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Introduction,
In this paper, we give examples of Morse functions on 0(r), Un), SUn), Sq(n),
Gs. Vym = 0m)/0n — m) and G, ,, = 0n)/0(m) x On — m),
The results are as follows:
We set

o) ={(x;) =Y €M (n, R)|'XX =E},
Un) = {(x;+y;i) = X € M (n, C)|'XX = E},

Syn) = £y + wifi 4 vijj + wyk) =X € M (0, H)'XX = E},
Go={Xc M (8, R)|X: 86— an automorphism of Cayley numbers}.

Then the Morse functions of 0(m), Uln) and S,(n) are given by weighted trace

functions

The Morse functions of V, ,, are

nt

(ID(x) :2 QX 0 < @ < """ < Xy
i=1

The Morse functions of G, and SU#) are given by the same form, but their

coefficients «; need to satisfy some conditions (cf. Lemma 5 of §4).

The Morse functions of G, , are given by
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They are different from above functions but calculations are given by the same
method,

We note that the Morse indices of the above functions show that they are
best possible,

The outline of this paper is as follows: In §1, we state some general theorems
for explicit calculations of critical points. They are proved in §2. The related
results are shown in §3 using these theorems. §4 is an appendix but the possi-
bilities of the existence of the Morse functions of G, and SUx) defined in §3 is
shown by Lemma 5 of this section,

In this paper, we refer [17], [2] for the theory of Morse functions and the
method of calculations of singularities of mappings.

§1. Some Theorems,
We denote by R" the the n-dimensional Euclidean space,
Let f=(fY, - , /%) be a smooth mapping from R" to R* and V the zero set
of f, i.e.

V={xe R'f(x) =0}

We assume Df, the Jacobian of f, is not equal to 0 on V. Then, it is easy
to see from the implicit function theorem that V is a smooth manifold. For a
smooth function ¢ of R”, we denote ¢|, the restriction of ¢ on V. The gradient
vector at p is denoted by po(p).

Theorem 1. A point p of V is a critical point of |y, if and only if pf(p) is
a linear combinaton of { f{p)}, i.e. there exist real numbers {a}io1, - . Such that

14
pelp)= ZJ; apfi(p).

This theorem is proved in the proof of Theorem 2.
We denote the Hessian of ¢ at p by p2e(p), i.e,

0%p
(?xiaxj

Pl = (5 (D) iy G =1, e,

The orthogonal projection from R” to the tangent plane of V at p is denoted
by P. We set

k
My = P(VEip(p)— }__'_1, a, A f{p)P.

Theorem 2. We assume that p is a critical point of ¢|,. Then p is nondege-
nevated if and only if
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rank My = dim V{=n — k).

Moreover, the index of ¢|y at p is the number of negative eigenvalues of M.

This theorem is proved in the next section,

Theorem 3. Let n: N — N be a locally trivial smooth fibre space over a smooth
manifold N, and ¢: N—R a smooth fonction on N. Then p, a point of N is a critical
point of ¢, if and only if any point of z~Np) is a critical point of @eox, .

Moreover, a critical point p of ¢ is nondegenerated if and only if the rank of
FA for) on =Y p) is equal to dim, N, and the index of f at p is the numbers of
negative eigenvalues of p¥ fex),

The proof of Theorem 3 is straightforword from the local triviality of =,
Therefore, we prove only Theorem 2.

§2. Proof of Theorem 2.
Lemma 4. In the proof of Theorem 2, we can assume without loss of generality,
the followings for some coordinate of R’

p=0,
o) = pe0) = (1, 0, « , O)
7f0) = (0, ----- 0, 1, 0, eee ,0) = e;, the i-th canonical base,
Proof., At first, we can choose a coordinate (xi, «-- , %,) of R" such that
p=0, 0)=(1, 0, , 0) and the tangent space of V at 0 is given by x; = &, =

xk:O,

Let g'=>la,f" and g/ =>4/ f', where a/ is defined by
7 7

e;j=2a’p f(0).

The existence of {a/} is verified from rank(Df)=#n — k. Then V is also defined
by the zeros of {g'} and {g‘} satisfies the above conditions. We take {g‘} the
place of {/*}, then we have Lemma 4.

Proof of Theorem 2, We can define a local coordinate of V on a neighbour-

hood of p =0 by u = (#;, Ug, -+~ , #,_3) such that
Z(u) - (Fl(u)y """ ) Fk(“): Ugy oo ) un-—k)
where i is the inclusion of V into R* and Fy, .- , F;, are some smooth functions,

Then
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B ko By OF, e
_GZTSD(Fl(u)y """ s ul) —,}(Z;i 79__%—_;“ —a_%-l_ + 73_551“‘
a or
( {')\ui gD( 1(”)7 By, oo ))U aul_ )0

0
(a) 0 :( aui fj(Fl(u)y """ y Ury 2oreee ))0
koap AR, off oF,
:( "aﬁ.—— P B A, )0 = (*"*)().
L= Ox, Ou, 0% 41 o,

Thus we have

We note that Theorem 1 follows from this formula,

ko9 OF, dFy; &y 8¢  OF,

:(a’ - Ox,0x5 ou; ou; | = 0%,0%p, Ou;

kA RF, oF k. pp o2F
99 s 0. @ «
+a,f3’2=1 9xp 0%,0u; Ou; i C,Z 0x, Ou,0u;

=1 @« J

ko dp 0 P2

e A N . 0
£ %5 0%y 0y 0%p,:0%p4 ;

L 9°F,
V04 0% 0 Ouou;

on the other hand, from (*), we have

02
ou,; ou;
D21
L

0%y ;0% j

0 =(

RN
Ou,0u;

) o

Thus we have

P, o
auiauj 0 3xk+iaxk+]~

(

We also have

U 6‘2;0 an
£= 0% 02y,; Ou;

Let P be the orthogonal projection to the tangent plane of V at 0, i, e.
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Then

[l
_ *p|v
Ok@ ( auiauj) 0.
52 k J2fh . o 52 .
Hence P( L4 Za,m—f—)oP is similar to 0, @ ( goiv)o for a general coordi-

0x;0x; f= "Ox;0x; on; 0u;

nate without conditions of Lemma 4. Thus we have Theorem 2.

§3. Some examples,
In this section we give Morse functions of some spaces as examples of The-
orems 1, 2 and 3,
1. O(n), Un) and Spin),
They are represented in R#?, R2'?, R%* as in the introduction. And we set

and the the index at p is Z(Ei;l)(az’ —1), where # is 1, 2 and 4 respectively
i=1
O (n), Un) and Spn). We give a proof of the case of U(n). The others are obtained
similarly,
Proof of the case of Uln).

we set

n

Un) = {(x;; + yii)=x2 €M (1, C)|fu = Z (Xi%y; -+ Vi) — 6 = 0 for
=1

L<k<I<n, gu :E(xkixli — Xy = 0 for 1< k<l <nj}

i=1

It is easily verefied that {yfu, Ffu, Pgu} is linearly independent.
The Grammian of {Ffue, Pfu, 78w, Pl is
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/)

2

"
ooy DXy, o0 e, aXytapky, o oo, —@ ¥ty e e, Z“zz, )
=1

Now, we assume G = 0 on U(n). Then we have
QXpp = CpXpe, O Vg = — &Y,

From fi{X) = fu(’X) =0, we have

124 — 0% = X% + y1a® 4o 25,2 4+ 3,7
= X%+ Yo o X0 vk

0522 o anz
— 2 — 2 =
{ al 1) 299% 4+ 4 e 1) %, 0.
Thus we have
Xig = Yig = X1z = Yig == Xy, = Yy, = 0,
Xop = Vo1 = Xg1 = Vg1 = = Xy = Yy = 0,

Inductively, from f;(X)= f;(X)=0, we obtain
¥ =9; =0, for { # j.

And from «;y; = —a;y;, we also have y,; =0,
Thus, %; = =1, Hence from Theorem 2, we have that the critical points

/ €1 0 l \)

are { . g = +1)

1 .

L 0
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&1

Now, we shall calculate the index at p=

By simple calculation, we have
H

P() = 21 ELp i p).

=]

Let the coordinate (x;;) be ordered as

(xlly Xog, *rrrev y Koy K12, Koty v y Xay a-1r Yits

0

Then P, the projection of Theorem 2, is represented as

0
0
A
Ay
P = An-—ly n
0
where
1, ee;
Aij == ]>
gej, 1
Hence we get
n e
Mp=P (—Z‘,%ancm) P
i=1
0
0
BIZ
- Bn-h n
- &1y
0

€n
...... s Vs
0
A

°
0
Enn
12

n-l)

A

n-lsn

n-1s n;

91
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&0 — Ejaj, ”"EiC\fj — ej“i
where B;; :( >

—Et; —

i &, TEX; — &Y

Therefore the eigen values of M, are

0. multiplicity ».
—la; — aj)e; —¢p), 1 # 7,
_(a’i + aj)(si + Ej)r l + j)

L—ae, i=1, , 1,
Hence we have rank My = #n2

n
Thus, each critical point is nondegenerated and the index is Z‘, ((e; + 1)/2)(2(n

=1

— 1)+ 1) by Theorem 2. Therefore, ¢(x) is a Morse function of Un) and it is best

possible,
2. Vaw CV,,. and HV, ..
We set

Vo m = Om)/0On — m); Real Stiefel manifold.
CV,n = Un)/Un — m): Complex Stiefel manifold,
HYV, ., = Spn)/Spn — m); Quarternionic Stiefel manifold.

We use the same coordinate as in 1. and consider that the groups o(n — m),
Un — m) and Spn — m) act on the last (n — m)-coordinates, We set

m

@(x) :Z]aixiir 0 < @y < """ < Wy,
im1

Then ¢(x) is invariant under the actions of O(n — m), etc. By the same calculations
as above and by Theorem 3, we have the following results.
g €1 0 :

The critical points of ¢|y are (b= . g = ili,
| O 67)1 ;

| Ll \

i * )
In On)-case, the eigenvalues at p are
0, multiplicity (# ++ (n — m)(n — m — 1)),
=l —ajlle; —ey), 1 <j=m,
—{e; + a’j)(ei =+ sj)’ i<jEm,
—afe; — ), 1<m<,

L —ale; +eg), i m <
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m

Thus critical points are nondegenerated and the index at p is Z‘, ((e; + 1)/2)(m
=1

+z‘—m—1},

In CV,, , (resp. HV, ,)-case, similar calculations show that the index at p is
n ”m
> e + 1y2)2n — m + i) — 1) (resp. > (e + 1)/2(4(n — m + i) — 1). Therefore these
=1 i=1
o(x) are Morse functions of V,, ,, CV, . and HV, ..

3. G,
We give an order of the cannonical base of €, the Cayley number field, by

(1, €1, €, ey, exes, esey, eey, ei(esey)).
G, is represented by
G,={Xe M (8, R)| X: €—C; an automorphism of Cayley numbers},
Simple calculations show that G, is given simply, by
Gy ={X| X =" (%15, ++rer , Kigy Kag, reeees , Koz, Xay, cveeee , Xa2),
fij= é Fuxy —0; =0, 1<i<j<3,
g = Re. (x:(xs%5) + (x1%2)25) = 07,

where %; = (0, X, - , %) and the product is of Cayley numbers,
We set

o(x) = ax + B¥ag + 7%,

where (@, B, 7) satisfies the conditions of Lemma 5 (given in the last section of
this paper).
The Grammian of (pf;;, pg, pe) is
4 200%11
4 . .

4 o
2 Bxsat7Xas

2 .
3 (X2xg)1 + (XX 1)2 -+ (X1%0)s

2%11, ° o, Xazt Xeg, o o, (Wa¥a) + (Wa¥i)e + (X1¥e)s, a® - B2 4 yE

Now, we assume G = 0, then, similarly in U(n)-case, the critical points are of
the following forms,
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&1, O: Oy ABTAU: Oy Oy 0

p: €2, O, 0’ ret, O; 0 .

0,
0, 0, &, 0, 0, afy O
We put Srp =sinéb,,

rorpe = sin Gy,

afp = sin 0,.

ind in @ in @ .
Then 2071 = SH}; 2 = sn;‘ . Since g =0 on G,, we have

01 4= Oy 4= 03 = 0 (mod 2x),

From Lemma 5 we have ¢, = 6, = 6; = 0 (mod =), That is,
r=20, e, &, =1,

Hence the nondegenerated critical points are

€1 O O
Pley, &, e3)=10 & 0 0])et, e, a1y,

0 &g

And straightforward calucuiations show that (e, &, ), the index at Ple,
€3, 53): iS
I—1, —1, —1)=0 I(—1, —1, 1)=3
I—1, 1, —1)=4 1, —1, —1,)=5
(-1, 1, )=9 11, —1, 1,)=10
I, 1, - =11 11, 1, 1) =14,
Therefore ¢(X) is a Morse function of G, and it is best possible.
4, SUw),
We give the special unitary group SU(#) by
SUw) = {{x;5 + yiji) = X|!XX =E,det X =1}

7t
Let ¢(X) = Zaixii, and «; satisfy the conditions of Lemma 5,
i=1
Straightforward caluculations show that critical points are of following forms.

e -+ d1/1i 0 \

& oy
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Now we put ¢; + a;ui = €%, Since det P =0,

>16; =0 (mod 2a).
=

And T == (=p). By Lemma 5, the critical points of ¢ are
1 n
- 0
° n
} . =p| [l & =15
f ° i=1
.0 e

Simmilarly as in 1., we have that the index at p is equal to

7

2 (e 4 1)/2)(20 — 1),

i=1

Therefore ¢(x) is a Morse function of SU(n) and it is best possible.
5. G,m = 0m)/0(m) x 0(n — m).
We use the same coordinates as in 1, for 0(n),

We set
1
o(x) :Z sy, e;=1, i=1 w0 , M
o
’ -1, i=m-+1, e , n,
O<a1< ...... <a"'

Since ¢ is 0m) x 0(n — m)-invariant, ¢ is a smooth function on G, ,. This ¢
has a different form of ¢ in 1~4, but by Theorems 2 and 3, straightforword
calculations give us the following results, .

Let = be a combination of m-elements in the set of n-elements, then ¢ is
represented in On) as ¢ = (zij), ij = 0i,-; for j<<m and z;; = §;,7G—my for j>m,
where = is the complementary combination of z. Then the critical points of ¢(x)
are {r|r is a combination of m-elements in the set of #-elements}, and the index
at ¢ is the number of positive (z; — r;)’s, where i=1,.--- ,m and j=1, - , n—m,

Therefore ¢(x) is a Morse function of G, ,, and it is best possible,

§4. Appendix,
Lemma 5. There exist positive numbers oy, - , &, such that

O<“l<a2< """ <am

and the equations
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in 0 im0
(*) Oy vt 0,= 0 (mod z), o2t =...... =0T
447 a,
have only the trivial solution #; =----+- =0, =0 (mod =),
Proof, Weput a¢,=1, a, ;= — L}, - , ay=¢, where 0 <{e<{1/n?. If (*)
has nontrivial solutions (#y, -+ , 8,), then we can assume 6¢; (0, =), (if not, we

take —#,). Moreover, we can assume 0; (0, =/2], because if §; € (z/2, =), then
we may take 6/ == — 0, in the place of 4, then we have

Oy meenes = 0, e =0 (mod =), sin§; = sin 0,',
For ¢ < 1/(n%, we have
. 1. . .
1>=sinb, = N sin 0; >n sin 0;;

Then 8y, , 0,.,€ (0, =/2n) and 6, € (0, =/2]. Thus
sin 4, = sin(z= 0y -+ +4,)
< sin (@ +------ + 4,)
. . n—1) .
<sin O 4+ +sinf, = ——————¢sind,

< sin 0,

This is a cotradiction. Therefore, we have the Lemma.
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