Representation Rings of Group G_2

By ICHIRO YOKOTA

Department of Mathematics, Faculty of Science Shinshu University (Received Sept. 30, 1967)

1. Introduction

In this paper, we shall determine the real representation ring $RO(G_2)$ and the complex representation ring $R(G_2)$ of G_2 , which is a simply connected compact simple Lie group of exceptional type G. G_2 is obtained as the group of all automorphisms in the division ring $\mathfrak C$ of Cayley numbers and G_2 invaries the set L_1 of all pure imaginary Cayley numbers, so that L_1 is a G_2 -R-module. The result is as follows: $RO(G_2)$ is a polynomial ring $\mathbf Z[\lambda_1, \lambda_2]$ with two variables λ_1 and λ_2 , where λ_1 is the class of L_1 in $RO(G_2)$ and λ_2 is the class of the exterior G_2 -R-module $A^2(L_1)$ in $RO(G_2)$. The structure of $R(G_2)$ is also a polynomial ring $\mathbf Z[\lambda_1^C, \lambda_2^C]$ with two variables λ_1^C and λ_2^C , where λ_1^C , are the complexification of λ_1 , λ_2 , respectively. In the final section, we consider the relations of $R(G_2)$ to R(SO(7)), R(Spin(7)) and R(SU(3)).

2. Representation rings

Let G be a topological group. By a G-K-module (K= \mathbf{R} or \mathbf{C}) is meant a finite dimensional right K-module V together with a left action of G. That is, for each $x \in G$, $u \in V$ there should be defined an element $xu \in V$ depending continuously on x and u, so that

- (2.1) x(u+v) = xu + xv
- $(2. 2) x(u\lambda) = (xu)\lambda$
- $(2,3) \qquad (xy)(u) = x(yu)$
- (2.4) eu = u

for $x, y \in G$, $u, v \in V$, $\lambda \in K$ and e denotes the identity of G.

Two G-K-modules V_1 and V_2 are G-K-isomorphic if there exists a G-K-isomorphism $f: V_1 \to V_2$, that is f is a linear isomorphism such that $f(u\lambda) = f(u)\lambda$, f(xu) = xf(u) for $u \in V_1$, $\lambda \in K$, $x \in G$.

Let $M_K(G)$ denote the set of G-K-isomorphism classes $\lceil V \rceil$ of G-K-modules V.

¹⁾ R is the field of real numbers.

²⁾ C is the field of complex numbers.

126 Ichiro Yokota

[V] will also be denoted by V.

The direct sum $V_1 \oplus V_2$ and the tensor product $V_1 \otimes V_2$ of two G-K-modules V_1 and V_2 define a semiring structure on $M_K(G)$. The representation ring $R_K(G) = (R_K(G), \phi_G)$ is the universal ring associated with the semiring $M_K(G)$; that is, $\phi_G \colon M_K(G) \to R_K(G)$ is a semiring homomorphism and for any ring A and any semiring homomorphism $\varphi : M_K(G) \to A$, there exists a unique ring homomorphism $\widetilde{\varphi} : R_k(G) \to A$ such that $\varphi = \widetilde{\varphi} \phi_G$.

 $R_K(G)$ is a commutative ring with the unit 1, where 1 is the class of K with trivial group action.

Note that $M_K(G)$ has two further operations: For each G-K-module V, there correspond the exterior G-K-module $A^r(V)$ ($0 \le r \le \dim V$) and the dual G-K-module $\widehat{V}(\widehat{V})$ is $\operatorname{Hom}_K(V, K)$ as K-module and group action is $(x\xi)(u) = \xi(x^{-1}u)$, for $x \in G$, $\xi \in \operatorname{Hom}_K(V, K)$, $u \in V$).

Let H and G be topological groups and $h: H \to G$ be a continuous homomorphism. Then, to every G-K-module V, there corresponds a H-K-module h*(V) by the rule of group action

$$yu = h(y)u$$
, for $y \in H$, $u \in V$.

The correspondence $V \to h^{\sharp}(V)$ gives rise to a ring homomorphism $h^*: R_K(G) \to R_K(H)$ such that the following diagram is commutative.

$$\begin{array}{ccc} M_{K}(G) & \stackrel{h^{\sharp}}{\longrightarrow} & M_{K}(H) \\ \downarrow \phi_{G} & & \downarrow \phi_{H} \\ K_{K}(G) & \stackrel{\longrightarrow}{\longrightarrow} & R_{K}(H). \end{array}$$

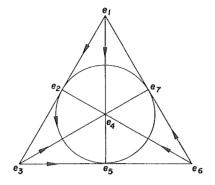
 $M_{\rm R}(G)$, $R_{\rm R}(G)$ are denoted by MO(G), RO(G) and $M_{\rm C}(G)$, $R_{\rm C}(G)$ by M(G), R(G) respectively.

3. Cayley numbers \mathbb{C} and Group G_2

Let & denote the division ring of Cayley numbers. & is an 8-dimensional **R**-module with an additive base e_0 , e_1 ,, e_7 , and ring structure is given as follows;

$$e_0$$
 is the unit of \mathfrak{C} , $e_i{}^2=-e_0,$ for $i
eq 0$, $i
eq$

and



(for example, $e_1e_2=e_3$, $e_2e_5=e_7$, $e_2e_4=-e_6$)

Let G_2 be the group of all automorphisms in \mathfrak{C} , that is, each $x \in G_2$ satisfies

(3. 1)
$$x(u + v) = xu + xv$$

$$(3. 2) x(u\lambda) = (xu)\lambda \text{for } u, v \in \mathbb{C}, \lambda \in \mathbb{R}.$$

$$(3.3) x(uv) = x(u)x(v)$$

$$(3.4)$$
 x is non-singular

As is well known, G_2 is a simply connected compact simple Lie group of exceptional type G [3].

Obviously, \mathfrak{C} is a G_2 - \mathbf{R} -module. By (3, 3), (3, 4), we have $x(e_0)=e_0$ for $x\in G_2$. Therefore, if we denote by L_1 the \mathbf{R} -submodule of \mathfrak{C} generated by e_1 ,, e_7 additively, then L_1 is also a G_2 - \mathbf{R} -module and \mathfrak{C} is decomposable into the direct sum of two G_2 - \mathbf{R} -modules \mathbf{R} (with trivial group action) and L_1 ; $\mathfrak{C} = \mathbf{R} \oplus L_1$. The complexification $L_1^C = L_1 \otimes_{\mathbf{R}} \mathbf{C}$ of L_1 is a G_2 - \mathbf{C} -module and it will play an important role in the sequel.

4. Maximal torus T and Weyl group W of G_2

 G_2 has a subgroup SU(3) consisting of all elements x of G_2 such that $x(e_1) = e_1$. Since the ranks of G_2 and SU(3) are both 2, any maximal torus in SU(3) is also a maximal torus in G_2 .

Let $t_i: \mathbf{R} \to G_2$ for i = 1, 2 be the homomorphisms given by the relations

(4.1)
$$\begin{cases} t_1(\theta)(e_j) = e_j & \text{for } j = 0, 1, 4 \\ t_1(\theta)(e_2) = e_2 \cos \theta + e_3 \sin \theta \end{cases}$$

$$\begin{cases} t_2(\theta)(e_j) = e_j & \text{for } j = 0, 1, 2. \\ t_2(\theta)(e_4) = e_4 \cos \theta + e_5 \sin \theta \end{cases}$$

Let $t: \mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \to G_2$ be defined by

$$t(\theta_1, \theta_2) = t_1(\theta_1)t_2(\theta_2)$$

for $(\theta_1, \theta_2) \in \mathbb{R}^2$. Define $T = t(\mathbb{R}^2)$, then T is a maximal torus in G_2 ; $T \subset SU(3) \subset G_2$.

From (4.1), we have

$$\begin{cases} t_{1}(\theta)(e_{3}) = t_{1}(\theta)(e_{1}e_{2}) = t_{1}(\theta)(e_{1})t_{1}(\theta)(e_{2}) \\ = e_{1}(e_{2}\cos\theta + e_{3}\sin\theta) = -e_{2}\sin\theta + e_{3}\cos\theta \\ t_{1}(\theta)(e_{5}) = t_{1}(\theta)(e_{1}e_{4}) = t_{1}(\theta)(e_{1})t_{1}(\theta)(e_{4}) = e_{1}e_{4} = e_{5} \\ t_{1}(\theta)(e_{6}) = t_{1}(\theta)(e_{4}e_{2}) = t_{1}(\theta)(e_{4})t_{1}(\theta)(e_{2}) \\ = e_{4}(e_{2}\cos\theta + e_{3}\sin\theta) = e_{6}\cos\theta - e_{7}\sin\theta \\ t_{1}(\theta)(e_{7}) = t_{1}(\theta)(e_{1}e_{6}) = t_{1}(\theta)(e_{1})t_{1}(\theta)(e_{6}) \\ = e_{1}(e_{6}\cos\theta - e_{7}\sin\theta) = e_{6}\sin\theta + e_{7}\cos\theta. \end{cases}$$

Similarly, from (4.2) we have

(4.4)
$$\begin{cases} t_2(\theta)(e_3) = e_3 \\ t_2(\theta)(e_5) = -e_4 \sin \theta + e_5 \cos \theta \\ t_2(\theta)(e_6) = e_6 \cos \theta - e_7 \sin \theta \\ t_2(\theta)(e_7) = e_6 \sin \theta + e_7 \cos \theta. \end{cases}$$

The Weyl group $W=W(G_2)$ of G_2 is $N_T(G_2)/T$, where $N_T(G_2)$ is the normalizer of T in G_2 . If $x \in N_T(G_2)$, then $x(e_1) = \pm e_1$. In fact, since $x^{-1}tx \in T$ for any $t \in T$, we have $x^{-1}tx(e_1) = e_1$, hence $tx(e_1) = x(e_1)$. Put $x(e_1) = \sum_{i=1}^{7} e_i a_i$ ($a_i \in \mathbb{R}$, $\sum_{i=1}^{7} a_i^2 = 1$), then $t(\sum_{i=1}^{7} e_i a_i) = \sum_{i=1}^{7} e_i a_i$ for all $t \in T$. Using (4.1)—(4.4),

$$\begin{split} e_1 a_1 + (e_2 \cos \theta_1 + e_3 \sin \theta_1) a_2 + (-e_2 \sin \theta_1 + e_3 \cos \theta_1) a_3 \\ + (e_4 \cos \theta_2 + e_5 \sin \theta_2) a_4 + (-e_4 \sin \theta_2 + e_5 \cos \theta_2) a_5 \\ + (e_6 \cos (\theta_1 + \theta_2) - e_7 \sin (\theta_1 + \theta_2)) a_6 + (e_6 \sin (\theta_1 + \theta_2) + e_7 \cos (\theta_1 + \theta_2)) a_7 \\ = e_1 a_1 + e_2 a_2 + \dots + e_7 a_7 & \text{for all } \theta_1, \ \theta_2 \in \mathbf{R}. \end{split}$$

Hence we have

$$\left\{egin{array}{l} a_2\cos heta_1-a_3\sin heta_1=a_2\ a_4\cos heta_2-a_5\sin heta_2=a_4\ a_6\cos heta_3-a_7\sin heta_3=a_6 \end{array}
ight. \qquad ext{for all $ heta_1$, $ heta_2$, $ heta_3\in\mathbf{R}$,}$$

where $\theta_3 = -(\theta_1 + \theta_2)$, so that we have $a_2 = \cdots = a_7 = 0$. This implies that $x(e_1) = e_1 a_1 = \pm e_1$.

In case $x(e_1) = e_1$, x is an element of the normalizer $N_T(SU(3))$ of T in SU(3). Therefore $W(G_2)$ contains the Weyl group $W(SU(3)) = N_T(SU(3))/T$ of SU(3), which is the symmetric group consisting of all permutations of 3 variables θ_1 , θ_2 , θ_3 . In case $x(e_1) = -e_1$, if we choose an element $y \in G_2$ such that $y(e_i) = e_i$ for i = 0, 2, 4, 6 and $y(e_i) = -e_i$ for i = 1, 3, 5, 7, then $yx \in N_T(SU(3))$ and y induces the change of the sign $(\theta_1, \theta_2, \theta_3) \rightarrow (-\theta_1, -\theta_2, -\theta_3)$. $W(G_2)$ has 12 elements.

5.
$$G_2$$
-C-module $L_1^C = L_1 \bigotimes_{\mathbf{R}} \mathbf{C}$ and $R(T)$

Let $j_2: T \to G_2$ denote the inclusion. In $j_2^{\sharp}: M(G_2) \to M(T)$, we have

$$j_2\sharp(L_1^C)=\!\operatorname{C}\oplus W_1\oplus \widehat{W}_1\oplus W_2\oplus \widehat{W}\oplus W_3\oplus \widehat{W}_3,$$

where W_i is 1-dimensional T-C-module and \hat{W}_i is the dual T-C-module of W_i , for i = 1, 2, 3. And there exist relations

$$W_i \otimes \widehat{W}_i = \mathbf{C},$$
 for $i=1,\ 2,\ 3,$ $W_1 \otimes W_2 \otimes W_3 = \mathbf{C}.$

In fact, let C be the C-module with base e_1 , and W_i , \widehat{W}_i be C-modules with base $u_i = e_{2i} - e_{2i+1}\sqrt{-1}$, $\hat{u}_i = e_{2i} + e_{2i+1}\sqrt{-1}$ respectively for i = 1, 2, 3. For $t = t(\theta_1, \theta_2),$

$$(5. 1) te_1 = e_1,$$

(5.2)
$$\begin{cases} tu_{1} = t(\theta_{1}, \ \theta_{2}) (e_{2} - e_{3}\sqrt{-1}) = t_{1}(\theta_{1}) (e_{2} - e_{3}\sqrt{-1}) \\ = (e_{2}\cos\theta_{1} + e_{3}\sin\theta_{1}) - (-e_{2}\sin\theta_{1} + e_{3}\cos\theta_{1})\sqrt{-1} \\ = (e_{2} - e_{3}\sqrt{-1}) (\cos\theta_{1} + \sqrt{-1}\sin\theta_{1}) = u_{1}\exp(\sqrt{-1}\theta_{1}) \\ t\widehat{u}_{1} = \widehat{u}_{1}\exp((-\sqrt{-1}\theta_{1}). \end{cases}$$

Similarly

$$\begin{cases} tu_2 = u_2 \exp((\sqrt{-1}\,\theta_2)) \\ t\widehat{u}_2 = \widehat{u}_2 \exp(-\sqrt{-1}\,\theta_2), \end{cases}$$

(5. 3)
$$\begin{cases} tu_2 = u_2 \exp((\sqrt{-1}\theta_2)) \\ t\hat{u}_2 = \hat{u}_2 \exp(-\sqrt{-1}\theta_2), \end{cases}$$

$$\begin{cases} tu_3 = u_3 \exp(-\sqrt{-1}(\theta_1 + \theta_2)) \\ t\hat{u}_3 = \hat{u}_3 \exp(\sqrt{-1}(\theta_1 + \theta_2)). \end{cases}$$

Since e_1 , u_1 , \hat{u}_1 , u_2 , \hat{u}_2 , u_3 , and \hat{u}_3 are an additive base of L_1^C , formulae (5.1) -(5.4) yield the desired result.

Put $\phi_T(W_1) = \alpha$, $\phi_T(W_2) = \beta$, and $\phi_T(W_3) = \gamma$, then we have

$$R(T) = \mathbf{Z}[\alpha, \alpha^{-1}, \beta, \beta^{-1}, \gamma, \gamma^{-1}]/(\alpha\beta\gamma - 1).$$

Define $\lambda_1^C = \phi_C(L_1^C)$ and $\lambda_2^C = \phi_C(\Lambda^2(L_1^C))$. Then we have

$$\begin{split} j_2*(\lambda_1^C) &= j_2*(\phi_{G_2}(L_1^C)) = \phi_T(j_2^{\sharp}(L_1^C))) \\ &= \phi_T(\mathbb{C} \oplus W_1 \oplus \widehat{W}_1 \oplus W_2 \oplus \widehat{W}_2 \oplus W_3 \oplus \widehat{W}_3) \\ &= 1 + \alpha + \alpha^{-1} + \beta + \beta^{-1} + \gamma + \gamma^{-1}, \end{split}$$

$$\begin{split} (5.6) \qquad \qquad j_2*(\lambda_2^C) &= j_2*(\phi_{G_2}(A^2(L_1^C))) = \phi_T(A^2(j_2^\#(L_1^C))) \\ &= \phi_T(A^2(\mathbf{C} \oplus W_1 \oplus \widehat{W}_1 \oplus W_2 \oplus \widehat{W}_2 \oplus W_3 \oplus \widehat{W}_3)) \\ &= \phi_T(W_1 \oplus \widehat{W}_1 \oplus W_2 \oplus \widehat{W}_2 \oplus W_3 \oplus \widehat{W}_3) \end{split}$$

6. Ring structure of $R(T)^W$

Each element $w: T \to T$ in the Weyl group W induces an automorphism $w^*: R(T) \to R(T)$ which permutes the 3 factors α , β , γ together with the map of the form $(\alpha, \beta, \gamma) \to (\alpha^{-1}, \beta^{-1}, \gamma^{-1})$. Let $R(T)^W$ denote the subring of R(T) which is invariant under these operations w^* (called W-invariant briefly). Since $j_2^*: R(G_2) \to R(T)$ is a ring monomorphism and the image of j_2^* is contained in $R(T)^W$ [4], we will regard $R(G_2)$ as a subring of $R(T)^W$; $R(G_2) \subset R(T)^W$. We shall determine the ring structure of $R(T)^W$.

Put $\nu_1 = \alpha + \beta + \gamma$ and $\nu_2 = \beta \gamma + \gamma \alpha + \alpha \beta = \alpha^{-1} + \beta^{-1} + \gamma^{-1}$, (cf. section 8) then $\nu_1 + \nu_2 = \alpha + \beta + \gamma + \alpha^{-1} + \beta^{-1} + \gamma^{-1}$ and $\nu_1\nu_2 - 3 = \alpha\beta^{-1} + \alpha^{-1}\beta + \beta\gamma^{-1} + \beta^{-1}\gamma + \gamma\alpha^{-1} + \gamma^{-1}\alpha$ are *W*-invariant polynomials (the elementary *W*-invariant function!) and we have $\lambda_1^C = 1 + \nu_1 + \nu_2$ and $\lambda_2^C = 2(\nu_1 + \nu_2) + \nu_1\nu_2$ from (5.5), (5.6).

Let $f \in R(T)^w$. Case 1. If a monomial $\alpha^m \beta^n$ $(m > n > 0, m \neq 2n)$ appears in f, a polynomial g + h also appears in f, where

$$g = \alpha^{m} \beta^{n} + \beta^{m} \alpha^{n} + \beta^{m} \gamma^{n} + \gamma^{m} \beta^{n} + \gamma^{m} \alpha^{n} + \alpha^{m} \gamma^{n}.$$

$$h = \alpha^{-m} \beta^{-n} + \beta^{-m} \alpha^{-n} + \beta^{-m} \gamma^{-n} + \gamma^{-m} \beta^{-n} + \gamma^{-m} \alpha^{-n} + \alpha^{-m} \gamma^{-n}.$$

Since g is a symmetric function in 3 variables α , β , γ , g is representable as a polynomial in the elementary symmetric polynomials $\alpha+\beta+\gamma=\nu_1$, $\alpha\beta+\beta\gamma+\gamma\alpha=\nu_2$ and $\alpha\beta\gamma=1$; that is, there exists a polynomial $P(X,Y)\in \mathbf{Z}[X,Y]$ with two variables X, Y such that $g=P(\nu_1,\nu_2)$. On the other hand, h can be represented by the same polynomial P in the elementary symmetric polynomials $\alpha^{-1}+\beta^{-1}+\gamma^{-1}=\nu_2$, $\alpha^{-1}\beta^{-1}+\beta^{-1}\gamma^{-1}+\gamma^{-1}\alpha^{-1}=\gamma+\alpha+\beta=\nu_1$ and $\alpha^{-1}\beta^{-1}\gamma^{-1}=1$: $h=P(\nu_2,\nu_1)$. Therefore $g+h=P(\nu_1,\nu_2)+P(\nu_2,\nu_1)$ is symmetric in variables ν_1 and ν_2 , so that g+h is a polynomial in $\nu_1+\nu_2=\lambda_1^C-1$ and $\nu_1\nu_2=\lambda_2^C-2\lambda_1^C+2$. Hence g+h is a polynomial in λ_1^C and λ_2^C .

Case 2. If a monomial α^m (m>0) appears in f, a polynomial g+h also appears in f, where $g=\alpha^m+\beta^m+\gamma^m$, $h=\alpha^{-m}+\beta^{-m}+\gamma^{-m}$. The same statements

as in Case 1 hold.

Case 3. If f contains a monomial $\alpha^{2m}\beta^m$ (m>0), then f contains a polynomial $g=\alpha^{2m}\beta^m+\beta^{2m}\alpha^m+\beta^{2m}\gamma^m+\gamma^{2m}\beta^m+\gamma^{2m}\alpha^m+\alpha^{2m}\gamma^m$ (note that $\alpha^{-2m}\beta^{-m}=(\beta\gamma)^{2m}\beta^{-m}=\gamma^{2m}\beta^m$ etc.). We shall show that g is also a polynomial in λ_1^C and λ_2^C , by the induction with respect to m. First we have for m=1, $\alpha^2\beta+\beta^2\alpha+\beta^2\gamma+\gamma^2\beta+\gamma^2\alpha+\alpha^2\gamma=\alpha\gamma^{-1}+\beta\gamma^{-1}+\beta\alpha^{-1}+\gamma\alpha^{-1}+\gamma\beta^{-1}+\alpha\beta^{-1}=(\alpha+\beta+\gamma)$ ($\alpha^{-1}+\beta^{-1}+\gamma^{-1}$) $-3=\nu_1\nu_2-3=\lambda_2^C-2\lambda_1^C-1$. Suppose that the assertion is true for k< m. Now, for m, if we describe $g=(\alpha^2\beta+\beta^2\alpha+\beta^2\gamma+\gamma^2\beta+\gamma^2\alpha+\alpha^2\gamma)^m+h$, h is a polynomial of Case 1, 2 or the lower degree than m of Case 3. Hence by the induction, g is a polynomial in λ_1^C and λ_2^C .

We have thus proved that any polynomial in $R(T)^w$ is representable as a polynomial in λ_1^C , λ_2^C .

In addition, λ_1^C and λ_2^C are algebraically independent. In fact, ν_1 and ν_2 are algebraically independent in $\mathbf{Z}[\alpha, \alpha^{-1}, \beta, \beta^{-1}, \gamma, \gamma^{-1}]/(\alpha\beta\gamma - 1)$. Therefore, $\nu_1 + \nu_2$ and $\nu_1\nu_2$ are also algebraically independent. Since $\lambda_1^C = \nu_1 + \nu_2 + 1$ and $\lambda_2^C = 2(\nu_1 + \nu_2) + \nu_1\nu_2$, we have that λ_1^C and λ_2^C are algebraically independent. And we have $\mathbf{Z}[\lambda_1^C, \lambda_2^C] \subset R(G_2) \subset R(T)^W = \mathbf{Z}[\lambda_1^C, \lambda_2^C]$. Thus, we have the following

Theorem. The complex representation ring $R(G_2)$ of G_2 is a polynomial ring $\mathbb{Z}[\lambda_1^C, \lambda_2^C]$ with two variables λ_1^C and λ_2^C , where λ_1^C is the class of the G_2 -C-module L_2^C in $R(G_2)$ and λ_2^C is the class of the exterior G_2 -C-module $\Lambda^2(L_1^C)$ in $R(G_2)$.

7. Real representation ring $RO(G_2)$

For a topological group G, we have the following correspondences:

$$c: RO(G) \to R(G), \qquad r: R(G) \to RO(G),$$

where c is a ring homomorphism induced by the tensoring c' with C (that is, c': $MO(G) \to M(G)$ is defined by $c'(V) = V \otimes_{\mathbb{R}} \mathbb{C}$)) and r is a homomorphism defined by the restricting scalars from C to R. As is well known, relation rc = 2 holds. If G is a compact group, RO(G) is the free module generated by the classes of irreducible G-R-modules, so that relation rc = 2 implies that c is a ring monomorphism.

As for G_2 , since we have obviously $c(\lambda_1) = \lambda_1^C$ and $c(\lambda_2) = \lambda_2^C$, (where λ_1 and λ_2 are the classes of L_1 and $\Lambda^2(L_1)$ in $RO(G_2)$ respectively), c is an epimorphism. Hence c is an isomorphism. Thus we have the following

Theorem. The real representation ring $RO(G_2)$ is a polynomial ring $\mathbf{Z}[\lambda_1, \lambda_2]$ with two variables λ_1 and λ_2 .

8. Lie algebra \mathfrak{g}_2 and Element $\lambda_2 - \lambda_1$

The Lie algebra $\mathfrak{SO}(7)$ of SO(7) (the rotation group in L_1) consists of all R-homomorphisms A of \mathfrak{C} satisfying

$$\left\{\begin{array}{ll}A(e_0)=0\\ (A(u),\ v)+(u,\ A(v))=0\end{array}\right. \qquad \text{for } u,\ v\in \mathfrak{C}.$$

Let G_{ij} $(i, j = 1, \dots, 7, i \neq j)$ be the R-homomorphism given by

$$\begin{cases} G_{ij}(e_j)=e_i\\ G_{ij}(e_i)=-e_j\\ G_{ij}(e_k)=0 \end{cases} \text{ for } k\neq i,\ j,\ 0\leq k\leq 7.$$
 events $G_{ij}(0,0)=0$ are an additive base in

Then 21 elements G_{ij} $(1 \le i < j \le 7)$ are an additive base in $\mathfrak{so}(7)$.

The Lie algebra \mathfrak{g}_2 of G_2 is a Lie subalgebra of $\mathfrak{SO}(7)$ consisting of all A such that

$$A(u)v + uA(v) = A(uv)$$
 for $u, v \in \mathbb{C}$.

 \mathfrak{g}_2 is a G_2 -R-module with the group operation given by

$$(xA)(u) = x(A(x^{-1}u))$$
 for $x \in G_2$, $A \in \mathfrak{g}_2$, $u \in \mathfrak{C}$.

So that its complex form $\mathfrak{g}_2^C = \mathfrak{g}_2 \otimes_{\mathbf{R}} \mathbf{C}$ is a G_2 -C-module. We shall show that $\phi_{G_2}(\mathfrak{g}_2^C) = \lambda_2^C - \lambda_1^C$. We choose an additive base in \mathfrak{g}_2^C as follows:

$$\begin{split} H_1 &= 2G_{23} - G_{45} - G_{67} \\ H_2 &= -G_{23} + 2G_{45} - G_{67} \\ U_1 &= -2G_{13} + G_{46} + G_{57} - (2G_{12} - G_{47} - G_{56})\sqrt{-1} \\ \hat{U}_1 &= -2G_{13} + G_{46} + G_{57} + (2G_{12} - G_{47} - G_{56})\sqrt{-1} \\ U_2 &= -2G_{15} - G_{26} + G_{37} - (2G_{14} + G_{27} + G_{36})\sqrt{-1} \\ \hat{U}_2 &= -2G_{15} - G_{26} + G_{37} + (2G_{14} + G_{27} + G_{36})\sqrt{-1} \\ U_3 &= 2G_{17} - G_{24} + G_{35} - (-2G_{16} + G_{25} + G_{34})\sqrt{-1} \\ \hat{U}_3 &= 2G_{17} - G_{24} + G_{35} + (-2G_{16} + G_{25} + G_{34})\sqrt{-1} \\ U_{12} &= G_{24} + G_{35} - (-G_{25} + G_{34})\sqrt{-1} \\ \hat{U}_{12} &= G_{24} + G_{35} + (-G_{25} + G_{34})\sqrt{-1} \\ U_{23} &= G_{46} + G_{57} - (-G_{47} + G_{56})\sqrt{-1} \\ \hat{U}_{23} &= G_{46} + G_{57} + (-G_{47} + G_{56})\sqrt{-1} \\ U_{31} &= G_{26} + G_{37} - (G_{27} - G_{36})\sqrt{-1} \\ \hat{U}_{31} &= G_{26} + G_{37} + (G_{27} - G_{36})\sqrt{-1} \\ \hat{U}_{31} &= G_{26} + G_{37} + (G_{27} - G_{36})\sqrt{-1} \\ \end{split}$$

³⁾ The inner product (u, v), where $u = \sum_{i=0}^{7} e_i u_i$, $v = \sum_{i=0}^{7} e_i v_i$, is meant by $\sum_{i=0}^{7} u_i v_i$.

Then, for $t = t(\theta_1, \theta_2, \theta_3)$ we have

$$\begin{array}{ll} tH_1=H_1, & tH_2=H_2 \\ tU_1=U_1\exp{(\sqrt{-1}\,\theta_1)}, & t\hat{U}_1=\hat{U}_1\exp{(-\sqrt{-1}\,\theta_1)}, \\ tU_2=U_2\exp{(\sqrt{-1}\,\theta_2)}, & t\hat{U}_2=\hat{U}_2\exp{(-\sqrt{-1}\,\theta_2)}, \\ tU_3=U_3\exp{(\sqrt{-1}\,(\theta_1-\theta_2))}, & t\hat{U}_3=\hat{U}_3\exp{(-\sqrt{-1}\,(\theta_2-\theta_1))}, \\ tU_{23}=U_{23}\exp{(\sqrt{-1}\,(\theta_2-\theta_3))}, & t\hat{U}_{23}=\hat{U}_{23}\exp{(\sqrt{-1}\,(\theta_3-\theta_2))}, \\ tU_{31}=U_{31}\exp{(\sqrt{-1}\,(\theta_3-\theta_1))}, & t\hat{U}_{31}=\hat{U}_{31}\exp{(\sqrt{-1}\,(\theta_1-\theta_3))}. \end{array}$$

One of them, for example, $tU_{12} = U_1 \exp{(\sqrt{-1}(\theta_1 - \theta_2))}$ will be proved. To do so, we need to show $(tU_{12})(e_i) = U_{12}(e_i) \exp{(\sqrt{-1}(\theta_1 - \theta_2))}$ for $i = 0, 1, \dots, 7$. We shall show again one of them, for example, for i = 4. $(tU_{12})(e_4) = t(U_{12}(t^{-1}e_4)) = t(U_{12}(e_4\cos\theta_2 - e_5\sin\theta_2)) = t((e_2 - e_3\sqrt{-1})\cos\theta_2 - (e_3 + e_2\sqrt{-1})\sin\theta_2) = t(e_2 - e_3\sqrt{-1})(\cos\theta_2 - \sqrt{-1}\sin\theta_2) = ((e_2\cos\theta_1 + e_3\sin\theta_1) - (-e_2\sin\theta_1 + e_3\cos\theta_1)\sqrt{-1})(\cos\theta_2 - \sqrt{-1}\sin\theta_2) = (e_2 - e_3\sqrt{-1})(\cos\theta_1 + \sqrt{-1}\sin\theta_1)(\cos\theta_2 - \sqrt{-1}\sin\theta_2) = (e_2 - e_3\sqrt{-1})\exp{(\sqrt{-1}(\theta_1 - \theta_2))} = U_{12}(e_4)\exp{(\sqrt{-1}(\theta_1 - \theta_2))}$. Thus we have proved these formulae. Hence, $\phi_{G_2}(g_2^C) = 2 + \alpha + \alpha^{-1} + \beta + \beta^{-1} + \gamma + \gamma^{-1} + \alpha\beta^{-1} + \alpha^{-1}\beta + \beta\gamma^{-1} + \beta^{-1}\gamma + \gamma\alpha^{-1} + \gamma^{-1}\alpha = \lambda_2^C - \lambda_1^C$. Thus we have the following

Theorem. The class of G_2 -C-module \mathfrak{g}_2^C in $R(G_2)$ is $\lambda_2^C - \lambda_1^C$, where \mathfrak{g}_2 is the Lie algebra of G_2 .

Since the complexification $c: RO(G_2) \to R(G_2)$ is an isomorphism and \mathfrak{g}_2 is a G_2 -R-module, we have also in $RO(G_2)$ the following

Theorem. The class of G_2 -**R**-module \mathfrak{g}_2 in $RO(G_2)$ is $\lambda_2 - \lambda_1$.

9. SO(7) and Spin(7)

Let SO(8) be the rotation group in C and SO(7) be the rotation group in L_1 , namely SO(7) is a subgroup of SO(8) consisting of all elements $x \in SO(8)$ such that $x(e_0) = e_0$.

We remember the principle of triality in SO(8) [2].

For every $x_1 \in SO(8)$, there exist x_2 , $x_3 \in SO(8)$ such that

$$(9.1) x_1(u)x_2(v) = x_3(uv). for u, v \in \mathbb{C},$$

and for x_1 , such x_2 , x_3 are unique up to the sign.

If $x_1 \in SO(7)$, we have $x_2 = x_3$. For, if we put $u = e_0$ in (9.1), we have $x_1(e_0) \cdot x_2(v) = x_3(v)$, hence $x_2(v) = x_3(v)$ for all $v \in \mathfrak{C}$. This implies that $x_2 = x_3$.

Consider the subgroup of SO(8), denoted by Spin(7), consisting of all elements $x \in SO(8)$ such that for some $x \in SO(7)$

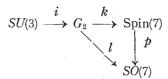
$$x(u)\tilde{x}(v) = \tilde{x}(uv)$$
 for all $u, v \in \mathbb{C}$.

Spin(7) is a simply connected group and the projection $p: Spin(7) \rightarrow SO(7)$ defined by $p(\hat{x}) = x$ is a twofold covering of SO(7).

 G_2 is a subgroup of SO(7) and Spin(7) and

$$G_2 = SO(7) \cap Spin(7)$$
,

and so we have the commutative diagram



where i, k, l are inclusions.

We shall choose maximal tori T' and \widetilde{T}' in SO(7) and Spin(7) respectively as follows. Let $\tau_i: \mathbf{R} \to SO(7)$ be the homomorphism given by the relations

(9.2)
$$\begin{cases} \tau_{i}(\theta)(e_{2i}) = e_{2i}\cos\theta + e_{2i+1}\sin\theta \\ \tau_{i}(\theta)(e_{2i+1}) = -e_{2i}\sin\theta + e_{2i+1}\cos\theta \\ \tau_{i}(\theta)(e_{j}) = e_{j} & \text{for } j \neq 2i, \ 2i + 1 \end{cases}$$

for i = 1, 2, 3. Let $\tau : \mathbf{R}^3 = \mathbf{R} \times \mathbf{R} \times \mathbf{R} \to SO(7)$ be defined by $\tau(\theta_1, \theta_2, \theta_3) = \tau_1(\theta_1)\tau_2$ $(\theta_2)\tau_3(\theta_3)$ for $(\theta_1, \theta_2, \theta_3) \in \mathbf{R}^3$. Then $T' = \tau(\mathbf{R}^3)$ is a maximal torus in SO(7).

Obviously $\widetilde{T}' = p^{-1}(\widetilde{T}')$ is a maximal torus in Spin(7). However we need to describe \widetilde{T}' explicitly. Let $\widetilde{\tau}_i : \mathbf{R} \to \mathrm{Spin}(7)$ be the homomorphism defined by formulae

(9. 3)
$$\begin{cases} \tilde{\tau}_{1}(\theta)(e_{0}) = e_{0} \cos \theta/2 + e_{1} \sin \theta/2, & \tilde{\tau}_{1}(\theta)(e_{1}) = -e_{0} \sin \theta/2 + e_{1} \cos \theta/2 \\ \tilde{\tau}_{1}(\theta)(e_{2}) = e_{2} \cos \theta/2 + e_{3} \sin \theta/2, & \tilde{\tau}_{1}(\theta)(e_{3}) = -e_{2} \sin \theta/2 + e_{3} \cos \theta/2 \\ \tilde{\tau}_{1}(\theta)(e_{4}) = e_{4} \cos \theta/2 - e_{5} \sin \theta/2, & \tilde{\tau}_{1}(\theta)(e_{5}) = e_{4} \sin \theta/2 + e_{5} \cos \theta/2 \\ \tilde{\tau}_{1}(\theta)(e_{6}) = e_{6} \cos \theta/2 - e_{7} \sin \theta/2, & \tilde{\tau}_{1}(\theta)(e_{7}) = e_{6} \sin \theta/2 + e_{7} \cos \theta/2 \end{cases}$$

$$(9. 4)$$

$$\begin{cases} \tilde{\tau}_{2}(\theta)(e_{0}) = e_{0} \cos \theta/2 + e_{1} \sin \theta/2, & \tilde{\tau}_{2}(\theta)(e_{1}) = -e_{0} \sin \theta/2 + e_{1} \cos \theta/2, \\ \tilde{\tau}_{2}(\theta)(e_{2}) = e_{2} \cos \theta/2 - e_{3} \sin \theta/2, & \tilde{\tau}_{2}(\theta)(e_{3}) = e_{2} \sin \theta/2 + e_{5} \cos \theta/2, \\ \tilde{\tau}_{2}(\theta)(e_{4}) = e_{4} \cos \theta/2 + e_{5} \sin \theta/2, & \tilde{\tau}_{2}(\theta)(e_{5}) = -e_{4} \sin \theta/2 + e_{5} \cos \theta/2, \\ \tilde{\tau}_{2}(\theta)(e_{6}) = e_{6} \cos \theta/2 - e_{7} \sin \theta/2, & \tilde{\tau}_{2}(\theta)(e_{7}) = e_{6} \sin \theta/2 + e_{7} \cos \theta/2, \\ \tilde{\tau}_{3}(\theta)(e_{0}) = e_{0} \cos \theta/2 + e_{1} \sin \theta/2, & \tilde{\tau}_{3}(\theta)(e_{1}) = -e_{0} \sin \theta/2 + e_{1} \cos \theta/2, \\ \tilde{\tau}_{3}(\theta)(e_{4}) = e_{2} \cos \theta/2 - e_{3} \sin \theta/2, & \tilde{\tau}_{3}(\theta)(e_{3}) = e_{2} \sin \theta/2 + e_{3} \cos \theta/2, \\ \tilde{\tau}_{3}(\theta)(e_{4}) = e_{4} \cos \theta/2 - e_{5} \sin \theta/2, & \tilde{\tau}_{3}(\theta)(e_{5}) = e_{4} \sin \theta/2 + e_{5} \cos \theta/2, \\ \tilde{\tau}_{3}(\theta)(e_{4}) = e_{4} \cos \theta/2 - e_{5} \sin \theta/2, & \tilde{\tau}_{3}(\theta)(e_{5}) = e_{4} \sin \theta/2 + e_{5} \cos \theta/2, \\ \tilde{\tau}_{3}(\theta)(e_{6}) = e_{6} \cos \theta/2 - e_{5} \sin \theta/2, & \tilde{\tau}_{3}(\theta)(e_{5}) = e_{4} \sin \theta/2 + e_{5} \cos \theta/2, \\ \tilde{\tau}_{3}(\theta)(e_{6}) = e_{6} \cos \theta/2 + e_{7} \sin \theta/2, & \tilde{\tau}_{3}(\theta)(e_{5}) = e_{4} \sin \theta/2 + e_{5} \cos \theta/2, \\ \tilde{\tau}_{3}(\theta)(e_{6}) = e_{6} \cos \theta/2 + e_{7} \sin \theta/2, & \tilde{\tau}_{3}(\theta)(e_{5}) = e_{4} \sin \theta/2 + e_{7} \cos \theta/2. \end{cases}$$

Let $\tilde{\tau}: \mathbf{R}^3 \to \mathrm{Spin}(7)$ be a map defined by $\tilde{\tau}(\theta_1, \theta_2, \theta_3) = \tilde{\tau}_1(\theta_1)\tilde{\tau}_2(\theta_2)\tilde{\tau}_3(\theta_3)$ for $(\theta_1, \theta_2, \theta_3) \in \mathbf{R}^3$. Then we have

$$\tau(\theta_1, \theta_2, \theta_3)(u)\tilde{\tau}(\theta_1, \theta_2, \theta_3)(v) = \tilde{\tau}(\theta_1, \theta_2, \theta_3)(uv)$$

for $(\theta_1, \theta_2, \theta_3) \in \mathbb{R}^3$ and $u, v \in \mathbb{G}$. Therefore $\tilde{\tau}(\theta_1, \theta_2, \theta_3)$ covers $\tau(\theta_1, \theta_2, \theta_3)$ by the projection p, so that $\tilde{\tau}(\mathbb{R}^3) = p^{-1}(T')$ (which was denoted by \widetilde{T}'). Hence we have the following commutative diagram

$$\mathbb{R}^{3} \xrightarrow{\widetilde{T}'} \xrightarrow{\widetilde{J}} \frac{\widetilde{J}'}{p} \xrightarrow{j} \stackrel{\text{Spin}(7)}{\downarrow p}$$

where j, \tilde{j} are inclusions.

10. Relations of $R(G_2)$ to R(SO(7)), R(Spin(7)) and R(SU(3))

Since SO(7) is the rotation group in L_1 , L_1 is an SO(7)-R-module, so that we have an SO(7)-C-module $M_1^C = L_1 \bigotimes_{\mathbf{R}} \mathbf{C}$.

We show that in M(SO(7))

$$(10.1) j^{\sharp}(M_1^C) = \mathbf{C} \oplus W_1 \oplus \widehat{W}_1 \oplus W_2 \oplus \widehat{W}_2 \oplus W_3 \oplus \widehat{W}_3,$$

where W_i is a 1-dimensional T'-C-module and \hat{W}_i is its dual T'-C-module for i = 1, 2, 3.

In fact, let C, W_i and \widehat{W}_i (i=1, 2, 3) be the same C-modules as in the section 5. Then, for $t' = \tau(\theta_1, \theta_2, \theta_3) \in T'$, we have $t'u_i = u_i \exp(\sqrt{-1}\theta_i)$ and $t'\widehat{u}_i = \widehat{u}_i \exp(-\sqrt{-1}\theta_i)$ for i=1, 2, 3. These prove the above result (10.1).

Put
$$\phi_{T'}(W_1)=a$$
, $\phi_{T'}(W_2)=b$ and $\phi_{T'}(W_3)=c$, then we have

$$R(T') = \mathbf{Z} \lceil a, a^{-1}, b, b^{-1}, c, c^{-1} \rceil$$

In R(SO(7)), put $\phi_{SO(7)}(M_1^C) = \mu_1^C$, $\phi_{SO(7)}(A^2(M_1^C)) = \mu_2^C$ and $\phi_{SO(7)}(A^3(M_1^C)) = \mu_3^C$, then by (10.1)

$$\begin{split} j^*(\mu_1^C) &= 1 + (a+a^{-1}) + (b+b^{-1}) + (c+c^{-1}) \\ j^*(\mu_2^C) &= 3 + (a+a^{-1}) + (b+b^{-1}) + (c+c^{-1}) \\ &\quad + (a+a^{-1})(b+b^{-1}) + (b+b^{-1})(c+c^{-1}) + (c+c^{-1})(a+a^{-1}) \\ j^*(\mu_1^C) &= 3 + 2(a+a^{-1}) + 2(b+b^{-1}) + 2(c+c^{-1}) \\ &\quad + (a+a^{-1})(b+b^{-1}) + (b+b^{-1})(c+c^{-1}) + (c+c^{-1})(a+a^{-1}) \\ &\quad + (a+a^{-1})(b+b^{-1})(c+c^{-1}). \end{split}$$

And we have [4]

$$R(SO(7)) = \mathbf{Z}[\mu_1^C, \mu_2^C, \mu_3^C].$$

Next, since Spin(7) is a subgroup of SO(8), Spin(7) operates on \mathfrak{C} . Thus \mathfrak{C} is

Існіко Уокота

a Spin(7)-R-module, whence we have a Spin(7)-C-module $\mathbf{A}^C = \mathfrak{C} \otimes_{\mathbf{R}} \mathbf{C}$. We have in $M(\operatorname{Spin}(7))$

$$(10. 2) j^{*}(\underline{A}^{C}) = \widetilde{W}_{1} \otimes \widetilde{W}_{2} \otimes \widetilde{W}_{3} \oplus \widehat{W}_{1} \otimes \widehat{W}_{2} \otimes \widehat{W}_{3} \oplus \widetilde{W}_{1} \otimes \widehat{W}_{2} \otimes \widehat{W}_{3} \\ \oplus \widehat{W}_{1} \otimes \widetilde{W}_{2} \otimes \widetilde{W}_{3} \oplus \widehat{W}_{1} \otimes \widetilde{W}_{2} \otimes \widehat{W}_{3} \oplus \widetilde{W}_{1} \otimes \widehat{W}_{2} \otimes \widetilde{W}_{3} \\ \oplus \widehat{W}_{1} \otimes \widehat{W}_{2} \otimes \widetilde{W}_{3} \oplus \widetilde{W}_{1} \otimes \widetilde{W}_{2} \otimes \widehat{W}_{3} \\ = (\widetilde{W}_{1} \oplus \widehat{W}_{1}) \otimes (\widetilde{W}_{2} \oplus \widehat{W}_{2}) \otimes (\widetilde{W}_{3} \oplus \widehat{W}_{3}),$$

where \widetilde{W}_i is a 1-dimensional \widetilde{T}' -C-module and $\widehat{\widetilde{W}}_i$ is its dual \widetilde{T}' -C-module for i=1,2,3.

In fact, take an additive C-base $u_i = e_{2i} - e_{2i+1}\sqrt{-1}$, $\hat{u}_i = e_{2i} + e_{2i+1}\sqrt{-1}$ for i = 0, 1, 2, 3 in \mathcal{A}^C . Then, for $\tilde{t} = \hat{\tau}(\theta_1, \theta_2, \theta_3) \in \widetilde{T}'$, using (9.3)—(9.5), we have

$$\begin{cases} \tilde{t}u_{1} = u_{1} \exp(\sqrt{-1} (\theta_{1} + \theta_{2} + \theta_{3})/2), & \tilde{t}\hat{u}_{1} = \hat{u}_{1} \exp(\sqrt{-1} (-\theta_{1} - \theta_{2} - \theta_{3})/2), \\ \tilde{t}u_{2} = u_{2} \exp(\sqrt{-1} (\theta_{1} - \theta_{2} - \theta_{3})/2), & \tilde{t}\hat{u}_{2} = \hat{u}_{2} \exp(\sqrt{-1} (-\theta_{1} + \theta_{2} + \theta_{3})/2), \\ \tilde{t}u_{3} = u_{3} \exp(\sqrt{-1} (-\theta_{1} + \theta_{2} - \theta_{3})/2), & \tilde{t}\hat{u}_{3} = \hat{u}_{3} \exp(\sqrt{-1} (\theta_{1} - \theta_{2} + \theta_{3})/2), \\ \tilde{t}u_{4} = u_{4} \exp(\sqrt{-1} (-\theta_{1} - \theta_{2} + \theta_{3})/2), & \tilde{t}\hat{u}_{4} = \hat{u}_{4} \exp(\sqrt{-1} (\theta_{1} + \theta_{2} - \theta_{3})/2). \end{cases}$$

These prove (10, 2),

Now, put
$$\phi_{\widetilde{T}'}(\widetilde{W}_1) = a^{\frac{1}{2}}$$
, $\phi_{\widetilde{T}'}(\widetilde{W}_2) = b^{\frac{1}{2}}$ and $\phi_{\widetilde{T}'}(\widetilde{W}_3) = c^{\frac{1}{2}}$, then we have $R(\widetilde{T}') = \mathbf{Z} \ \lceil a, \ a^{-1}, \ b, \ b^{-1}, \ c, \ c^{-1}, \ (a \ b \ c)^{\frac{1}{2}} \rceil$

Denote
$$\phi_{\text{Spin}(7)}(\underline{A}^C) = \underline{A}^C$$
, then we have by (10. 2) $\tilde{j}^*(\underline{A}^C) = (a^{\frac{1}{2}} + a^{-\frac{1}{2}})(b^{\frac{1}{2}} + b^{-\frac{1}{2}})(c^{\frac{1}{2}} + c^{-\frac{1}{2}}).$

Hence, Δ^{C} coincides with an element induced by a unique irreducible representation Δ_{7} which is containd in the Cliffiord algebra C_{7}^{C} (for notations Δ_{7} and C_{7}^{C} we refer to [4] and [1] respectively). And we have [4]

$$R(\operatorname{Spin}(7)) = \mathbf{Z} [\tilde{\mu}_1^C, \tilde{\mu}_2^C, \Delta^C],$$

where $\tilde{\mu}_1^C = p^*(\mu_1^C)$, $\tilde{\mu}_2^C = p^*(\mu_2^C)$ and there exists a relation

$$(\Delta^C)^2 = p^*(1 + \mu_1^C + \mu_2^C + \mu_3^C).$$

As for SU(3), let N_1 and N_2 denote C-submodules of $\mathfrak{C} \otimes_{\mathbb{R}} \mathbb{C}$ with respectively additive bases $u_i = e_{2i} - e_{2i+1}\sqrt{-1}$ and $\widehat{u}_i = e_{2i} + e_{2i+1}\sqrt{-1}$ for i = 1, 2, 3. We shall show that these are invariant by SU(3). In fact, for $x \in SU(3)$, $xu_i = x(e_{2i} - e_{2i+1}\sqrt{-1}) = x((e_0 - e_1\sqrt{-1})e_{2i}) = x(e_0 - e_1\sqrt{-1})x(e_{2i}) = (e_0 - e_1\sqrt{-1})x(e_{2i})$. Note that $x(e_{2i})$ is a linear combination of e_2 ,, e_7 ; $x(e_{2i}) = \sum_{i=2}^7 e_i a_i = \sum_{i=1}^3 e_{2i} a_{2i} + \sum_{i=1}^3 e_{2i+1} a_{2i+1}$. Obviously, $(e_0 - e_1\sqrt{-1})(\sum_{i=1}^3 e_{2i}a_{2i}) = \sum_{i=1}^3 u_i a_{2i} \in N_1$. On the other hand, $(e_0 - e_1\sqrt{-1})(\sum_{i=1}^3 e_{2i+1}a_{2i+1}) = \sum_{i=1}^3 (e_0 - e_1\sqrt{-1}) e_1e_{2i}a_{2i+1} = \sum_{i=1}^3 (e_1 + e_0\sqrt{-1})e_{2i}a_{2i+1}$

 $=\sum_{i=1}^{3}(e_0-e_1\sqrt{-1})\,e_{2i}\,\sqrt{-1}\,a_{2i+1}=\sum_{i=1}^{3}u_i\sqrt{-1}\,a_{2i+1}\in N_1, \text{ whence follows that }xu_i\in N_1\text{ for }i=1,\ 2,\ 3.$ Similarly $xu_i\in N_2$ for $x\in SU(3),\ i=1,\ 2,\ 3.$

Let $j_1: T \to SU(3)$ denote the inclusion. Then, analogously to the case of G_2 , we have in M(T)

(10.3)
$$\begin{cases} j_1^{\sharp}(N_1) = W_1 \oplus W_2 \oplus W_3 \\ j_1^{\sharp}(N_2) = \hat{W}_1 \oplus \hat{W}_2 \oplus \hat{W}_3, \end{cases}$$

where W_i is a 1-dimensional T-C-module and \widehat{W}_i is its dual T-C-module for i=1, 2, 3, and there exists a relation $W_1 \otimes W_2 \otimes W_3 = \mathbb{C}$.

Hence we have

$$R(T) = \mathbf{Z} \lceil \alpha, \alpha^{-1}, \beta, \beta^{-1}, \gamma, \gamma^{-1} \rceil / (\alpha \beta \gamma - 1),$$

where $\alpha = \phi_T(W_1)$, $\beta = \phi_T(W_2)$ and $\gamma = \phi_T(W_3)$. Put $\phi_{SU(3)}(N_1) = \nu_1$ and $\phi_{SU(3)}(N_2) = \nu_2$, then we have by (10.3)

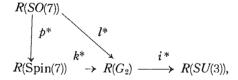
$$j_1^*(\nu_1) = \alpha + \beta + \gamma,$$

 $j_1^*(\nu_2) = \alpha^{-1} + \beta^{-1} + \gamma^{-1} = \beta \gamma + \gamma \alpha + \alpha \beta = j_1^*(\phi_{SIRO}(\Lambda^2(N_1)).$

So that we have [4],

$$R(SU(3)) = \mathbf{Z} [\nu_1, \nu_2].$$

Thus, in the following diagram



that is,

$$\mathbf{Z} \begin{bmatrix} \mu_{1}^{C}, & \mu_{2}^{C}, & \mu_{3}^{C} \end{bmatrix}$$

$$\downarrow p^{*} \qquad \qquad l^{*}$$

$$\mathbf{Z} \begin{bmatrix} \tilde{\mu}_{1}^{C}, & \tilde{\mu}_{2}^{C}, & \Delta^{C} \end{bmatrix} \longrightarrow \mathbf{Z} \begin{bmatrix} \lambda_{1}^{C}, & \lambda_{2}^{C} \end{bmatrix} \longrightarrow \mathbf{Z} \begin{bmatrix} \nu_{1}, & \nu_{2} \end{bmatrix},$$

we have the following relations

$$\begin{cases} p^*(\mu_1^C) = \tilde{\mu}_1^C, & p^*(\mu_1^C) = \tilde{\mu}_2^C, & p^*(\mu_2^C) = (\Delta^C)^2 - 1 - \tilde{\mu}_1^C - \tilde{\mu}_2^C \\ k^*(\tilde{\mu}_1^C) = \lambda_1^C, & k^*(\tilde{\mu}_2^C) = \lambda_2^C, & k^*(\Delta^C) = 1 + \lambda_1^C \\ l^*(\mu_1^C) = \lambda_1^C, & l^*(\mu_2^C) = \lambda_2^C, & l^*(\mu_3^C) = (\lambda_1^C)^2 + \lambda_1^C - \lambda_2^C \\ i^*(\lambda_1^C) = 1 + \nu_1 + \nu_2, & i^*(\lambda_2^C) = 2(\nu_1 + \nu_2) + \nu_1\nu_2. \end{cases}$$

As for RO(SO(7)) and RO(Spin(7)), we can discuss in the real range. Using the fact that the complexification c is an isomorphism, we have $RO(SO(7)) = \mathbf{Z} \llbracket \mu_1, \ \mu_2, \ \mu_3 \rrbracket$ and $RO(Spin(7)) = \mathbf{Z} \llbracket \tilde{\mu}_1, \ \tilde{\mu}_2, \ \tilde{\mu}_1 \rrbracket$ where μ_i is the class of $A^i(L_1)$ for $i = 1, 2, 3, \ \tilde{\mu}_i = p^*(\mu_i)$ for i = 1, 2 and $\tilde{\Delta}$ is the class of $\tilde{\Delta}$. And in the diagram

$$RO(SO(7))$$

$$p^* \qquad l^*$$
 $RO(Spin(7)) \longrightarrow RO(G_2)$

we have the same relations as in the complex case, i.e.

$$\begin{cases} p^*(\mu_1) = \tilde{\mu}_1, & p^*(\mu_2) = \tilde{\mu}_2, & p^*(\mu_3) = \Delta^2 - 1 - \mu_1 - \mu_2 \\ k^*(\tilde{\mu}_1) = \lambda_1, & k^*(\tilde{\mu}_2) = \lambda_2, & k^*(\Delta) = 1 + \lambda_1 \\ l^*(\mu_1) = \lambda_1, & l^*(\mu_2) = \lambda_2, & l^*(\mu_3) = \lambda_1^2 + \lambda_1 - \lambda_2. \end{cases}$$

References

- [1] ATIYAH, M, F., R. BOTT, and A. SHAPIRO, Clifford modules, Topology, 3, 3-38, 1964.
- [2] FREUDENTHAL, H., Oktaven, Ausnahmengruppen und Oktavengeometrie, Mathematish Instituut der Rijks Univerteit to Utrecht, 1951.
- [3] Jacobson, N., Cayley numbers and simple Lie algebra of type G, Duke Math. Jour., 5, 534-551, 1939.
- [4] $M_{\rm ILNOR}$, J., The Representation Rings of some Classical Groups, Notes for Mathematics 402, May 1963.