On Zeros of Polynomials and Galois Extensions of Simple Rings

By KAZUO KISHIMOTO

Department of Mathematics, Faculty of Science Shinshu University (Received Sept. 30, 1967)

Introduction. In [4], the author introduced the notion of the polynomial simple ring extensions* and studied some properties of polynomial Galois extensions.

In the present paper, we shall investigate the relationship between the zeros of polynomials and Galois extensions of simple rings. As a generalization of the commutative case, some type of a finite dimensional polynomial simple Galois extension can be considered as a simple ring in which every *w*-irreducible polynomial over a basic simple ring possessing a zero in the Galois extension can be factored into a product of its linear factors and conversely.

Let S be a simple ring, and let ρ be an automorphism in S, D a ρ -derivation in S. Then the followings are well known.

- (1) $S[X; \rho, D] = \{ \sum_i X^i s_i ; s_i \in s \}$, the free right S-module with an S-basis $\{X^i\}$, can be regarded as a polynomial ring with an indeterminate X by the multiplication rule $sX = X(s\rho) + sD$ for each $s \in S$.
- (2) Each two-sided ideal of $S [X; \rho, D]$ is generated by a (uniquely determined) monic polynomial, and hence, if T is a two-sided ideal, then $T = f(X)S[X; \rho, D]$ for some monic f(X) which is called the generator of T.

A polynomial f(X) is called *non-vanishing* (resp. *vanishing*) if (f(X)), the two-sided ideal generated by f(X), is a proper ideal of $S[X; \rho, D]$ (resp. coincides with $S[X; \rho, D]$).

A non-vanishing polynomial f(X) is called *w-irreducible* if each proper left factor h(X) of it (i, e. f(X) = h(X)g(X) and $deg\ h(X) < deg\ f(X)$) is vanishing.

- (3) The generator of a two-sided ideal M is w-irreducible if and only if M is maximal.
- (4) Every proper two-sided ideal (\neq 0) has a unique factorization as a product of maximal ideals. **
 - (5) Every non-vanishing polynomial has an essentially unique factorization as

^{*} Cf. [1]

^{**} Cf. [2], p. 38.

a product of w-irreducible polynomials and a vanishing polynomial in the sense of the factorization determined within a vanishing polynomial.

Let M be a maximal ideal of $S[X; \rho, D]$ whose generator is $f(X) = X^n + \sum_{i=0}^{n-1} X^i s_i$. Then

(6) $R = S[y] = S \oplus yS \oplus y^2S \oplus y^3S \oplus \cdots \oplus y^{n-1}S \cong S[X; \rho, D]/M$, where y is the residue class of X modulo M, is called an n-dimensional polynomial simple ring extension over S.

 $S[X; \rho]$, S[X; D] mean the cases D = 0, $\rho = 1$ respectively, and finally, S[X] means the case D = 0 and $\rho = 1$.

For the other notations and terminologies used in this paper, we refer to [4].

§ 1. w-irreducibility and zeros of polynomials

Lemma 1.1 Let X-s be a polynomial in $S[X; \rho, D]$. Then the followings are equivalent.

- (a) X-s is non-vanishing.
- (b) X-s is w-irreducible.
- (c) $s(s\rho) = s^2$ and D is an inner ρ -derivation generated by s.

In particular, if D = 0,

(c') s is regular and $\rho = \widetilde{s}^{-1}$ provided $s \neq 0$.

Proof. (a) \rightarrow (b). If we note that the generator of each ideal is a monic polynomial of the lowest degree which is contained in the ideal, the implication is clear.

(b) \rightarrow (c) \rightarrow (a). The first implication is a direct consequence of the fact that $X(X-s)\in (X-s)S[X; \rho, D]$ and $t(X-s)\in (X-s)S[X; \rho, D]$ for each $t\in S$. Next, the conditions (c) shows that $X(X-s)=(X-s)(X-(s-s\rho))$ and $t(X-s)=(X-s)(t\rho)$ for each $t\in S$. Hence, X-s is non-vanishing. Now, let D=0. Then (c) yields that $ts=s(t\rho)$ for each $t\in S$. Hence S=SsS=sS shows that the regularlity of s and $\rho=\widetilde{s}^{-1}$.

Corollary 1.1 Let X—s be w-irreducible in $S[X; \rho, D]$.

- (a) If X-t is w-irreducible for some $t \neq s$, then t-s is regular.
- (b) If D = 0, then X-t is w-irreducible if and only if t = sz for some $z \in Z = V_S(S)$.
- (c) If $\rho = 1$, then X-t is w-irreducible if and only if t = s + z for some $z \in Z$. **Proof.** (a) We have $ut-t(u\rho) = uD$, $us-s(u\rho) = uD$ for each $u \in S$ by Lemma 1.1. Hence $u(t-s) = (t-s)(u\rho)$ shows that the regularity of t-s.
- (b) Let X-t be w-irreducible. If t=0, then $t=s \cdot 0$. On the other hand, if $t \neq 0$, $\rho = \tilde{t}^{-1}$ implies s=tz for some $z \in Z$. The converse is clear.
 - (c) We can prove the assertion in the same way as in the proof of (a). Let $f(X) = \sum_{i=0}^{n} X^{i} s_{i}$ be a polynomial of $S[X; \rho, D]$. Then an element t in S

is called a zero of f(X) if $f(t) = \sum_{i=0}^{n} t^{i} s_{i} = 0$.

Lemma 1.2 Let f(X) be a polynomial of $S[X; \rho, D]$. If s_1, \dots, s_k are distinct zeros of f(X) in S such that $X-s_i$ is w-irreducible then $f(X)=\prod_{i=1}^k (X-s_{\pi(i)})h_{\pi}(X)$ where π is an arbitrary permutation of k-letters and $h_{\pi}(X) \in S[X; \rho, D]$.

Proof. Dividing f(X) by $X - s_{\pi(1)}$, we have $f(X) = (X - s_{\pi(1)})h_1(X) + t_1$ for some $t_1 \in S$. Then w-irreducibility of $X - s_{\pi(1)}$ yields at once $0 = f(s_{\pi(1)}) = t_1$ in $S[X; \rho, D]/(X - s_{\pi(1)}) \cong S$. Therefore we have $f(X) = (X - s_{\pi(1)})h_1(X)$. Next, let $h_1(X) = (X - s_{\pi(2)})h_2(X) + t_2$ for some $t_2 \in S$. Then $f(X) = (X - s_{\pi(1)})(X - s_{\pi(2)})h_2(X) + (X - s_{\pi(1)})t_2$. Hence $0 = f(s_{\pi(2)}) = (s_{\pi(2)} - s_{\pi(1)})t_2$ in $S[X; \rho, D]/(X - s_{\pi(2)}) \cong S$. Since $s_{\pi(2)} - s_{\pi(1)}$ is regular by Corollary 1.1 (a), $t_2 = 0$. Repeating the same procedure, we have $f(X) = II_{i=1}^k (X - s_{\pi(i)})h_{\pi}(X)$.

§ 2. Zeros of polynomials and Galois extensions

Throughout the present section, we assume that $R = S[y] = S \oplus yS \oplus y^2S \oplus \cdots \oplus y^{n-1}S$ (n > 1) be an n-dimensional polynomial simple ring extension over S defined by $S[X; \rho]/(f(X))$ (resp. S([X; D]/f(X))), where $f(X) = X^n + \sum_{i=0}^{n-1} X^i s_i$ and y is the residue class of X modulo (f(X)). Then, R[X; P] with $P = \tilde{y}^{-1}$ can be considered as a polynomial ring containing $S[X; \rho]$ (resp. R[X; E] with $E = I_y$ can be considered as a polynomial ring containing $S[X; \rho]$). Thus, if we consider f(X) in R[X; P] (resp. R[X; E]), y is a zero of f(X) and X - y is w-irreducible in R[X; P] (resp. R[X; E]). We call a zero x in R of $h(X) \in S[X; \rho]$ (resp. R[X; E]).

Let σ be an S-automorphism of R. Then $y\sigma = yv_{\sigma}$ if $sy = y(s\rho)$ and $y\sigma = y + v_{\sigma}$ if sy = ys + sD for some $v_{\sigma} \in V = V_R(S)$ [4. p. 175].

Theorem 2.1 Let $R = S[y] \cong S[X; \rho]/(f(X))$.

- (a) If R is a weakly Galois extension over S with respect to \mathfrak{G} with $y\sigma = yc_{\sigma}$, $c_{\sigma}(\neq 1) \in C = V_R(R)$ for each $\sigma \in \mathfrak{G}$, then every w-irreducible polynomial of $S[X; \rho]$ possessing a root x in R has an essentially unique factorization into a product of w-irreducible linear factors in R[X; P]. Furthermore, if this is the case, the order of \mathfrak{G} is n.
- (b) If f(X) has a factorization into (X y) $(X yc_1)\cdots(X yc_{n-1})$ in R[X; P] such that $c_i \neq c_j$ if $i \neq j$, $c_i \neq 1 \in C$, then R is weakly Galois over S.

Proof. Let x be a root in R of a w-irreducible polynomial h(X) of $S[X; \rho]$. Then h(X) = (X - x) g(X) in R[X; P]. We set $x = \sum_{k=0}^{n-1} y^k u_k$ ($u_k \in S$). Then $x \sigma P = \sum_{k=0}^{n-1} (y c_\sigma)^k u_k$) $P = \sum_{k=0}^{n-1} y^k c^k \sigma$ ($u_k \rho$) = $x P \sigma = x \sigma$ since x P = x for each $\sigma \in \mathfrak{G}$ and $s(x \sigma) = (sx)\sigma = (x(s\rho))\sigma = x\sigma \cdot s\rho$. Consequently, $x\sigma$ is a root in R of h(X). Thus $h(X) = \prod_{\sigma \in \mathfrak{F}} (X - x\sigma)k(X)$ where $\mathfrak{F} = x \mid \mathfrak{G}$. Noting here $x \sigma P = x \sigma$ and $x \sigma (X - x\tau) = (X - x\sigma) \sigma$

 $x\tau$) $x\sigma$, we have $x\sigma \cdot x\tau = x\tau \cdot x\sigma$ for each σ , $\tau \in \mathfrak{G}$. Hence $\Pi_{\sigma \in \mathfrak{F}}(X - x\sigma) \in S[X; \rho]$ and is non-vanishing. Now, let $f(X) = \Pi_{\sigma \in \mathfrak{F}}(X - x\sigma) g(X) + r(X)$ where g(X), $r(X) \in S[X; \rho]$ and $\deg r(X) < \deg \Pi_{\sigma \in \mathfrak{F}}(X - x\sigma)$. Then $\Pi_{\sigma \in \mathfrak{F}}(X - x\sigma) (g(X) - k(X)) = r(X)$ and $\deg \Pi_{\sigma \in \mathfrak{F}}(X - x\sigma) (g(X) - k(X)) \ge \deg \Pi_{\sigma \in \mathfrak{F}}(X - x\sigma)$ if $g(X) - k(X) \ne 0$. Hence $k(X) = g(X) \in S[X; \rho]$. Therefore, w-irreducibility of k(X) yields $k(X) \in S$. By making use of this fact, we find $f(X) = \Pi_{\sigma \in \mathfrak{G}}(X - y\sigma)$, and hence, the order of \mathfrak{G} have to coincide with n by Lemma 1. 2.

(b) Let f(X)=(X-y) $(X-yc_1)\cdot \cdots \cdot (X-yc_{n-1})$ in R[X; P]. Then the map σ_i defined by $\sum_{k=0}^{n-1} (y^k u_k) \sigma_i = \sum_{k=0}^{n-1} y^k c_i^k u_k$ is an S-automorphism of R. For, since yc_i is a root of f(X), σ_i is well defined, and $(sy)\sigma_i = y(s\rho)\sigma_i = yc_i(s\rho) = s\sigma_i y\sigma_i$. Hence σ_i is a ring monomorphism. If $(\sum_{k=0}^{n-1} y^k u_k)\sigma_i = \sum_{k=0}^{n-1} y^k c_i^k u_k = 0$, $\sum_{k=0}^{n-1} y^k u_k$ is contained in the kernel of σ_i . Thus $\{(yc_i)^k; k=0,1,\cdots n-1\}$ is an S-basis. Consequently, σ_i is an S-automorphism.

Let $\mathfrak B$ be the group generated by $\{1, \sigma_1, \cdots, \sigma_{n-1}\}$. If $x = \sum_{k=0}^{n-1} y^k u_k$ is an arbitrary element of $J(\mathfrak B, R)$, then $\sum_{k=1}^{n-1} y^k (\sum_{j=0}^{k-1} c_i j) u_k = 0$ for each $i = 1, 2, \cdots$ n-1. This means that

$$\left(y^{n-1}u_{n-1}, y^{n-2}u_{n-2} \cdots yu_{1} \right) \left(\sum_{j=0}^{n-2} c_{1}^{j} \sum_{j=0}^{n-2} c_{2}^{j} \cdots \sum_{j=0}^{n-2} c^{j}_{n-1} \right) = 0$$

$$\left(\sum_{j=0}^{n-3} c_{1}^{j} \sum_{j=0}^{n-3} c_{3}^{j} \cdots \sum_{j=0}^{n-3} c^{j}_{n-1} \right) = 0$$

$$\left(\sum_{j=0}^{n-3} c_{1}^{j} \sum_{j=0}^{n-3} c_{3}^{j} \cdots \sum_{j=0}^{n-3} c^{j}_{n-1} \right) = 0$$

On the other hand,

$$det \left(\sum_{j=0}^{n-2} c_1^{j} \quad \sum_{j=0}^{n-2} c_2^{j} \quad \dots \quad \sum_{j=0}^{n-2} c^{j}_{n-1} \\ \sum_{j=0}^{n-3} c_1^{j} \quad \sum_{j=0}^{n-3} c_3^{j} \quad \dots \quad \sum_{j=0}^{n-3} c^{j}_{n-1} \\ \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

shows that $u_{n-1} = u_{n-2} = u_{n-3} = \cdots = u_1 = 0$, that is $J(\mathfrak{G}, R) = S$.

Corollary 2.1 Let S be a simple ring with the infinite center Z, and let $R = S[y] \cong S[X; \rho]/(f(X))$.

- (a) If R/S is Galois and $y\sigma \in yC$ for each $\sigma \in \mathfrak{G}(R/S)$ where $\mathfrak{G}(R/S)$ the S-automorphism group of R, then R/S is outer.
- (b) If R is a division ring, then R/S is an outer Galois extension if and only if each zero in R of f(X) is a root of f(X). Moreover, if this is the case, every w-irreducible polynomial h(X) of degree m of $S \lceil X; \rho \rceil$ possessing a root x in R has

an essentially unique factorization into (X - x) $(X - xc_1) \cdots (X - xc_{m-1})s$ $(s \in S)$ such that $c_i \neq c_j$ if $i \neq j$ and $c_i \neq 1 \in C$.

- **Proof.** (a) The order of $\mathfrak{G}(R/S)$ is n by Theorem 2.1 (a). Hence the order of $\tilde{V} = [V^* : C^*] \leq n$. Now if we note that V is a simple ring possessing infinitely many elements, V = C by a generalized Scott's Theorem [5. Lemma 1].
- (b) The number of distinct zeros $\{x_{\alpha}\}$ in R of f(X) such that $x_{\alpha}P = x_{\alpha}$ is either infinite or at most n [3. Theorem 6]. Hence if each zero in R of f(X) is a root of f(X), we have $f(X) = \prod_{\sigma \in \mathfrak{G}(R/S)} (X y_{\sigma})$. Thus the assertion is an immediate consequence of (a). The converse is clear.

Theorem 2.2 Let $R = S[y] \cong S[X; D]/(f(X))$.

- (a) If R is a weakly Galois extension over S with respect to \mathfrak{G} with $y\sigma = y + c_{\sigma}$, $c_{\sigma}(\neq 0) \in C$, for each $\sigma \in \mathfrak{G}$, then every w-irreducible polynomial of S[X;D] possessing a root in R has a non-zero constant term and an essentially unique factorization into a product of w-irreducible linear factors in R[X;E]. Furthermore, if this is the case, the order of \mathfrak{G} is n.
- (b) Let $\chi(S) \geq n$ or $\chi(S) = 0$ and $V \neq Z$. Then R/S is an outer Galois extension if and only if w-irreducible polynomialh h(X) of degree m of S[X; D] possessing a root x in R has an essentially unique factorization $(X-x) \cdot (X-(x+c_1)) \cdot \cdots \cdot (X-(x+c_{m-1}))$ $S(S \in S)$ such that $c_i \neq c_j$ if $i \neq j$, $c_i \neq 0$ $\in C$.

Proof. (a) The proof is guite similar to that of Theorem 2. 1 (a).

(b) If $\chi(S) \geq n$ or $\chi(S) = 0$ and $V \neq Z$, then V = C by [4. Theorem 2.2]. Thus there exists an element $t \in S$ such that $y - t \in C$ and $\{(y - t)^k; \ k = 0, 1, \cdots m - 1\}$ is an S-basis for R. If $(y - t)^n + (y - t)^{n-1} u_{n-1} + \cdots + u_0 = 0$ ($u_k \in S$), then $g(X) = (X - t)^n + \sum_{k=0}^{n-1} (X - t)^k u_k = X^n + \sum_{k=0}^{n-1} X^k w_k$ ($w_k \in S$) is w-irreducible in S[X; D] and it possesses a root y in R. Hence $g(X) = (X - y)(X - (y + c_1)) \cdots (X - (y + c_{n-1}))$ in R[X; E]. Then the map σ_i defined by $\sum_{k=0}^{n-1} (y^k a_k) \sigma_i = \sum_{k=0}^{n-1} (y + c_i)^k a_k$ ($a_k \in S$) is an S-auotomorphism of R. Hence $(y - t)\sigma_i = (y - t)d_i$ for some $d_i \in C$ since y - t is contained in C. Hence we can see that $J(\mathfrak{G}, R) = S$ by similar methods to that of Theorem 2.1 (b) if \mathfrak{G} is the group generated by $\{1, \sigma_1, \cdots \sigma_{n-1}\}$. Therefore R = S[C] is an outer Galois extension over S. Conversely, if R/S is outer Galois, $y\sigma = y + c_\sigma$, $c_\sigma \in C$ for each $\sigma \in \mathfrak{G}(R/S)$. Hence the assertion is clear from (a).

References

- [1] Cohn, P. M.: On a class of binomial extensions, Illinois J. of Math., Vol. 10 (1966), 418-424.
- [2] JACOBSON, N.: The Theory of Rings, Providence, 1943.
- (3) Gordon, B. and T. S. Motzkin: On the zeros of polynomials over division rings, Trans. of A. M. S., Vol. 116 (1965), 218-226.
- [4] Kishimoto, K.: On polynomial extensions of simple rings, J. of Fac. Sci. Hokkaido Univ. Ser. I., Vol. 19 (1966), 169–180.
- [5] Tominaga, H.: A note on conjugates II, Math. J. of Okayama Univ., Vol. 9 (1959), 1-3.