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Introduction. Throughout the present paper B will mean a ring with an
identity 1, A= B - xB = B + Bx 22 B an extension ring of B with an identity
coinciding with the identity of B.

As an extension of result of [5], T. Nagahara gave characterizations for a
commutative ring A to be a Galois extension over B ([7]). The main purpose of
this note is to extend the above Nagahara’s result to some non commutative case.

Let A=B@®xB=B®Bx, dx = xd + dy for each d € B (d,, dy = B). Then
the map p:d—>d, is an automorphism of B and the map D:d—>d, is a p-
derivation of B. Further, if x2= xb; + b, for some b;, by = B, the map ¢ of A
defined by o(xb’ + ¢’y = (xc + b)Y’ + c'(h, ¢, V', ¢' € B) is a B ring epimorphism of
A if and only if there hold followings '

() ¢ is a unit element of Z, the center of B.
(I) (1—c)Dd) = db — bp(d) for each d  B.

(ML) ¢by = c(ple)b: + Dlc) + b + (b))

(IV) bby + by = c{o(c)by + D(B)) -+ b2

For if ¢ is a B-homomorphism, we obtain

o(dx) = d (o(x)) = d(xc+b) = xp(d)c + D(d)c + db and o{dx) = a(xp(d) + D(d)) = xcp(d)
+ bold) + D).

Hence ¢ € Z. Moreover, if ¢ is an epimorphism, ¢B = B implies that ¢ is a
unit element. Under the assumption that ¢ € U(Z), the validity of (ID-(IV) is
equivalent to that ¢ is a homomorphism of A4 by [2].

Now, we set the condition*) as following :

*) If M is a right, as well as left, free A-module of finite rank, then the
rank is uniqueD.

In all that follows, we assume that A satisfies *).

1. Necessary and sufficient conditions for A te be Galois over B.

We shall begin our study from the following

Lemma 1. Let A/B be a Galois extension with a Galois group &. Then

1) If A is commutative, A satisfies *),.
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(a) @ is of order 2.
(b) For o(=¢1) € &, x — a(x) is inversible.
(c) {1, 8} is @ free B-basis for AD.

Proof. Let o(£1) € &. We suppose that x — o(x) is not right inversible. Then
there exists a proper right ideal © of A such that v ® x — ¢(x). On the other hand,
since A=B®@xB, (1 —0)A=1{y—o(y)|yeE A} is contained in r. Let {x, x3 -,
X,; Y1, Yo, -+, Y.t be a &-Galois coordinate system for A/B with Z:;l o(x,)y; =8y, -

for each r = ®. Then we have a contradiction 1= Z;;l (x; — o(x))y; € v. Thus
% — o{x) is right inversible. Since A = B@® Bx, the same arguments enable us to
see that ¥ — o(x) is left inversible.

Now, let ¢/ + xb' =0 (resp. ¢ +b'x = 0) for some ¢', b' € B. Then 0= (¢’ +
xb") — olc’ + xb") = (x — o(X)b' (resp. (¢ + 0'x) — alc' + b'%) = b'(x — o(x)) yields ¢’ =
b = 0.

Regarding that A ® pA is a left (resp. right) A-module by a(d’ ® ¢') =ab’ R ¢’
(resp. (' Rca=0b Rc'a) for each ¢, V', ¢' € A, AR A=AQRBPBx)=AD
ARpBx=A1® 1)+ A1 ®x) (resp. AQRpA=BD*B)Q@A=ADsBR A=
1R DA+ (x®1DA) is a free A-module of rank 2. On the other hand, (b), (c), (d)
and (e) of [1], Theorem 1.3 are equivalent without assumptions that A and B are
commutative®. Therefore A ® z4 is isomorphic to a direct sum of |®]-copies of
A. Consequently we have |G]= 2 by *).

Theorem 1.4 Let A have a relation x% = xb, + by for some by, by € B. Then A/B
is a Galois extension if and only if theve hold that

{a) {1, x73 is a free B-basis for A.
b) there exists an element b of B satisfying
) 2D(d) = db — bo(d),
) b+ plb) = 2by,
i) by = b2 — D(b),
) 2x — b is inversible, where p, D are -maps of B defined by d—>d;,
“d—>dy vespectively for each d & B with dx = xd, + dy (d,, dy € B).

Moreover, if A is commutative (i), (i) and (iii) of (b) are needless and (iv) can be
replaced (iv') 2x — by is inversible. ‘

Proof. Let A/B be a Galois extension. Then by Lemma 1, &, the group of
B-automorphisms of A is {1, ¢} and {1, ¥} is a free B-basis for A.

Let o(x) = x¢ + b. Then B = x + o(x) = x(1+¢) + b implies ¢ = —1, and hence,
¥ —o(x) = 2x — b is inversible by Lemma 1. The validity of (i), (ii) and (iii) of (b)
is a direct consequence of (II), (IIT) and (IV).

2) A free basis means a free right, as well as, left basis,
3) Needless to say a B-algebra homomorphism of [17 replace to a B-module homomorphism,
4) Cf. [7], Lemma 1,
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Conversely, assume that A satisfy (a) and (b). Then by (a) and (i), (ii) and (iii)
of (b), the map ¢ defined by xb' + ¢’ —>(—x + b)b' + ¢' (¥',¢' € B) is a B-automor-
phism of A. Let oxd’ + ¢')=xb' + ¢'. Then (x — s(x)b' = (2x — b’ = 0 implies
b' =0 by (iv) of (b). Thus A= B. Since {x — a(x))"ix — (¥ — o(x))"L o(x)e1 =1 and
(x — olx)o(x) — (x — o(x)) to(x%)a(1) = 0, A/B is a Galois extension.

Let A be commutative. Then we have bb; = b2 by (iii) of (b), and the map
91 xb' 4+ ¢ —>(—x + b)b' + ¢' is a B-automorphism of A by (I), (II), (III) and (IV).
If » =1 then x = p(x) = —x + b, and hence 2x = b; = 0. On the other hand, since
2x — b is inversible by (iv) of (b), we can see that b is inversible. But, this con-
tradicts to b2 = bb;. Thus y = a(5£ 1)and x — a(x) = 2x — b, is inversible by Lemma
1 (). '

Let T be a ring, P an automorphism of 7, £ a P-derivation of 7. Then by
T{X; P, E] we denote a ring of polynomials {Z_,‘ Xit;|t; &€ T} whose multiplication
is defined by the distributive laws and the rule tX = XP({) + E({¢) for each t & T.
A monic polynomial f(X)e T[X; P, E7 is called a non-vanishing polynomial if the
right ideal f(X)T[X; P, E7] is a two-sided ideal of T[X; P, E7], and, an element
t e T is called a root of f(X)}if f(t)=0 and X — ¢ is non-vanishing®.

Corollary 1. Let A/B be a Galois extension with x? = xb; + by (b1, bp € B) and
dx = xp(d) + D(d) for each d = B. Then the following conditions are equivalent :

(a) 2:1=0

(b) x — o(x) is an element of B.

(c) there exists a free B-basis {1, y} for A with o(y) =y — 1.

(d) there exists a free B-basis {1, w} for A suchthat wand w - 1 are rools
of the polynomial X2 — X — (w? —w) € A[X; 1,1.9

Movreover, if A has no proper central idempotents, then the only roots of the
polynomial X2 — X — (w? — w) given in (d) are w and w + 1.

Proof. (a)—>(b). Let 2:1 =0. Then % + ¢(x) = ¥ — o(x) means that x — o(x) =
B,

(b)—>(c). Let b =x —o(x) € B. Then, by Lemma 1, b is inversible. - Hence
if we set ¥y = «xb-1, {1, v} is a free B-basis for A and ¢(3) = (x—bb 1=y — 1.

(c)—>(d). Since dy — yd € B for each d € B, dy = yd + D(d), where D is a
derivation of B. Now we shall show that X?— X — (3 — 3 e A[X; L,] is the
requested polynomial. XX — =X —-»X, XX -0+ 1))=X—( +1)X and
d(X — y) = Xd — dy + D)= (X — »)d, d(X —(y+ 1) = (X —(y+ 1)d show that y
and y 4+ 1 are roots of X2 — X — (y2 — y). '

(d)—>(a). Let {1, w} be a free B-basis for A such that w and w -+ 1 are
roots of X* — X — (w? — w). Then 0 = (w + 1)* — (w + 1) — (w® — w) = 2w shows that

5) Cf. [4].
6) I, means the inner derivation generated by w.
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21 =0.

Let A be a ring without proper central idempotents, and let z be a root of
X2 — X — (w? —w) given in (d). Then X(X — 2) =(X — 2)X = X(X — 2) — D(2) and
dX — 2) = (Xd — dz + D(d)) = (X — 2)d for each d € B. Hence we have D(2)= zw
— wz =0 and dw — wd = dz — zd respectively. Hence w -+ z &€ V, the centralizer
of B in A. Since zw = wz, we have w + z = C, that is, z= w + ¢ for some ¢ €
C. Noting that 2:1 =0, 0 =22 —z— W —w) =@+ w2 —-(z+w=c*+c cisa
central idempotents, and hence ¢ =0 or ¢ = 1.

Theorem 2. Let A/B be a Galois extension. Then 21 is inversible if and only
if there exists an element y & A such that A= B @ yB = B® By, y*c B and yo(y)
= a(y)y for each ¢ = & = G(A/B), and if this is the case, y is inversible.

Proof. Let 2¢1 be inversible, and let y = (x — o(#))/2. Then y is inversible,
o(y) = —y and y* € U(B). Since y71/2¢y + y712eye1 =1 and y~Y/2e0(y) + y Y20 y°0(1)
=0,By]l=B+yB=B+ By=A by [6, Theorem 2.3]. By Lemma 1, {1, y}
is a free B-basis for A.

Conversely, assume that there exists an element ¥y € A such that A = B @ yB
=B@® By, y»= B and yo(y) = a(3)y for each 6 €&. Then 3y + oy)) = ¥ + yo(y)
€ B yields y + o(y) = 0, and hence o¢(y) = —y. Consequently, we can see that 2y
is inversible by Theorem 1. Thus 2¢1 and y are inversible.

Covollary 2. Let A be a Galois extension with x2 & B, and dx = xpld) + D(d) for
each d € B. Then the following conditions are equivalent :

) xo(x) = alx)x for each o € @.
b) D=0 and 2.1, x are inversible.
(¢) p=2x"1B and 2.1 is inversible.
d) p can be extended to an automorphism P of A with P(x)=x, x and —x
are distinct roots of X2 — x2 of A[X; P] in A.

Proof. Firstly, we shall note that if o{x)+ x =05 for some b B, then b
satisfies 2D(d) = db — bp(d) for each d € B (Theorem. 1 (b), (i)).

(a)—>(b). As is shown in the proof of the sufficiency of Theorem 2, o(x) =
—x%, 2¢1 and x are inversible. Since o(x) 4+ x =0, we have D(d) = d{(b/2) — (b/2)o(d)
= 0 for each d € B,

(b)—>(c). This implication is evident.

()—>(d). If p=%"1B then P =X%"! is an automorphism of A with P{x)= x,
and X(X = ) = (X 2= )X, d(X == x) = (X = x)o(d) are clear.

(d)—>(a). Since d(X — x) = (X — x)o(d) for each d & B, p = %"!|B. Hence the
map ¢ defined by o(xd' + ¢') = —xb'4-¢' (b', ¢' € B) is a B-automorphism of A.
Thus xe(x) = o(x)x for each ¢ € @.

Let A be a ring without proper central idempotents, and let z be a root of
X? — x® given in (d). Then X(x — z) = (X — 2)X and d(X — z) = (X — z)p(d) for each
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d € B. Hence we have xz = zx, dz = zp(d) respectively. Hence z = xc¢ for some
¢ € U(C) with ¢2 = 1. Since C is a commutative ring without proper idempotents,
¢ = =1 by [3, Corollary 2.5].
The following will be easily seen from Theorem 2 and Corollary 2.
Corollary 3.7 Let A have a velation x* = B. Then A/B is a Galois extension
with xo(x) = o(x)x for each o € & if and only if there holds that
(a) {1, x} is a free B-basis for A.
(b) 21 and x are inversible.
(c) D=0 where D is the map defined by dx = xp{d) + D(d) foreach d & B.
2. Structure of the centralizer.
In the rest, we shall determine the structure of the centralizer of a quadratic

extension.
Let A=B®xB=B@®Bx be a ®=1{1, 6} Galois extension, and let V be
the centralizer of B in A. Then we may assume that x2 e U(B), o) = —x and

dx = xo(d) for some automorphism p of B if 2.1 is inversible for each d € B, and
dx = xd + D(d), o(x)=x + 1 for some derivation D of B if 2.1 =0 for each d &
B.

Theorem 4. Let 201 be inversible or 21 =0. Then V = C[Z], the composite of
the center C of A and the center Z of B. More precisely, V =C® Z,, where Z, =
ZNJ, and [, = {a € Alay = o{y)a for each y & AL

Proof. It is evident that V=72 if ¢ = v for some v € V. Hence we consider
the case ¢ =4 ¥ for each v € U(V). Firstly, we note that V=C®/J,.

case 2¢1 =0, Let v=xb+c (b, c € B). Then dv=rwvd for each d & B imply
xdb + D) + dc = xbd + ¢d and hence

be Z : (1)

and D(d)» = cd — dc.
Thus,

Db =0 « (2)

Next, let us assume that v /J,. Then J,=0¢@®) —v=>0 yields bx = o(x)b =
(* + 1)b, and hence

Dpy=15 (3)

By (2) and (3), we have 62 =0. Then 1+ b € U(Z) by (1).
On the other hand, since ¢ # v for each v € U(V), U(Z)< C. Thus we obtain
0= D1+ b)= D) =>5b. Therefore v=c< BNV =Z means that J, S Z Thus

7) Cf. [7], Lemma 2,
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V=C®Z =CZ].
case 21 is inversible. Let v = xb + ¢(b, ¢ € B). Then dv =vd for each d & B
implies xp(d)0 + dc = xbd + cd, and hence

pldb =bd, ce Z (1)
Thus
o(b)b = b2 )

Next, let us assume that v & J,. Then [, 2 1/2(c (v) — v) = xb and xbx = x2p(D)
= o(x)xb = —x2%, and hence

ob) = —b (3)

By (2) and (3), we have p(b)b = b2 =10. Thus (xb)2 = x2p(b)b =0, and hence 1
—xb e U(V). Since U(V)< U(C), we have xb e J,NC = 0. Consequently, V=C
®Z, =CLZ].
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