating machine in space described in
Otsuki, et al. (2000). Therefore, it is meaningful to confirm an ameliorated
controller design procedure for the control problem. The procedures for creat-
ing a controlled system model by system identification experiments as well as
the procedures of a controller design method are described. Some experimental
and simulation results are shown, and the controller designed by the proposed
procedure was verified as providing superior vibration isolation performance.

2 VIBRATION ISOLATION CONTROL PROBLEM

2.1 Controlled System and Objectives

The controlled experimental system considered in the present paper is shown
in Fig. 1. The equation of motion of the system is described by Eqs. (1) and
(2).

J1θ̈1 + K1l
2
1(θ1 − θ2) + C1l

2
1(θ̇1 − θ̇2) + C2θ̇1 = f + d (1)

J2θ̈2 + K2l
2
2θ2 + K1l

2
1(θ2 − θ1) + C1l

2
1(θ̇2 − θ̇1) = −f (2)

where Ji is the inertia, Ki is the spring constant, Ci is the damping coefficient,
and li is the length between the spring and the rotational axis. The design
values of these parameters are shown in Table 1. Positions of inertias are
denoted by θ1(t) and θ2(t). In addition, f(t) is the control torque generated
by the upper motor and d(t) is the disturbance torque applied by the lower
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motor. The rotational angles θ1(t) − θ2(t) and θ2(t) are detected by rotary
encoders mounted at the axis of rotation. The control problem considered in
the present paper is the isolation of θ2(t) from the vibration disturbance d(t).
It is assumed that d(t) consists of a narrow-band frequency component and
is described by d(t) = A sin(6πt). Here, A is the magnitude of d(t), and the
frequency of d(t) is 3[Hz]. The control problem is essentially the same as the
vibration isolation problem for a rotating machine in space as described in
Otsuki, et al. (2000).

For this purpose, the following active damping feedback control is adopted.

f = −C(s)y2, y2 := θ̇1 − θ̇2. (3)

Here, C(s) is a feedback controller, and it is assumed that the relative velocity
y2(t) = θ̇1(t)− θ̇2(t) is a measurable output. The objectives in designing C(s)
are as follows:

Controller design objectives
1. Apply an appropriate damping effect to each vibration mode of the system.
2. Isolate the influence of the narrow-band disturbance, d(t), to J2.

2.2 Problems Encountered in Conventional Methods

Conventionally, a constant feedback or a low-pass filter is used as C(s). Ad-
ditional notch-filters facilitate the reduction of the influence of narrow-band
disturbances that are applied to the system. In order to focus on the problems
involved in these conventional methods, a number of examples are given. The
controlled plant is given by Eqs. (1) and (2), and the parameters are defined
in Table 1, except for C1 and C2, which are assumed as C1 = C2 = 0 for
simplicity. The state-space equation of the controlled system is described as
Eqs. (4) and (5) by denoting x(t)T := [θ1, θ2, θ̇1, θ̇2]. The matrices of Eqs. (4)
and (5) are shown in Appendix A:

ẋ(t) = Apx(t) + Bp




f(t)

d(t)


 (4)




y1(t)

y2(t)


 =




θ2(t)

θ̇1(t)− θ̇2(t)


 = Cpx(t) (5)
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Bode-plots of the transfer function P (s) from f to y2 are shown in Fig. 2. For
P (s), the following controllers are considered:

Controller (a), Low-pass filter:

C(s) =
α

τs + 1
, α = 0.08, τ = 0.01, (6)

Controllers (b) and (c), Low-pass filters with notch-filters:

C(s) =
α

τs + 1

3∏

i=1

s2 + 2ξiωis + ω2
i

s2 + 2ςiωis + ω2
i

. (7)

Here, α = 0.08,τ = 0.01,ω1 = ω2 = ω3 = 2.20 · 2π, ξ1 = ξ2 = ξ3 = 0.032 and
ς1 = ς2 = ς3 = 0.2(controller (b)), and ς1 = ς2 = ς3 = 0.4(controller (c)).

The parameters of the notch-filters are determined by trial and error. The
Bode-plots of the controllers are shown in Fig. 3. The gain-plots of the closed-
loop transfer function from d to θ2 are shown in Fig. 4. Figure 4 indicates the
vibration isolation performance at each frequency. The time responses of θ2 by
d(t) = sin(6πt) are shown in Fig. 5, the results obtained using controllers (a),
(b) and (c) are indicated by the dotted line, the solid line, and the dashed line,
respectively. According to these figures, the vibration isolation performance
of controller (b) is superior to that of controller (a), as expected. In contrast,
although the dip at 3 [Hz] in the gain plot of the controller (c) is deeper than
that of controller (b), controller (c) provides inferior performance compared
to that of controller (b), as shown in Figs. 4 and 5. This result is unexpected.
Furthermore, it should be noted that the frequency of the dip of the con-
troller is slightly lower than 3 [Hz], that is, there are discrepancies between
the frequencies of the disturbance and the dip of the controllers. These re-
sults indicate that the tuning of controller parameters requires a great deal of
trial and error in order to obtain the expected performance. If the disturbance
has a multi-frequency spectrum, then the controller parameter tuning involves
more complicated procedures. In order to overcome these problems, a direct
frequency shaping technique using the H∞ control is adopted in the present
paper. The proposed method is expected to offer the following advantages:
1. Feasibility of direct shaping of the frequency response of closed-loop trans-
fer functions.
2. Vibration isolation availability for multi-frequency disturbances.
3. Capability for MIMO plants.
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3 MODELING OF A CONTROLLED SYSTEM

3.1 Experimental System Setup

Active control calculations are performed using a PC with a T = 10 [msec]
sampling interval in the experimental system. The relative velocity y2(t) =
θ̇1(t)− θ̇2(t) is obtained by numeric differentiation of the signal of the rotary
encoder, as shown in Eq. (8), at each sampling time, iT (i = 1, 2, · · · ).

y2(iT ) =
θ12(iT )− θ12((i− 1)T )

T
, θ12(t) := θ1(t)− θ2(t) (8)

There exist time delays caused by the calculation of y2(iT ) and control in-
puts u(iT ). A model of the controlled system that includes these time delays
is obtained by system identification techniques based on experimental data.
The system identification methods and their results are described in the next
section. The identified model is obtained as a discrete-time system, but the
controller design is carried out based on a continuous-time model. Thus, a
discrete-time model is transformed into a continuous-time system model by
Tustin’s transform. The reason for using a continuous-time model for con-
troller design is that it is easier to shape the frequency responses than in
the discrete-time domain. The designed feedback controllers are discretized
by Tustin’s transform and are packaged into the experimental system.

The control input and the disturbance torque input of the experimental system
are applied to the system as voltage commands of the motor drivers. In the
experimental system, 1 [V] corresponds to 0.1 [Nm] and 0.25 [Nm] for u(t)
and d(t), respectively.

3.2 Modeling by System Identification

A model of the controlled system is obtained by system identification exper-
iments. The identified system is a MIMO system that has two inputs, d and
f , and two outputs, θ̇1− θ̇2 and θ2. The system has vibration modes for which
the natural frequencies are 0.65 [Hz] and 9.1 [Hz], so the identified frequency
range is assumed to be from 0.1 [Hz] to 50 [Hz]. Since the lowest frequency is
0.1 [Hz], the use of swept sine methods takes a long time. Therefore, the linear
least-squares method and the subspace method based on the input and out-
put signals, which are excited by random signals, are used. The least-squares
method (or a method with the decimation technique) is a typical identifica-
tion method for a vibration system. However, since the identified system is
a MIMO system, the subspace method was considered to be preferable. The
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pseudo-random binary signal, PRBS (Ljung, 1999), which is a pseudo-white
signal, is used as an excitation signal in the experiments. Two inputs, f and d,
are excited at the same time and are generated at every 10 [msec]. The data
of the input u and output θ2 are shown in Figs. 6a and 6b.

The models were obtained by using the least-squares method based on the
ARX model and the subspace method.

1) The least-squares method based on the ARX model
The four transfer functions of the system are identified individually by this
method. The assumed order of the model is the 70th order. When lower-
order ARX models were assumed, the obtained frequency responses became
worse. Moreover, the assumptions of higher-order models did not improve the
identified results shown by the dashed line in Fig. 7. In the figure, the dotted
line indicates the analytic model obtained using Eqs. (4) and (5), and the
design parameters are shown in Table 1.

2) The subspace method
A 7th-order model was assumed. The order of the model is close to the order
that is expected based on the physical dynamics of the system. The system
matrices, A, B, C, and D, can be identified simultaneously by the subspace
method. The ‘Identification Toolbox’ of MATLAB is used for the calculation.
The identified results are represented by the solid line in Fig. 7. The model
obtained by the subspace method for the controller design was adopted. Ac-
cording to this model, the frequency of the first vibration mode is 0.65 [Hz],
and that of the second mode is 9.13 [Hz]. The obtained matrices, A7, B7, C7,
and D7, of the 7th-order mode are described in Appendix B.

4 CONTROLLER DESIGN

4.1 Frequency Shaping by H∞ Control

A controller is designed based on the H∞ control, because this method can
shape the frequency response of closed-loop transfer functions directly. If the
closed-loop transfer function from the disturbance to the position θ2(t) is
shaped, the vibration isolation performance is improved. Velocity feedback
control is considered in the present paper, so it is important to specify the
augmented system and the weighting functions carefully, since the character-
istics of the frequency responses of closed-loop systems are different from those
of position feedback control systems. For example, since the controlled system
has zeros at the origin, there are some constraints on the sensitivity function
and the complementary sensitivity function, such as S(0) = 1 and T (0) = 0.

6



These characteristics are different from those of position feedback cases. The
augmented system shown in Fig. 8 was adopted for the H∞ control design. In
Fig. 8, P (s) is the controlled plant, C(s) is a controller, Wn(s), Wr(s), and
Ws(s) are frequency-dependent weighting functions, ε is a constant weight, d
is the vibration disturbance, u = f is the control torque, and y1 = θ2 and
y2 = θ̇1 − θ̇2 are outputs. The design parameters are specified as follows:

Wr(s) =
9.0 · 103(s + 10)2(16.666s + 1)

(s + 1000)2(50s + 1)
(9)

Wn(s) =
0.28125(s + 0.1)

s + 100

s2 + 263.89s + 355.30

s2 + 0.1885s + 355.30

· s2 + 628.32s + 9.8696

s2 + 3.1416s + 9.8696

s2 + 5654.9s + 3197.7

s2 + 197.92s + 3197.7
(10)

Ws(s) =
40(0.4s + 1)

20s + 1

s2 + 380.44s + 2953.8

s2 + 2.1740s + 2953.8
(11)

ε = 10−1.65 (12)

The gain-plots of weightings are shown in Fig. 9. Since the closed-loop trans-
fer function from d to y1 = θ2 represents the vibration isolation performance,
Wn(s) has a steep peak gain at 3 [Hz] in order to isolate the sinusoidal dis-
turbance at 3 [Hz]. Consequently, Wn(s) has poles located near the imaginary
axis. Ws(s) is specified such that the 2nd-order vibration mode involves an ap-
propriate damping performance, due to the active control. Therefore, Ws(s)
has peak gain at 9.13 [Hz], which corresponds to the natural frequency of the
2nd-order vibration mode. Wr(s) is determined based on the strategy that the
control system should provide appropriate vibration isolation performance in
the high-frequency range. For this purpose, the gain of Wr(s) is specified grad-
ually higher in the high-frequency range, such that the gain of the feedback
controller becomes low in this range. ε is specified as an appropriate value so
as not to violate the constraint of the sensitivity function at 0 [Hz], |S(0)| ≮ 1.

Using the above settings, the H∞ control problem was solved, i.e., find a
control u = C(s)y that stabilizes the closed-loop system and satisfies the H∞
norm condition, ‖ Gzw(s) ‖∞< γ < 1, where Gzw(s) is the closed-loop transfer
matrix from w to z. A generalized system based on the augmented system
satisfies the solvable conditions of the H∞ control. A controller was obtained
by using ’µ-synthesis toolbox’ of MATLAB. The value of γ is 0.98. Figure
10 shows the Bode-plot of the obtained controller, which is of the 20th-order.
The obtained matrices, A20, B20, C20, and D20, of the 20th-order controller
are described in Appendix C.
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4.2 Controller Order Reduction

The order of the obtained controller is rather high for implementation in the
experimental system. Therefore the order of the controller was reduced based
on the method of the frequency response matching of the loop-transfer function
proposed by Chida and Shigemasa (1998). The reduced-order controller is

denoted as Cr(s) := nc(s)
dc(s)

, and the coefficients of two polynomials dc(s) and

nc(s) were determined. The reference transfer function for determining Cr(s)
is the frequency response of the loop-transfer function of the full-order control
system, Lm(s). Then, the following error transfer function is introduced:

E(jω) =
dc(jω)

dq(jω)

(
Lm(jω)− P (jω)

nc(jω)

dc(jω)

)
(13)

=
Lm(jω)dc(jω)

dq(jω)
− P (jω)nc(jω)

dq(jω)
(14)

=: Er(ω) + jEi(ω) (15)

Here, dq(s) is a specified weighting function. Since Eq. (15) is a linear equation
concerning the coefficients of dc(s) and nc(s), the coefficients that minimize

J =
N∑

k=1

[
Er(ωk), E

i(ωk)
]




Er(ωk)

Ei(ωk)


 (16)

are easily calculated by the least-squares method (Chida and Shigemasa,
1998). Here, ωk is the number of specified frequencies within the matching
frequency band, in which an attempt is made to match the loop-transfer func-
tion of the reduced-order system to that of the full-order system.

A reduced-order controller based on the above procedure was obtained. The
matched frequency-band is from 0.1 [Hz] to 30 [Hz], and data of 300 frequency-
points are used. The order of the obtained controller is the 9th order, which
is sufficiently small for implementation in the experimental system. The fre-
quency response of the reduced-order controller is indicated in Fig. 10 by the
dashed line. Note that the reduced-order controller provides a frequency re-
sponse similar to that of the full-order controller. The obtained matrices, A9,
B9, C9, and D9, of the reduced 9th-order controller are described in Appendix
D.

4.3 Property of the Designed Controller

The performance of the obtained control system was checked by analytical
simulations. The vibration isolation performance is shown in Fig. 11. The
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solid line indicates the gain-plot of the closed-loop transfer function from d
to θ2. The vibration attenuation performance at 3 [Hz] is shaped according
to the specified weighting function Wn(s) and is dramatically improved from
the case without the control system indicated by the dotted line. The depth
of the gain at 3 [Hz] is far lower than that for the system without control.

Figure 12 shows the allocation of poles of the closed-loop system. Some poles
are located close to the imaginary axis, which is a well-known property of
the H∞ control of vibration control. Pole assignment methods are helpful in
avoiding such positioning of the closed-loop poles. However, standard pole
assignment methods are not applicable because (A,C) becomes undetectable
if the weighting functions described in the present paper are used. In order to
overcome this difficulty, extended H∞ control is helpful. Improvement of the
time response by extended H∞ control with closed-loop pole constraints was
investigated by Chida and Ishihara (2004) and Ishihara and Chida (2005).

5 EXPERIMENTS

5.1 Frequency Response

Frequency responses are measured by system identification experiments for the
closed-loop system. The input signals are PRBS, which are the same as those
in the identification experiments for obtaining the controlled system model.
Figure 13 shows the transfer function from d to θ2, and Fig. 14 indicates the
transfer function from d to θ̇1− θ̇2. The solid line represents the experimental
results, and the dashed line indicates the simulation results. The simulation
results are obtained using the analytical model of the plant and the controller.
Note that the results of the experiments and the simulations are very similar
and that, as expected, the vibration isolation performance is improved by the
weighting function Wn(s), which is specified at the controller design.

5.2 Time Response

The experimental and simulation results of the time responses of θ2(t) and u(t)
by the H∞ controller when the vibration disturbance of 3 [Hz] is applied to
the system are shown in Fig. 15. The applied disturbance is d(t) = 4.0 sin(6πt)
[V]. The solid line represents the results of an experiment, and the dashed line
represents the corresponding simulation results. The results indicate that the
experiment was carried out successfully, verifying that the controller provides
the vibration isolation performance predicted at controller design. These two
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results are similar, except for the steady-state vibration response. The dif-
ference is the vibration caused by the excitation of the 2nd-order vibration
mode. Figure 16 represents the experimental results obtained by conventional
controllers. The solid line indicates the results obtained when a notch-filter
having a dip of 3 [Hz] is used as a controller. The dashed line shows the re-
sults obtained when a constant velocity feedback is applied. Each controller
stabilizes the system, but the constant feedback control provides poor vibra-
tion isolation performance compared to the other controllers. Although the
performance of the notch-filter is similar to that of the H∞ controller, the
notch-filter is thought to be insufficient for practical use because if a low-pass
filter is combined with the notch-filter, the obtained controller easily desta-
bilizes the system due to the excitation of the 2nd-order vibration mode. An
attempt to improve the vibration isolation performance was made by tuning
the parameters of the low-pass and notch-filters but it was not possible to ob-
tain a stabilizing controller. Therefore, the parameter tuning of the controller
by conventional procedures is difficult.

5.3 Improvement of Robustness for Frequency Varying Disturbance

When the possibility of frequency variation of the disturbance exists, the con-
troller should be designed such that it provides vibration isolation over a wide
frequency range. Such a controller can be designed by specifying a modified
weighting function Wn(s). If Wn(s) is selected as the dashed line shown in Fig.
17, then the vibration isolation performance is shaped such that the controller
provides superior vibration isolation performance over a wide frequency range
around 3 [Hz]. The specified Wn(s) is indicated as follows:

Wn(s) =
42000(s + 0.009943)(s2 + 33.93s + 287.8)

(s + 1000)2(s2 + 3.393s + 287.8)

· (s + 0.01006)(s2 + 38.97s + 379.7)(s2 + 37.68s + 355)

(s2 + 3.77s + 355.3)(s2 + 3.896s + 379.4)
(17)

A controller is designed by the proposed procedure using Eq. (17). The ex-
perimental results obtained using this controller are shown in Fig. 18. The
solid, dashed and dotted lines denote the time responses of θ2(t) and u(t)
by f = 3 [Hz], 2.5 [Hz] and 3.5 [Hz] when sinusoidal disturbances, d(t) =
4.0 sin(2πft)[V] are applied, respectively. Note that the controller sufficiently
isolates the vibration of disturbances.
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6 CONCLUSIONS

In the present paper, a vibration isolation control problem is considered that
arises when a narrow-band frequency disturbance is applied to a system by
using a simple experimental system that appears in space. In addition, a mod-
eling procedure and a controller design method for the system has been pro-
posed. The subspace method is verified to be helpful for modeling the system
and a controller design method employing frequency shaping based on the H∞
control is verified to be suitable for the control problem. The performance of
the designed controller is demonstrated experimentally, and the designed con-
troller was confirmed to provide the expected vibration isolation performance.
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Appendix A

Matrices, Ap, Bp and Cp of Eqs.(4) and (5):

Ap =




0 0 1 0

0 0 0 1

−1.533333e + 01 1.533333e + 01 0 0

1.656000e + 02 −3.032800e + 03 0 0




Bp =




0 0

0 0

1.851852e + 01 1.851852e + 01

0 −200




Cp =


0 1 0 0

0 0 1 −1




Appendix B

Matrices, A7, B7, C7 and D7, of the 7th-order identified model:

A7 =




−1.901816e + 02 −9.311354e− 01 1.400899e + 00 −6.502930e + 00

−3.301280e + 01 −3.283919e + 00 −2.674074e + 01 −5.032722e + 01

−1.368576e + 00 2.771403e + 01 1.166956e− 02 5.861516e− 01

2.217795e + 01 5.614936e + 01 −2.871305e + 00 9.100879e− 01

3.038103e + 01 2.833575e + 01 −1.117487e + 01 6.216460e + 00

−3.642848e + 01 −1.708408e + 01 2.321621e + 01 −1.950095e + 01

4.538792e + 00 −6.489405e + 00 4.783791e + 00 −3.373296e + 00

−1.632512e + 01 −2.921573e + 01 6.789696e + 00

−5.661042e + 00 −2.904128e + 01 5.027814e + 00

−8.681618e− 01 −1.821803e + 01 −1.697039e + 00

−5.202334e− 01 7.678340e + 01 7.266456e− 01

−7.106526e− 01 4.389407e + 02 −1.525820e + 01

−1.594504e + 02 −2.054250e + 02 5.532318e + 01

1.013494e + 01 −8.993709e + 01 −2.457027e− 01



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B7 =




2.007282e− 03 6.960881e− 03

4.791821e− 04 6.031270e− 04

−1.230062e− 04 7.023500e− 05

−8.896384e− 04 −1.110848e− 04

−4.507269e− 03 7.762197e− 04

1.772214e− 03 1.499512e− 03

1.194754e− 03 −5.353729e− 04




C7 =


−8.249622e + 02 −2.749970e + 04 1.320670e + 03 1.428393e + 04

−1.590137e + 00 3.639097e + 02 9.468890e + 01 4.077433e + 02

−2.136009e + 03 2.209097e + 03 6.332944e + 03

−8.500836e + 01 −4.264831e + 01 −9.840364e + 01




D7 =


 5.026040e− 03 1.344268e− 02

2.221308e− 05 −3.289820e− 05




Appendix C

Matrices, A20, B20, C20 and D20, of the 20th-order controller:

A20 = Blockdiag






−2.560074e + 02 8.107113e + 01

−8.107113e + 01 −2.560074e + 02


 ,


−5.366276e + 01 1.515119e + 02

−1.515119e + 02 −5.366276e + 01


 ,

−1.801723e+02, −1.326418e+02,


−1.000161e + 02 6.475751e− 01

−6.475751e− 01 −1.000161e + 02


 ,


−1.077754e + 00 5.437290e + 01

−5.437290e + 01 −1.077754e + 00


 ,


−6.342321e + 00 2.907273e + 01

−2.907273e + 01 −6.342321e + 00


 ,

−1.812166e+01, −5.411604e−02,


−4.439522e + 00 1.371766e + 01

−1.371766e + 01 −4.439522e + 00


 ,


−1.570738e + 00 2.720553e + 00

−2.720553e + 00 −1.570738e + 00


 ,


−1.123639e− 02 1.824206e− 02

−1.824206e− 02 −1.123639e− 02







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B20 =




7.825749e + 02

−1.747714e + 03

4.872921e + 02

−2.120226e + 03

−1.426532e + 02

−3.256634e + 02

8.279663e + 02

3.913329e + 04

−1.312650e + 03

−2.153193e + 02

3.267970e + 01

−1.318567e + 02

−2.764501e + 02

3.534873e + 02

−3.204107e + 02

4.613681e + 00

7.028333e− 01

−6.242965e + 01

−6.317215e + 02

1.489152e + 02




, CT
20 =




−8.423969e− 02

−2.035838e− 02

1.212392e− 01

4.142877e− 02

−2.335771e− 06

−4.196498e− 02

2.622721e− 05

9.166328e− 07

−4.052796e− 04

−3.866413e− 03

5.459306e− 02

1.692155e− 03

−4.549228e− 03

6.698489e− 02

3.257725e− 03

4.338981e− 05

1.875570e− 04

−1.201806e− 02

−5.875238e− 03

−1.359811e− 03




D20 =
[
−2.655343e− 07

]

Appendix D

Matrices, A9, B9, C9 and D9, of the reduced 9th-order controller:

A9 = Blockdiag






−4.998783e + 01 1.494600e + 02

−1.494600e + 02 −4.998783e + 01


 ,


−1.078339e + 00 5.437441e + 01

−5.437441e + 01 −1.078339e + 00


 ,


−6.758115e + 00 2.941757e + 01

−2.941757e + 01 −6.758115e + 00


 ,
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
−4.432201e + 00 1.380952e + 01

−1.380952e + 01 −4.432201e + 00


 ,−1.863363e− 02





B9 =




1.511751e + 02

4.274260e + 01

5.629916e + 02

−1.397670e + 02

−9.273407e + 02

6.714770e + 01

−7.146612e + 01

6.382569e + 02

8.006758e + 01




C9 =
[
−6.370800e− 01 1.426626e + 00 4.370927e− 03 7.772993e− 03

−3.361768e− 03 −7.936975e− 03 −3.769925e− 02 3.237788e− 02 5.396743e− 02
]

D9 =
[
0

]
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Table 1 Parameters of the Controlled System

J1 0.054 [kgm2]

J2 0.005 [kgm2]

K1 230 [N/m]

K2 560 [N/m]

L1 0.06 [m]

L2 0.016 [m]

C1 2.5 [Ns/m]

C2 0.1 [Nms]
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Figure Captions

Fig.1 Experimental System

Fig.2 Bode-Plot of the Controlled System

Fig.3 Conventional Controllers

Fig.4 Gain-Plot from d to θ2

Fig.5 Time Response of θ2

Fig.6 Input and Output Data of Experiments: a) f , b) θ2

Fig.7 Bode-Plot of Identified Transfer Functions

a)f → θ̇1 − θ̇2, b)f → θ2, c)d → θ̇1 − θ̇2, d)d → θ2

Fig. 8 Augmented System

Fig.9 Weighting Functions (Wn: solid, Ws: dashed, Wr: dotted)

Fig.10 H∞ Controller

Fig.11 Vibration Isolation Performance

(Solid: H∞ control, Dashed: |Wn(jω)|−1, Dotted: |P (jω)|)
Fig.12 Closed-Loop Poles

Fig.13 Frequency Response (d → θ2)

Fig.14 Frequency Response (d → θ̇1 − θ̇2)

Fig.15 Time Response (H∞), Solid: experiment, Dashed: simulation

Fig.16 Time Response (Conventional), Solid: notch filter, Dashed: constant FB

Fig.17 Vibration Isolation Performance (Wide-notch H∞)

(Solid: improved H∞ control, Dashed: |Wn(jω)|−1, Dotted: |P (jω)|)
Fig.18 Time Response (Wide-notch H∞)

(Solid: 3 [Hz] disturbance, Dashed: 2.5 [Hz] disturbance, Dotted: 3.5 [Hz] distur-
bance)
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Fig.1 a)

Fig.1 b)
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