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   Introduction. In [4], the author introduced the notion of the polynomial simple

ring extensions" and studied some properties of polynomial Galois extensions.

   In the present paper, we shall investigate the relationship between the zeros

of polynomials and Galois extensions of simple rings. As a generalization of the

commutative case, some type of a finite dimensional polynomial simple Galois

extension can be considered as a simple ring in which every zv-irreducible poly-

nomial over a basic simple ring possessing a zero in the Galois extension can be

factored into a product of its linear factors and conversely.

   Let S be a simple ring, and let p be an automorphism in S, D ap-derivation

in S. Then the followings are well known.

   (1) S[X; p, D] ={=iX}'si ; siEs}, the free right S-module with an S-basis {Xle'},

can be regarded as a polynomial ring with an indeterminate X by the, multipli-

cation rule sX= X<sp) + sD for each sES.

   (2) Each two-sided ideal of S [Xi p, D] is generated by a (uniquely determined)

monic polynomial, and hence, if T is a two-sided ideal, then T=f<X)S[.?C p,D]

for some nionic f(X) which is called the generator of T.

   A polynomial flX) is called non-vanishing (resp. vanishing) if (flX)), the two-

sided ideal generated by f<X), is a proper ideal of S[X; p, D] (resp. coincides with

S[X; p, D]).

   A non-vanishing polynomial f<X) is called w-irreducible if each proper left

factor h(X)of it (i,e. flX)==h(X)g(X) and deg h(X)<deg flX)) is vanishing.

   (3) The generator of a two-sided ideal M is w-irreducible if and only ifM is

maximaL
   (4) Every proper two-sided ideal (IO) has a unique factorization as a product

of maximal ideals. ""

   (5) Every non-vanishing polynomial has an essentially unique factorization as

;ts

**

Cf. [1]

Cf. [2], p. 38.
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a product of w-irreducible polynomials and a vanishing. polynomial in the sense

of the factorization determined within a vanishing polynomial.
    Let M be a maximal ideal of S[X) p, D] whose generator is flX) =:X"+Mi/roi

Xisi. Then

    (6) R = S[y] =:= SO yS (D y2S (D y3S e････-･Oy"m`S 2it, S[Xi p, D]/M, where y is

the residue class of X modulo M, is called an n-dt'mensional Polynomial simPle

ring extension over S.

    S[.& ,o], S[X] D] mean the cases D:=:O, p=1 respectively, and finally, S[X]

means the case D=O and p=1.
    For the other notations and terminologies used in this paper, we refer to [4].

                g1. w-irreducibility and zeros of polynomials

    Lemma 1.1 Let X-s be a Polynomial in S[X) p, D]. Then the followin.ffs are

equivalent.

    (a) X-s is non-vanishing.

    (b) X-s is zo-irredu･cible. '
    (c) s(s,o)= s2 and D is an inner p-derivation generated by s.

    in Particular, if D = O,

    (c') s is regular and p == gmi Provided slO.

    Proef. (a)->(b). If we note that the generator of each ideal is a monic poly-

nomial of the lowest degree which is contained in the ideal, the implication is

clear.

    (b)->(c)->(a). The first implication is a direct consequence of the fact that

X(X-s)E(X-s)S[X) p, D] and t(X-s)E(X-s)S[X; p, D] for each tES. Next, the

conditions (c) shows that X<X-s) == (X-s)(X-(s-sp)) and t(X-s) = CX-s)(tp> for each

tES. Hence, X-s is non-vanishing. Now, Iet D=: O. Then (c) yields that ts ==

s(tp) for each tES. Hence S=SsS=sS shows that the regularlity of s and p=
Y-i.

    Corollary 1. 1 Let XLs be w-irredztcible in S[X; p, D].

    (a) lf X-t is tv-irredttcible for some tls, then t-s is regular.

    (b) .llle D=O, then X-t is w-irreducible if and only tf t== sz for somezEZ=

Vs(S). '
    (c> ILf p= 1, then X-t is w-irreducible if and only ijf t==s+2 for sonze zEZ.

    Proof. (a) We have ut-t(up)=uD, tts-s(up)=zeD for each uaS by Lemma

1. 1. Hence tt(t-s) == kt-s)(Mp) shows that the regularlity of t-s.

    <b) Let X-t be zv-irreducible. If t=O, then t=seO. Onthe other hand, if
t ir(: o, p= t'L-i implies s= tz for some zeZ. The converse is clear.

    (c) We can prove the assertion in the same way as in the proof of (a).

    Let.f<X)==illili]1'..,X's, be a polynomial of S[X] p, D]. Then an element t in S
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is called a zero of f(X) if ](<t) = =IZ=.otts, = O.

   Lemma 1.2 Let fkX) be a Polynomial of S[Xi p, D]. if si,･･････,sk are distinct

zeros of f<X) in S such that X--s, is w-irreducible then .f<X) == fli.=i(X-srr(o)hit(X)

tvhere z is an arbitrary Permutation of k-letters and h.(X)ES[.)C p, D].

   Proof, Dividing f<X) by X - sit(i), we have flX) == (X - sn(i))hi(X) + ti for some

tiES. Then tv-irreducibility of X-s.(i) yields at once O=fis,a))=ti in S[X; p,

D]/(X-s.(i)) iu.± S. Therefore we have .f(X) := (X-srr(o)hi (X). Next, let hi(X) ==

(X-sn(2))h2(X)+t2 for some t2ES. Then f<X)=(X-s.a)) (X-s.(2))h2(X)+(X-

sna))t2. Hence O ==: fls.(2)) :=: (s.(2) - s.(i))t2 in S[X; p, D]/(X- srr(2)) !-}l: S. Since s.(2)

- sr(o is regular by Corollary 1. 1 (a), t2 := O. Repeating the same procedure, we

           khave flX) = ll ,              <X - s.(i))h.(X).
           t=1

               g2. Zeros of polynomials and Galois extensions

   Throughout the present section, we assume that R == S[y] = S e yS e pa2S e

･･････ Oy'L'S (n>1) be an n-dimensional polynomial simple ring extension over S
defined by S[X) p]/(flX)) (resp. S([X; D]LIC<X)), where flX) == X'i +Ml.i=H,iXis, and

y is the residue class of X modulo (f<X)). Then, R[X; P] with P == )'i can be

considered as a polynomial ring containing S[X; p] (resp. R[X; E] with E=4

can be considered as a polynomial ring containing S[X; D]). Thus, if we consider

.f<X) in R[X; P] (resp. R[X; E]), y is a zero of f<X) and X-y is w-irreducible

in R[Xl P] (resp. R[X) E]>. We calla zero x in R of h(X)ES[X; p] (resp. R

[X; D]) a root in R of h(X) if X-x is w-irreducible in I?[X; P] (resp. R[X; E]).

   Let a be an S-automorphism of R. Then ya =: yt'. if sy = N(sp) and ya == y+vti

if sy == ys+sD for some vaEV= I`lie(S) [4. p. 175].

   Theorem 2. 1 Let R = S[y] or S[X; p]/<f<X)).

   (a) if R is a zveafely Galois extension over S with resPect to S with yo = yca,

c.(74 1)ea C == I(R(R) for each aEe, then every w-irreducible Polynomial of S[X) p]

Possessi,ng a root x in R has an essentially uniqzte .flactorization into a Product of

zv-irreducible linear factors in R[X; P]. I7urthermore, ij' this is the case, the order

of 6 is n.

   (b) lllC f<X) has a .frzctorization into (X-y) (X-yci)･･････(X-yc.-i) in R[X) P]

sblch that ci =,<: cj if i :j, ci(741) Eii C, then R is weakly Galois over S.

   Proof. Let x be a root in R of a w-irreducible polynomial h<X) of S[X; p].
Then h(X)==(X-x)g(X) in R[X; P]. We set x==Z':.i ykuk (uk E S). Then xaP =

=Lir.:(Nco)kzek)P===:Ii ykck. (ukp) = xPa = xo since xP == x for each aE!! S and s(xo)

== (sx)a = (x(sp))o = xaesp. Consequently, xa is a root in R of h(X). Thus h(X) =='

UaEsp(X- xo)k(X) where S> :=: x[ S. Noting here xaP = xa and xa (X- xT) = (X-'
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xT)xa, we have xaexT =xTexo for each o,T(!iS. Hence UaEsp(X-xa)ES[X; ,o] and

is non-vanishing. Now, let f<X)=fl.EO <X-xa)g(X)+r(X) where g(X), r(X)E

S[X; p] and deg r(X)< deg U.Efp (X- xo). Then fl.Elp(X-xa) (g(X) - k(X)) = r(X)

and deg Ilr.Esp(X- xa) (g(X)-le(X)) ll; deg fl.Esp (X - xa) if g(X) - k(X) ; O. Hence

k(X)=g(X)ES[X p]. Therefore, w-irreducibility of h(X) yields k(X)EiS. By

making use of this fact, we find f(X)=llaEe(X-ya), and hence, the order of

S have to coincide with n by Lemma 1. 2.

   (b) Let fkX)=(X-y) <X-yci)･･････(X-yc.-i) in R[X; P]. Then the map ai
defined by =:!g(ykttk)ai -- =::ykcikuk is an S-automorphism of R. For, since

yci is a root of f(X), ai is well defined, and (sy)6i=y(sp)oi=yci(s,o) == saiyai.

Hence a, is a ring monomorphism. If (XLil: ykuk)ai = =L'=-oiykc,kuk == o, =Ltliykttk

is contained in the 1<ernel of ai. Thus {(yci)k; k== O,1,･･････n- 1} is an S-basis.

Consequently, oi is an S-automorphism.
   Let e be the group generated by {1, ai,･･････ o.-i}. If x = Xlj-..: Nkztk is an

arbitrary element of 1(S, R), then Z:..lyk(Zlr,.'.oiciJ')uk == O for each i= 1, 2, ･･････

n-1. This means that

(Y'i-1U.-1, Y'i-2Un-2' ' ' ' ' ' YUI)                   z:gc,j =llm=ic,j ････････････ zll-=,gcj.-, > ==o

                      n-3 '                               n-3                                             n-3 1                   =1･muoCij Zl･rm-oC3j' '･'･･.,･･･.. Zj.=ocj'.-1

                        -- -                        -- -
                        -- ･-
On the

   det

other hand,

(Z!,iicij

 XJ･ =o Clj

     l

     i

  ･n-2:I i]]j=, c2j

  n-3X,･=, C3J'

l
i

1 1

''''''''''''
 XY-=,2 cj.-, >=O

         n-3
･--･-･･- x            CJnFl
         j-o

         1

1

ShOWS that Un-i = Un-2 = Un-3 =''''''== Ui == O, that iS 1(S, R) = S･

   Corbllary 2.1 Let S be a simPle ring with the iutnite center Z, and let R=

S[y]iiS[X p]/(f(X)).
   ka) lf R/S is Galois and ya Ei yC for each a E S(R/S) where (S}(R/S) the S-

automorPhism grouP of R, then R/S is outer.

   (b) 111C R is a division ring, then R/S is an outer Galois extension if and only

if each zero in R of f(X) is a root of f(X). Moreover, if this is the case, every

w-irreducible Polynomial h(X) of degree m of S[X p] Possessing a root x in R has
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an essential4y unique fkectori2ation into (X- x) (X- xci)･･-･･-(X- xc,.-i)s (s E S) such

that ci f cj if i-,' j' and ci (; 1) ff C.

   Proof. (a) The order of S(R/S) is n by Theorem 2.1 (a). Hence the order
of V=[V" : C*] :sl. n. Now if we note that V is a simple ring possessing infinitely

many elements, V=: C by a generalized Scott's Theorem [5, Lemma 1].
   (b) The numb6r of distinct zeros {xcr} in R of f(X) such that xaP=xcr is

either infinite or at most n [3. Theorem 6]. Hence if each zero in R of f(X) is

a root of f(X), we have f(X)=flaEas(Rls) (X-ya). Thus the assertion is an

immediate consequence of <a). The converse is clear.

   Theerem 2.2 Let R=S[y] .,=S[X) D]/(f(X)).

   (a) if R is a tveakly Galois extension over S with resPect to S with yo = y + cti,

ca( f!O) E C, for eaeh o E S, then every w-irreducible Polynomial of S[X; D] posses-

sing a root in R has a non-zero constant term and an essentially unique factori-

zation into a Prodztct of w-irreducible linear fkectors i.n R[X; E]. Furthermore, ijC

this is the case, the order of 6 is n.

   (b) Let Z(S) lln or X(S) =:O and V;Z. Then R/S is an outer Galois exten-

sion ifand only if w-irreducible PolNnomialh h(X) of degree m of S[X; D] Possessi,ng

a root x in R has an essentially zanique .factorization (X-x)e(X-(x+ci))････-･(X-(x

+ Cnt-t)) S (S G S) SttCh that Ci ; Cj if i '-r---` 7i, Ci (;O) E C.

   Proof. (a) The proof is quite similar to that of Theorem 2. 1 (a).

   (b) If X(S)llnor X(S)=O and VtZ, then V=C by [4. Theorem 2.2].
Thus there exists an element t E S such that y - t E C and {(y - t)k; fe = O, 1, ･･･

･･･
n - 1}is an S-basis for 1?. If (y - t)" + (y - t>"-i u.-i+･･････+uo =O (uk El S), then

                                      n-1                 n-1g(X) = (X - t)" + :k=, (X - t)kuk = X" + Zk ..o Xkwk <wk Ei S) is zv-irreducible in

S[X;D] and it possesses a root y in R Hence g(X) := (X-y) (X-(y +c))･･-･-･(X
                                                              n-1                                                n-1- <y + c.-i)) in R[X; E]. Then the map ai defined by =h--o(Ykak) ai = =k.., (Y +

ci)k ak (ak Eii S) is an S-auotomorphism of R. Hence (y-t)ai=(y-t)di for some

diECsince N-t is contained in C. Hence we can see that 1<S,R):=:S by
similar methods to that of Theorem 2. 1 (b) if S is the group generated by {1,

ai, ･''･''o.-i}. Therefore R==S[C] is an outer Galois extension over S. Conversely,

if R/S is outer Galois, ya=y+ca, c.EC for each aES(R/S). Hence the
assertion is clear from (a>.
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