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1. Introduction

In this paper, we shall determine the real representation ring RO(G,) and
the complex representation ring R(G;) of Gp, which is a simply connected compact
simple Lie group of exceptional type G. G, is obtained as the group of all auto-
morphisms in the division ring € of Cayley numbers and G, invaries the set L,
of all pure imaginary Cayley numbers, so that L; is a GZ-R-modulel? The result
is as follows : RO(G,) is a polynomial ring Z[1,, 4] with two variables 4, and 2,
where 4, is the class of L, in RO(G,) and 2, is the class of the exterior G,-R-
module 4%L,) in RO(G,). The structure of R(G,) is also a polynomial ring Z[Zlc , ch]
with two variables ¢ and 1§, where 4%, A5 are the complexification of %, 2,
respectively. In the final section, we consider the relations of R(G:) to R(SO(7)),
R(Spin(7)) and R(SU(3).

2. Representation rings

Let G be a topological group. By a G-K-module (K=R or C)g)is meant a finite
dimensional right K-module V together with a left action of G. That is, for
each x & G, u € V there should be defined an element x# € V depending coritinu-
ously on x and #, so that

(2. 1) x4 v) = xu + xv
(2.2) x(U2) = (xu)A

(2.3) (xy)u) = x(yn)

(2. 4) eu = u

for x, ye G, u, veV, 2 K and ¢ denotes the identity of G.

Two G-K-modules V, and V, are G-K-isomorphic if there exists a G-K_-iso-
morphism f:V, >V, that is f is a linear isomorphism such that ful) = flu)l, flxu)
=xflu) foruesV, 1€ K, x<G.

Let Mg(G) denote the set of G-K-isomorphism classes [V ] of G-K-modules V.

1) R is the field of real numbers,
2) C is the field of complex numbers.



126 Icuiro Yokora

[V] will also be denoted by V.

The direct sum V; @ V, and the tensor product V; ® V; of two G-K-modules
V, and Vs define a semiring structure on Mx(G). The representation ring Rx(G) =
(Rx(G), ¢) is the universal ring associated with the semiring M(G); that is, ¢;:
M#(G) —~ Rx(G) is a semiring homomorphism and for any ring A and any semiring
homomorphism ¢ : Mx(G) - A, there exists a unigue ring homomorphism & : RyG)
— A such that ¢ = D

Ri(G) is a commutative ring with the unit 1, where 1 is the class of K with
trivial group action.

Note that Mx(G) has two further oprations : For each G-K-module V, there
correspond the exterior G-K-module A1(V) (0 <7 <dimV) and the dual G-K-
module /17(1//\ is Homg(V, K) as K-module and group action is (x&)(u) = &(x~1u),
for x € G, € € Homgx(V, K), u V)

Let H and G be topological groups and % :H->»G be a continuous homo-
morphism. Then, to every G-K-module V, there corresponds a H-K-module A#V)
by the rule of group action

yu = h(yu, forye H, ueV.

The correspondence V —> #V) gives rise to a ring homomorphism i* : Rx(G)—>
Ry(H) such that the following diagram is commutative.

h#
MK(G) B MK(H)
V¢G B Y¢H
Re(G)—> Rx(H).
Mg(G), Rr(G) are denoted by MO(G), RO(G) and MdG), RclG) by M(G), R(G)

respectively.

3. Cayley numbers € and Group G
Let € denote the division ring of Cayley numbers. € is an 8-dimensional
R-module with an additive base €, e, - , ¢, and ring structure is given as

follows ;

¢, is the unit of €,
e’ = —e,, for i %0,

e.e; = —e;e; for i, 7540, i,

and



Representation Rings of Group G, 127

ey

(for example, €8s = €5, €285 = €, €264 = —¢5)

=73 ez

ez és €g

Let G, be the group of all automorphisms in €, that is, each x € G, satisfies
3.1) x(u + V) = xu + xv

(

(3.2) x(ud) = (xu)A foru, v, 1R
(3.3) x(uv) = x(u)x(v)

(3.4) x is non-singular

As'is well known, G, is a simply connected compact simple Lie group of ex-
ceptional type G [3].

Obviously, € is a Gi-R-module. By (3,3), (3,4), we have x(e;) = ¢, for x € G,.
Therefore, if we denote by L; the R-submodule of € generated by e, - , €
additively, then L, is also a G;-R-module and € is decomposable into the direct
sum of two G:-R-modules R (with trivial group action) and L;; € = R® L,. The
complexification L =L;®zC of L, is a G3-C-module and it will play an important

role in the sequel.

4. Maximal torus T and Weyl group W of G
G, has a subgroup SU(3) consisting of all elements x of G5 such that x(e;) =
¢;. Since the ranks of Gy and SU(3) are both 2, any maximal torus in SU(3) is

also a maximal torus in G..
Let £, : R—> G, for i = 1,2 be the homomorphisms given by the relations

tl(ﬁ)(ej) = €; for ]: O, 1, 4
4.1)

t{0)ey) = escos @ + ezsin b

t0)e;) = e; for j=0, 1, 2.
(4. 2)

to(0)ey) = egcos O + essin 0

Let 1:R2=R x R - G; be defined by
U4, f?-z) = 11(61)5(6-)

for (6y, 0;) € R%. Define 7 = #R?), then T is a maximal torus in G.; T < SU@3B)
G,
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From (4.1), we have

11(0)es) = t:(0)erez) = 1,(0)er)t1(0)e2)

= ¢i(escos ) + egsin ) = —egsinf + ez cos ¢
ti(0)(eres) = t:(0)es)t (0)es) = eres = &5
£1(0)esen) = i(0)ea)ts(0)e2)

eqescos 0 + egsin ) = ¢gcos — e;sin 0
1(0)e) = ti(0)eseq) = 11(0)e)t1(O) es)

=e,(es cos 0 — e, sin 0) = ¢z sin 0 + ¢; cos 0.

lI

I

t4(0)es)
(4.3) £1(0)es)

f

Similarly, from (4.2) we have

t0)es) =

4. 4) 1o(0)(es) = —eysin 0 + e5cos
to(0)eg) = eg cos 6 — e; sin 6
1o(0)(er) = es sin 6 + e cos 0.

The Weyl group W=W(G,) of G, is N1(G:)/T, where Nr(G.)is the normalizer

of T in Gy If x & N7(G), then x(e;)= ze;. In fact, since x%x 7T for any
7 7
t & T, we have x-'tx(e)) = e;, hence tx(e)) = #(e;). Put x(e) = Y \e;a; (@; € R, Da?

7=1

-~

7
=1), then /(D) ea)=> lea, for all t € T. Using (4. 1)—(4. 4),
i=1 i=1
e,ay -+ (€5 cos 0; + ey sin 6,)as + (—egsin 0; + e, cos 04)ag
+ (64 COos (92 4+ (23 Sin 02)@4 -+ (—34 Sin 02 -+ €5 COS 02)(15
+ (€5 cos (b; -+ 0s) — e; sin (0 + Og)as + (es sin (8; + b2) + e; cos (0, + Gz))a;
= 1 + eyly - eeon + eqa; for all 6, 6, € R.

Hence we have

aycos 0y — agsin 0y = a,
ayCos Oy — azsin G, = a, for all 4,, #,;, 0; € R,
ag Cos B3 — a; sin 05 = ag

where 0; = —(0, + 0;), so that we have ag =----- =a; = 0. This implies that x(e,)
= e,q, = ey

In case x(e;) = €, ¥ is an element of the normalizer N7(SU@3)) of T in SU(3).
Therefore W(G;) contains the Weyl group W(SU(3)) = No(SU3))/T of SU(3), which
is the symmetric group consisting of all permutations of 3 variables 6, 8, 6.
In case x(e)) = —e;, if we choose an element ¥y € Gy such that y(e;) = e; for 1 =0,
2,4, 6 and ye)= —e; for i=1, 3,5 7, then yx € N¢(SU(3)) and » induces the
change of the sign (64, s, 03) > (—8y, —8s, —0;). W(Gs) has 12 elements.
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5. G,-C-module L = L;®,C and RT)
Let jo : T — G, denote the inclusion. In j : M(G,) —» M(T), we have
. O\
IHLS) =COW, @ W, W0 WO W,® W,
where W, is 1-dimensional T-C-module and I//V\,- is the dual T-C-module of W;, for
i=1, 2, 3. And there exist relations

W, W, =C, for i =1, 2, 3,
W, Q Wo® W, =

In fact, let C be the C-module with base ¢;, and W,, VI/;, be C-modules with
base #; = @y — €30 — 1, B; = ey; + €500/ — 1 respectively for i=1, 2, 3. For
t= t(ﬁl, 02):

(5. 1) tel = €y,

tuy = 0y, 0) (s~ exV/— 1) = t(01) (e — ex/ — 1)
= (€2 cOS 8y + e38in 0;) — (—eysin 0, + €5 cos O, 0/ — 1

6.2) = (€2 — 6’3’\/:T) (cos Oy '|"\/:‘—f sin ;) = u, exp ('\/ji—ﬁl)
1, = @, exp ((*’\/:Tgl)-
Similarly
{ tuy = s exp((V/— 16y)
(5. 3) —
@y = My exp (—/— 10)),
{ iy = sz exp{—+/— L{f; + 0,)
(5. 4) _
z‘@3 = ii\g exXp ('\/— 1 (01 + 02))

Since ey, u,, @y, 4y, Wy #;, and %3 are an additive base of Lf, formulae (5. 1)
—(5. 4) yield the desired result.
Put ¢ (W) =, ¢(Ws) =5, and ¢ (W) =7, then we have

R(T)=1la, &, B, 7, 1, 7" 1/(efr —1)
Define & = ¢ (L) and 1§ = ¢ (AXLS). Then we have
(5. 5) 7T ) = (g, (LS)) = (% (L))

=6 COW DM QW ® W@ W, ® W)
:1+a+a—1+‘3+‘@—1+r+rnl,

(5.6) 725G ) = jaMpe (AXLE ) = b (A% 3§ (LE))

=¢(4HCD W1@ W1 @ Wz@ Wz@ Ws@ Wa))
= (W, D W1@ W, ® Wz@ Ws(-BWa
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DCOW, QW DW, @ .OW, @ W, ® W, @ W,
N N N N N N

OW RQW, DWW QW OW,Q Wy W, ®Q W,

BCOW.QW,@W.®@ W, ® W@ W, ® W. @ W, @)
=atalt+ g4yttt ltaptapt far art

+atp Aot dalybatyT L By A Bt BB L
=atat+ B+ttt bt faft T A

t‘alftyrtaty A+ ltat T+ fat ]
=3+2Aatat+ B+t 47+

+apt +atBF Byt + B et 4

6. Ring structure of R(T )%V

Each element w : T—> T in the Weyl group W induces an automorphism w* ;
R(T)-> R(T) which permutes the 3 factors «, B, 7 together with the map of the
form (¢, 8, 1) > (@7, 8%, 1. Let R(T)" denote the subring of R(T) which is
invariant under these operations w* (called W-invariant briefly). Since j.* : R(Gy)
— R(T) is a ring monomorphism and the image of j.* is contained in R(T)¥ [4],
we will regard R(G,) as a subring of R(T)"; R(G,) c R(T)V. We shall determine
the ring structure of R(T)V.

Put vi=a+B8+7and vo = By + ya +af =at + gt + v (cf. section 8) then
vitvy=a+B+ytat+ g4t and vy —3=aft Faf A frt o By A+ pat
+7 e are W-invariant polynomials (the elementary W-invariant function !) and
we have ¥ =1 4 v; + v, and 45 = 2(v; + w) + vy from (5.5), (5.6).

Let fe R(TY. Case 1. If a monomial «”f" (m >n >0, m=£2n) appears in
f, a polynomial g 4+ % also appears in f, where

g — amﬁn _l" ‘Bman + ﬂ,mr" _|_ rﬂlﬂn + 7,ma{n + a:mrn.
h — a——m‘B—-n + ﬁ_ma_n + ﬁ_mr_.n + r..nlﬁ_n + 7,mma‘n + a,__.mr_n.

Since g is a symmetric function in 3 variables «, 5, 7, £ is representable as a
polynomial in the elementary symmetric polynomials a + 8+ 7 =v, af+ fr-+
ya = v, and afy = 1; that is, there exists a polynomial P(X, Y)e Z[X, Y] with
two variables X, Y such that g = P(y;, ;). On the other hand, % can be repre-
sented by the same polynomial P in the elementary symmetric polynomials
a4 Bt =0y alft Bl et = b B=v and a"lfipt = 1:
h = P(v,, v;). Therefore g- k= Py, va) + Plug, vy) is symmetric in variables v,
and v, so that g + % is a polynomial in v; + vy = 2? —1 and v = ,Zg —2210 42,

Hence g+ 2 is a polynomial in }tf and 1.

Case 2. If a monomial &” (m>0) appears in f, a polynomial g-+h also
appears in f, where g = & + 7 + ", h = a™ + " 4 =", The same statements
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as in Case 1 hold.

Case 3. If f contains a monomial «*" " (m > 0), then f contains a polynomial
&= a¥f” 4 B + Y7 A 7T 4 ¥ + o™ (note that am " = (BT =
7B ete. ). We’shall show that g is also a polynomial in /'lf and Xg, by the in-
duction with respect to m. First we have for m =1, a8+ Pl + B -+ 128 + 7%«
talr = a4 Byt fat et LT et =(a kB ) (@t ) =3 =
vy — 3= 4§ —24 — 1. Suppose that the assertion is true for £< m. Now, for
m, if we describe g = (@8 + B + B + 1*B + rPa + &%)" + h, h is a polynomial of
Case 1, 2 or the lower degree than m of Case 3. Hence by the induction, g is a
polynomial in 7§ and 5.

We have thus proved that any polynomial in R(T)¥ is representable as a

polynomial in ¢, i§.

In addition, 2§ and J$ are algebraically independent. In fact, »; and u, are
algebraically independent in Z{«, a %, 8, 87, 7, 71 1/(@fr — 1). Therefore, v; + v,
and »v, are also algebraically independent. Since i = v, + v, + 1 and 3 = 20v+

vg) + vvs, we have that ¢ and 1§ are algebraically independent. And we have

ZLXK, ] C RGy)c RTW =170, . Thus, we have the following
Theorem. The complex representation ring R(Gy) of Gy is a polynomial ring
Z (2%, 25 Jwith two variables I$ and 3§, where J§ is the class of the G,-C-module

LS in R(Gy) and 1§ is the class of the exterior G,-C-module ANLS)in R(G,).

7. Real representation ring RO(G:)

For a topological group G, we have the following correspondences :
¢ : ROG)— R(G), 7 : R(G) - ROG),

where ¢ is a ring homomorphism induced by the tensoring ¢’ with C (that is, ¢’
: MO(G)—> M(G) is defined by ¢/(V)= V®RC)) and 7 is a homomorphism defined
by the restricting scalars from C to R. As is well known, relation #¢ = 2 holds.
If G is a compact group, RO(G) is the free module generated by the classes of
irreducible G-R-modules, so that relation #¢ = 2 implies that ¢ is a ring mono-
morphism.

As for G;, since we have obviously ¢() = ¢ and ¢{2) = 7§, (where 2, and
A5 are the classes of Ly and 4%L,) in RO(G,) respectively), c¢ is an epimorphism.
Hence ¢ is an isomorphism. Thus we have the following

Theorem. The real rvepresentation ring RO(Gs) is a polynomial ving L[, 25
with two variables 2, and 2.
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8. Lie algebra g; and Element 1,—4,

The Lie algebra 8o(7) of SO(7) (the rotation group in L) consists of all R-
homomorphisms A of € satisfying

A(eo) =0
9
(A(w), v)+(u, Aw) =0 for u, ve 6.
Let Gi; (5, =1, -ooeeee , 7, i) be the R-homomorphism given by
Gl'j(ej) = &;
G;jle) = —e;
Gijlen) =0 for ki, j, 0<k=<T.

Then 21 elements G;; (1 =:¢<j=<7) are an additive base in 30(7).
The Lie algebra g, of G; is a Lie subalgebra of 80(7) consisting of all A such
that
Al + wA(w) = A(uv) for u#, v € €.
g2 is a Go-R-module with the group operation given by
(xA)u) = x(A(x~'u)) forxeG, Acq uet.
So that its complex form ¢§ = g,®rC is a G,-C-module. We shall show that
¢Gz(gg):zg — €. We choose an additive base in g§ as follows :

H, = 2Gy; — G5 — Ggy

Hy = —Gy + 2G5 — Gy

U= —2G; + G + Gsr — (2G13 — Gyg — GgV/— 1
(71 = —2G13+ G + Gs; + (2G1s — Gy — GV — 1
Uy = —2G 5 — Gog + Gy — (2G14 + Gog + GasV/ — 1
Ug = —2Gy5 — Gas + Gag + 2G14 + Gy + Gg)V/ — 1
Us = 2G13 — Gas + Gygs — (—2G15 + Gy + Gag/— 1
U;; = 2Gy — Gae + Gas + (—2Gi6 + Gos + Ga/ — 1
Uir = Guu + Gas — (—Gaz + GaW/'— 1

Uiz = Gos + Gas + (—Gas + Gu/— 1

Uy = Gug + Gt — (—Gar + Gt/ — T

U = G + Gy + (—Gyr + G/ — 1

Uy = Gy + Gy — (Goy - GaeV/ — 1

Uy = G + Gaz + (Gar — GegW/ = 1.

7 7 7
3) The inner product (x, v), where u = Z ey, V= E ¢;v;, is meant byz u;0;.
i=0 i=0 =0
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Then, for t = i(4,, 6, 6s) we have

tH, = H,, tHy, = H,

tU, = Uy exp(/—10), tU, = U, exp (—/— 1 6)),

tU, = Ugexp (W — 1 0y), t0y = Uy exp(—v/ =16y,

tUy = Uy exp (vV/— 1 63), tUa U3 exp(— —4/ = 10),
tUys = Upexp (\/_—f(ﬂ — 03)), tU12 = U12 €xXp (\/—1(02 - 0y)),
tUss = Usy exp(v/— 1 (02 — ), tUﬂa = U23 €Xp (’\/——1(93 — 63)),
tUs = U exp (v — 1 (05 — 0y)), tU:u = U31 exp (v — 1(6; — 65).

One of them, for example, tUy, = Uyexp(n/— 1(6; — 6,) will be proved. To do
so, we need to show (tUwn)(e) = Uyle)exp(/— 1(8, — ) for i =10, 1, - , 7.
We shall show again one of them, for example, for i =4. (Uy)(es) = HU (i 1e,)
= H(U;ofeq cos 0y — €5 sin 0y) = H{(es — ex/ — 1) cos Oy — (€5 + exr/ — 1) sin 05) = He,

— e/ — 1) (cos 0y — A/ — 1sin 0) = {(e5 cos 0, ey sin ;) — (—ezsin 0, + 5 cos )0/ — 1)
(cos Oy —A/— 1 sin @) = (es — esn/— 1) (cos fy + A/— 1 sin 6y) (cos 03 — A/ — 1 sin fy)
=ley— e3vV/— L)exp( A/ — 1(6;, — 0)) = Upsle)) exp (vV/— 1(6; — 6:). Thus we have
proved these formulac. Hence, ¢, 05)=2+a+at+ B+ 54+ 7+t +apt +

a B+ Byt + gy + rat + e = i§ — i¢. Thus we have the following

Theorem. The class of Gy-C-module o in R(G,) is 15 — i§, where go is the
Lie algebra of G,.

Since the complexification ¢ : RO(G2) —> R(G,) is an isomorphism and g, is a
G:-R-module, we have also in RO(G,) the following

Theorem. The class of Go-R-module g, in RO(Gs) is Ay — 4.

9. SO(7) and Spin(7)

Let SO(8) be the rotation group in €& and SO(7) be the rotation group in L,
namely SO(7) is a subgroup of SO(8) consisting of all elements ¥ € SO(8) such that
x(eq) = ey.

We remember the principle of triality in SO(8) [27.

For every x, & SO@), there exist x; %, < SO(8) such that

9. 1) x1()xo(0) = x(uv). Jor u, ve @,

and for xy, such x., x; are unique up to the sign.

If x, = SO(7), we have x, = x;. For, if we put # = ¢, in (9. 1), we have x,(e))
xov) = %5(v), hence xo(v) = x3(v) for all v € €. This implies that x. = x;.

Consider the subgroup of SO(8), denoted by Spin(7), consisting of all elements
x & SO(8) such that for some x € SO(7)

2(u)%(v) = X(uv) for all #, v 6.
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Spin(7) is a simply connected group and the projection p : Spin(7)—> SO(7)
defined by p(&) = x is a twofold covering of SO(7).
G, is a subgroup of SO (7) and Spin (7) and

Gs = SO(T)N Spin(7),

and so we have the commutative diagram

; i
SUB) —> G —y Spin(?)
N l b
Y
N

SO(7)

where i, &, | are inclusions.
We shall choose maximal tori 7" and T in SO(7) and Spin(7) respectively as
follows. Let 7; : R — SO(7) be the homomorphism given by the relations

Ti<0>(e2i = €y; COS 17 —+ €2;+1 Sin 7
9.2) t{0)€ai+1) = —@g; 8in 0 + €5;45 COS O

fori=1, 2, 3. Let t:R®*=R X R x R~ SO(7) be defined by {(f;, b: &) = t1{01)re
(B2)z5(0s) for (01, 02, 6;) € R:. Then 7" = +(R% is a maximal torus in SO(7).

Obviously T = p“l(YN") is a maximal torus in Spin(7). However we need to
describe 7' explicitly. Let %, : R — Spin(7) be the homomorphism defined by
formulae

T1(0)ey) = €y cos 0/2 + e, sin /2, Ti(0)e) = —e,y sin /2 + e, cos 6/2
©.3) T 0)es) = ey cos /2 + e; sin 0/2, Ti(0)es) = —ey sin 6/2 + ey cos 6/2
7,(0)es) = €4 cos 0/2 — e5 sin 0/2, 71(6)(es) = ey sin 0/2 + e5 cos /2
7y(0)es) = €5 cos 0/2 — e, sin 6/2, 7y(6)(e;) = € sin 0/2 + e, cos 0/2
To(0)(ey)= ey cos 0/2 + e, sin /2, To{0)e,) = —e, sin 8/2 + e, cos 6/2,
0.4 To(0)es) = ey cos 6/2 — ey sin 0/2,  Fof)es) = ¢z sin /2 + €3 cos 0/2,
To(0¥es) = €4 cos 6/2 + e5 sin /2, To(0)es) = —eq sin 6/2 + e5 cos /2,
To(0)es) = €5 cos /2 — e, sin 6/2, 7o(0)er) = ¢ sin 0/2 + e; cos 0/2,
T4(0)(ey) = €, cos 0/2 + e, sin 0/2, T4(0)e;) = —ey sin /2 + ¢, cos 0/2,
9.5) To(0)(es) == €3 cos 0/2 — e5 sin 6/2, Zo(0)es) = e, sin 0/2 + €5 cos 6/2, ‘
to(0)es) = e, cos 0/2 — e5 sin 0/2, T4(0)es) = ey sin 8/2 + e5 cos 0/2,
(0)es)= es cos 8/2 + e, sin 0/2, To(0)er) = —eg sin 0/2 + e; cos /2.

Let # : R®—> Spin(7) be a map defined by (8y, 05 85 = 7,(0,)7:(0)F:(0s) for (b,
0:, 0;) = R3. Then we have »
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(01, Os O5)\)T(01, 02, O3)(v) = F(0y, Os, Os)uv)

for (9, 0, 03) = R® and u, v € €. Therefore 78, 0; 03) covers t(0;, 0s, 03) by the
projection p, so that 7(R3) = p~Y7T") (which was denoted by TJ’). Hence we have
the following commutative diagram
-7 _
?/YTI — Spl(n(7)
R? b . b
T\A l J l

T > SO(7)

where j, j are inclusions.

10. Relations of R(G:) to R(SO(7)), R(Spin(7)) and R(SU(3))

Since SO(7) is the rotation group in L;, L, is an SO(7)-R-module, so that we
have an SO(7)-C-module MY{ = L,®,C.

We show that in M(SO(7))
(10. 1) HMS)=COW,®W, @ W@ W@ Ws @ W,

where W, is a 1-dimensional 7"-C-module and V/I),» is its dual 77-C-module for i =
1, 2, 3.

In fact, let C, W; and V/I}i (i=1, 2, 3) be the same C-modules as in the
section 5. Then, for # = «(0y, 0y, 0;) € T, we have t'u; =u;exp(v/—10;) and
{'#t; = f,exp(—4/— 10,) for i =1, 2, 3. These prove the above result (10.1).

Put ¢ (Wi) =a, ¢, (W) =0 and ¢,(W,) =c¢, then we have

R(T/) = Z[d, a_11 by b-1, ¢, Cﬁl]’

In R(SO(7), put dsom (ME)=4§, Goon(AAME)=§ and  Gson(AAMT) = 4§, then
by (10.1)

PUE) =1+ (@+a)+ b+ b+ + ¢

FES) =3+ @+ a4+ G+ b1+ (c+c
+(@+atb+ b))+ b+ b et +(c+cNe+a)

7€) = 3 + 2a + at) 4 2b + b~1) 4 2c + ¢)
+ (@t @b+ b + (0 + bie + o) + (e + e a + a)
+ (@ + a)b + b7V c + ¢ t).

And we have [4]
R(SO) = Z[kC, 1€, 1§,

Next, since Spin(7) is a subgroup of SO(8), Spin(7) operates on €. Thus & is
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a Spin(7)-R-module, whence we have a Spin(7)-C-module 4¢ = €®,C.
We have in M(Spin(7))

(10.2) RELE W1®W2®W3®W1®W»®WsOW1®Wz®W3
@W1® WZ@ WS@ W1® W2® W3@W1® W2®W3
OW,.® M@ W@ W.® W, W,
= (WL @ W) ® (W, @ W) ® (Ws @ W),
where W, is a 1-dimensional 7”-C- module and ﬁ\’/i is its dual 77-C-module for i =
1, 2, 3.
In fact, take an additive C-base u; = ey, — €510/ — 1, B; = €y; - €:0A — 1
for i=0,1, 2, 3 in 4C. Then, for f =0y, 0, 0;) € T', using (9. 3)—9.5), we have

tuy = uy exp(y/ —1(0;+0,+04)/2), tity, = Wexp (v —1(—0,—0,—0y)/2),
lruz = Uy eXp(le(ﬂl—02~03)/2), Eﬁz = fly eXp (\/_T( 0,402+ 05)/2),
fity = uy exp(/—T(—0,+0:—05)/2), ity = Baexp(V/—1(01—0u-+03)/2),

it = uy exp(n/ =1 (—01—0,+05)/2), [0y = Dyexp (/=1 (01+06,—05)/2).
These prove (10. 2).
Now, put ¢() = 4%, $5(Wy)= 0% and By( W) = T,
RTY=1Z [a, a', b b7, ¢, ¢, (abc)?]
Denote ¢spm (4C) = 4¢, then we have by (10 2)
7H4C) = (a" +a” )(bs +b )(c2 + ),
Hence, Ac coincides with an element induced by a unique irreducible representa-
tion 4, which is containd in the Cliffiord algebra C¢ (for notations 4, and C§ we
refer to {4] and [1] respectively). And we have [4]

R(Spm(7)) =1Z [,[‘(1:’ ﬂg, 4¢ :],

where 7§ = p*€), i§ = p*§) and there exists a relation

then we have

(MOP = p*(L + € + 1§ + o).

As for SU3), let Ny and N, denote C-submodules of €®pC with respectively
additive bases #; = €y, — €A/ — 1 and #; = eg; + €50/ — 1 for i =1, 2, 3. We
shall show that these are invariant by SU@3). In fact, for x & SU@3B), xu; = x(es;
—62i+1'\/—“ 1)= x((ep — 61'\/__1—)621‘) = x(ey — 31’\/— 1 )x(eq;) = (30 — 91'\/“ 1 )x(es;). NOte

that x(e,;) is a linear combination of e, -+ , er; xes;) = Z ea; = Z}egiazl + E

3 3
€2i1182:41. Obviously, (eq — eV/— 1)( D] entts;) = D \#,45; € Ni. On the other hand,
= =1

3 3

(R 3 U
(e — e/ — 1)( Z €oi4102;41) = Z (€ — eV/—1) €1€3;85;11 = Z (er + eV — 1 )ega;41
=

i=1 =1
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3
(€ — e/ — 1) ey A/— Lagyy = D A/ — 1 ayq € N;, whence follows that xu;

i 1=1
e N, for i =1, 2, 3. Similarly zu;, € N; for x € SU(@3), i =1, 2, 3.
Let 7, : T'— SU(@3) denote the inclusion. Then, analogously to the case of G,
we have in M(T)

{MM:m@M@%
JHNY) = W, ® W ® Wi,

M-

Il
-

(10. 3)

where W, is a 1-dimensional 7-C-module and ﬁ/’i is its dual 7-C-module for i =1,
2, 3, and there exists a relation W, ® W, ® Wy =C.
Hence we have

R(T) = Z[“: a_ly ﬁy 18_1’ 7 7‘_1]/(‘}187‘_1)7

where a = ¢ (Wy), = ¢, {Ws) and y = ¢,(Ws). Put ¢SU(3)(N1) =y, and bstrs (Vo) =
vs, then we have by (10. 8)

) =a+ B+,
i) =tk B = B e+ B = G (AN

So that we have [4],
R(SUEB) = Z v, val.
Thus, in the following diagram
R(SO(7))
P I*

b i

R(Spin(7)) - R(G,) —> R(SU3)),
that is,

Z§, 1§, 1§

J\ [*

o
' k*\A i*
ZOH, 5, 46) ———> LK, K1 ——> 2w, »l,

we have the following relations
PHE) = 7E, PMeE) = B, D) = (O -1 — B —
GE) = I, BNEE)= I, PO =1+ K
IE) = 3, p§)= 28, P§)=0Er+ 2 — %

ZF()‘&:) =1 + vy —|— Va, Z*(Xg) = 2(1)1 + Dg) + Viva,
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As for RO(SO(7)) and RO(Spin(7)), we can discuss in the real range. Using the
fact that the complexification ¢ is an isomorphism, we have ROSO(T))=Z [ 11, s, ps]
and ROSpin(7)) = Z[fu, f», 4] where p; is the class of A{L,) for i=1, 2, 3, i; =
D¥p;) for i =1, 2 and 4 is the class of 4. And in the diagram

ROSOT)

e N\
RANERN

Vo BN
RO(SpIin(7)) —— RO(G5)

we have the same relations as in the complex case, 1 e.

D) = Fu, DM1a) = Fro, D) = A2 =1 — 1y — gty
E¥(fu) = A, K (f)=2, RY(d) =1+ 2
M) = Ay, D) = 2o, () = 2% 4+ 44 — 2.
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