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Introduction. In [47], the author introduced the notion of the polynomial simple
ring extensions* and studied some properties of polynomial Galois extensions.

In the present paper, we shall investigate the relationship between the zeros
of polynomials and Galois extensions of simple rings. As a generalization of the
commutative case, some type of a finite dimensional polynomial simple Galois
extension can be considered as a simple ring in which every w-irreducible poly-
nomial over a basic simple ring possessing a zero in the Galois extension can be
factored into a product of its linear factors and conversely.

Let S be a simple ring, and let p be an automorphism in S, D a p-derivation
in S. Then the followings are well known.

(1) SLX;p, D]={2 ) Xis;;s;€s}, the free right S-module with an S-basis { X'},
can be regarded as a polynomial ring with an indeterminate X by the multipli-
cation rule sX = X(sp) + sD for each sES.

(2) Each two-sided ideal of S [X; o, D] is generated by a (uniquely determined)
monic polynomial, and hence, if T is a two-sided ideal, then T = f(X)S[X; o, D]
for some monic f{X) which is called the generator of T.

A polynomial f{X) is called non-vanishing (resp. vanishing) if (f{X)), the two-
sided ideal generated by f(X), is a proper ideal of ST X; p, D] (resp. coincides with
S[X; 0, D).

A non-vanishing polynomial f(X) is called w-irreducible if each proper left
factor A(X)of it (i,e. AAX)=WX)g(X) and deg WX )<deg f(X)) is vanishing.

(8) The generator of a two-sided ideal M is w-irreducible if and only if M is
maximal.

(4) Every proper two-sided ideal (540) has a unique factorization as a product
of maximal ideals. ¥*

(6) Every non-vanishing polynomial has an essentially unique factorization as

# Cf, [1]
#k Cf, [2], p. 38.
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a product of w-irreducible polynomials and a vanishing polynomial in the sense
of the factorization determined within a vanishing polynomial.

Let M be a maximal ideal of S[X; p, D] whose generator is f(X) :X'1+Z;:01
Xis,. Then

6) R=Syl=SDyS@YSD¥SD @ y"'S = S[X; 0, DI/M, where y is
the residue class of X modulo M, 1is called an n-dimensional polynowmial simple
ring extension over S.

S[X; o], S[LX; D] mean the cases D=0, p=1 respectively, and finally, S[X]
means the case D =0 and p = 1.

For the other notations and terminologies used in this paper, we refer to [4].

§1. w-irreducibility and zeros of polynomials

Lemma 1.1 Lef X—s be a polynomial in S[ X, p, D). Then the followings are
equivalent.

(a) X-—s is non-vanishing.

(b) X—s is w-irreducible.

(¢) s(sp)=s? and D is an inner p-derivation generated by s.

In particular, if D=0,

(¢") s is regular and p = S-' provided s - 0.

Proof. (a)->(b). If we note that the generator of each ideal is a monic poly-
nomial of the lowest degree which is contained in the ideal, the implication is
clear.

(h)>(c)>(a). The first implication is a direct consequence of the fact that
X(X—35)e(X—s)S[X; p, D] and t(X—s)e(X—s)S[X; o, D] for each { €S. Next, the
conditions (c) shows that X(X—s) = (X—s)(X—(s—sp))and #{X—s) = (X—s){{p) for each
teS. Hence, X—s is non-vanishing. Now, let D = 0. Then (c¢) yields that s =
s(tp) for each t€S. Hence S = SsS = sS shows that the regularlity of s and p =
51,

Corollary 1.1 Let X—s be w-irreducible in S[X; p, D].

(a) If X—t is w-irveducible for some t =t s, then t—s is regular.

b) If D=0, then X—1t is w-irreducible if and only if t= sz for somez € Z =
Vs(S).

() If p=1,then X—t is w-irrveducible if and only if t =s-+z for some z€ Z.

Proof. (a) We have ut—Hup)= uD, us—sup) = uD for each # & S by Lemma
1.1. Hence u{f —s) = ( —s)up) shows that the regularlity of f—s.

{h) Let X—¢ be w-irreducible. If £ =0, then # = s.0. On the other hand, if
t£0, p= it implies s = ¢tz for some z&Z. The converse is clear.

(c) We can prove the assertion in the same way as in the proof of (a).

Let f(X):Z}Z;OX"si be a polynomial of S[X; p, D]. Then an element ¢ in S
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is called a zero of A(X) if fit) = Zz_l:otis,- = Q.

Lemma 1.2 Let fiX) be a polynomial of S[X; p, D] If sq, - , S, are distinct
zeros of f(X) in S such that X—s; is w-irreducible then f(X) :H’;_l(X~ Sriyh=(X)
where = is an arbitvavy permutation of k-letters and h.(X)e S[X; p, D].

Proof. Dividing AX) by X — szq), we have fAX)= (X — s.y)(X) + £, for some
t,=S. Then w-irreducibility of X—sz(y vields at once 0 = fis-(y) = in S[X; p,
D/(X — sz) = S. Therefore we have AAX) = (X — sz, (X). Next, let hy(X)=
(X—sz@h X))+t for some £,&S. Then AX)=(X — s:)) (X — sz@))he( X) + (X —
szt Hence 0 = f(sz2)) = (S=(2) — S=))fz In S[X; o, D/(X — sz(2)) = S. Since sz(2)
— Sz(1y is regular by Corollary 1.1 (a), #; = 0. Repeating the same procedure, we
have fX)= u:":l (X — Swiiy)a( X).

§ 2. Zeros of polynomials and Galois extensions

Throughout the present section, we assume that R=S[y|=S@®ySD®»SP
------ @ y"1S (n>1) be an n-dimensional polynomial simple ring extension over S
defined by STX; pl/(AX)) (resp. S[X; DI/AX)), where f(X)= X" +Z::st,. and
y is the residue class of X modulo (f(X)). Then, R[X; P] with P = y-1 can he
considered as a polynomial ring containing S[X; p] (resp. R[X; E] with E=1,
can be considered as a polynomial ring containing S[X; D7). Thus, if we consider
AX) in R[X; P] (xresp. R[X; ET), ¥ is a zero of f{X)and X — y is w-irreducible
in R[X; P] (resp. R[X; E]). We call a zero x in R of A(X)eS[X; o] (resp. R
[X;D])a root in R of W(X) if X—x is w-irreducible in R[X; P] (resp. R[X; E]).

Let ¢ be an S-automorphism of R. Then yo = yt., if sy = ¥(sp) and yo = y+v,
if sy = ys + sD for some v,€V = Wg(S) [4. p. 1757

Theorem 2.1 Let R = S[y] = S[X, o]/ (AX)).

(@) If R is a weakly Galois extension over S with respect to & with yo = yc,,
¢~ 1) C = VR(R) for each o€®, then every w-irreducible polynomial of SLX,; o]
possessing a voot x in R has an essentially unigue factorization into a product of
w-irreducible linear factors in R[X; P]. Furthermore, if this is the case, the order
of & is n.

(b) If AX) has a factorization into (X — y) (X — vycy)----- (X — yc,—1) in R[X; P]
such that ¢; #c; if i # 7, c¢(#1) & C, then R is weakly Galois over S.

Proof. Let x be a root in R of a w-irreducible polynomial A(X) of S[X; e].
Then h(X)=(X—x)g(X) in R[X;P]. We set x:ZZ;; yhu, (, € S). Then xoP =
Z;j;;(yc,,)kuk)P:ZZ;Z yEck, (u,0) = xPo = xo since xP = x for each s & and s(xo)

= (sx)o = (¥(sp)lo = xosp. Consequently, x¢ is a root in R of A(X). Thus KX)=
(X — xo)(X) where § = x| S. Noting here x¥¢P = %o and %o (X — x7)= (X —
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x7)x0, we have xo-xt = x7ex0 for each o,7=®. Hence [1,9(X — x0)€S[ X; 0] and
is non-vanishing. Now, let AX)= Il,ed (X — x0) g(X) + #(X) where g(X), #X)e
S[X; o] and deg r(X)<deg .9 (X — x0). Then Il,e9(X—x0) (g(X) — kX)) = nX)
and deg I,eH(X ~— xo) (g(X)—KX)) = deg 1,9 (X — x0) if g(X)— K X)=~0. Hence
kX)=g(X)e S[X; p]. Therefore, w-irreducibility of AX) yields AX)e S. By
making use of this fact, we find AX) = Il,e®(X — ys), and hence, the order of
& have to coincide with # by Lemma 1. 2.

(b) Let AAX)=(X— (X — yci)-- (X — vc,~y) in R[X; P]. Then the map o,
defined by Z‘,Z:) (yFupo; = Z;:;z ykctu, is an S-automorphism of R. For, since
ye; is a root of fIX), o; is well defined, and (sylo; = ¥(Splo; = yc,(sp) = Sa;ya;.
" e =0, 37 s

is contained in the kernel of ¢, Thus {(y¢;)t; £ =0,1,+----- n— 1} is an S-basis.

72—1 3
Hence ¢; is a ring monomorphism. If ko, =
; g P (20, Yo =21,

Consequently, ¢; is an S-automorphism.

Let & be the group generated by {1, oy, - Ot If x = ZZ:O yhy, is an

~1 1
arbitrary element of /(& R), then Z::l yk(Ejzocif)uk =0 for each i =1,2, -

1 — 1. This means that

(yn_lun—b yn—zun—2 """ yul) =2 i =2 f oeieiaiiaa 2 j =0
AT S Y e
n-3 ) -3

Ej:() cyd Ej:o Cal rveveeinins Ej;: €Iy

On the other hand,

det (2”*2 g Z’;;z Cof +rreveerinne Z’Jl;z ciyy \ # 0

j=0

-3 -3 -3 .
Z;’:O ¢y Z};‘ZO Gy renneeneens 2:_’:0 Cipy

1 1 1

shows that #,—y = U9 = U,g = =uy; =0, that is J(G, R)=S.

Corollary 2.1 Let S be a simple ring with the infinite center Z, and let R =
S[Y1=STX; 01/ f(X)). ‘

@) If R/S is Galois and yo = yC for each o = &R/S) where &(R/S) the S-
automor phism group of R, then R/S is outer.

(b) If R is a division ring, then R/S is an outer Galois extension if and only
if each zero in R of f(X) is a rvoot of f(X). Moreover, if this is the case, every
w-irreducible polynomial W(X) of degree m of S[X;p]| possessing a voot x in R has
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an essentially unique factorization into (X — x) (X — xc¢ )+ (X — xc,,-1)s (s € S) such
that ¢; 5 c; if i j and ¢; (#1) e C.

Proof. (a) The order of G(R/S) is n by Theorem 2.1 (a). Hence the order
of V:[V* : C¥] < n Now if we note that V is a simple ring possessing infinitely
many elements, V = C by a generalized Scott’s Theorem [5. Lemma 17.

(b) The number of distinct zeros {2} in R of f(X) such that %P = x. is
either infinite or at most # [3. Theorem 6]. Hence if each zero in R of f(X) is
a root of f(X), we have f(X)=H.e®&s) (X — yo). Thus the assertion is an
immediate consequence of (a). The converse is clear.

Theorem 2.2 Let R=S[y]= S[X;D]/(f(X)).

(a) If R is a weakly Galois extension over S with respect to & with yo =y -+ ¢,
c{F#0) = C, for eack o0 € S, then every w-irreducible polynomial of S[ X; D] posses-
sing a root in R has a non-zero constant term and an essentially unique factori-
zation into a product of w-irreducible linear factors in R[ X, E]. Furthermore, if
this is the case, the order of & is n.

(b) Let 2(SY=mn or %(S)=0 and V=t2Z. Then R/S is an outer Galois exten-
sion ifand only if w-irreducible polynomialh WX) of degree m of S X; D7| possessing
a voot x in R has an essentially unique factorization (X—x)e(X—(x+4c))-- (X —(x
+ Cpr)) S (s € S) such that ¢, #c; if i#7, ¢; (#0)eC.

Proof. (a) The proof is quite similar to that of Theorem 2.1 (a).

(b) If %(S)=nor AS)=0 and V+£2Z, then V=C by [4 Theorem 2.27.
Thus there exists an element t € S such that y —fe C and {(y — 8, £=0,1, -
«-n — 1}s an S-basis for R. If (y — 8" + (v — VLt +-eeene +ug =0 (4, € S), then
2(X) = (X — 1) + 2/:) (X — thu, — X" + 2};; Xtw, (w, € S) is w-irreducible in
S[X; D] and it possesses a root ¥ in R. Hence g(X)= (X — ) (X — (¥ + ¢ ) (X
— (¥ + €,-1) in R[X:E]. Then the map o; defined by Z:z;;(ykak) G; = Z}::} (y +
c;¥ a, (@, € S) is an S-auotomorphism of R. Hence (y — t)o; = (y — £id; for some
d; e C since y —t is contained in C. Hence we can see that /(& R)=S by
similar methods to that of Theorem 2.1 (b) if & is the group generated by {1,
Oy, e ¢,-13. Therefore R=S[C] is an outer Galois extension over S. Conversely,
if R/S is outer Galois, y¢ =y 4 ¢cs ¢, €C for each ¢ € &R/S). Hence the

assertion is clear from {(a).



122

1

2]
3

(4

5]

Kazuo Kisaimoto

References

Coun, P. M, : On a class of binomial extensions, Illinois J. of Math., Vol. 10 (1966),
418424,

Jacosson, N, : The Theory of Rings, Providence, 1943,

Gorpbon, B. and T, S. Morzxin : On the zeros of polynomials over division rings, Trans,
of A. M. S., Vol. 116 (1965), 218-226.

Kisamworo, K. : On polynomial extensions of simple rings, J. of Fac. Sci. Hokkaido
Univ. Ser. I., Vol. 19 (1966), 169--180.

Tominaca, H, : A note on conjugates II, Math, J. of Okayama Univ,, Vol. 9 (1959),
1-3.



