Note on Quadratic Extensions of Rings II

By Kazuo Kishimoto

Department of Mathematics, Faculty of Science, Shinshu University (Received April 30 1972)

Introduction. Throughout the present paper B will mean a ring with an identity 1, $A = B + xB = B + Bx \supseteq B$ an extension ring of B with an identity coinciding with the identity of B.

As an extension of result of [5], T. Nagahara gave characterizations for a commutative ring A to be a Galois extension over B ([7]). The main purpose of this note is to extend the above Nagahara's result to some non commutative case.

Let $A=B\oplus xB=B\oplus Bx$, $dx=xd_1+d_0$ for each $d\in B$ $(d_1,\ d_0\in B)$. Then the map $\rho:d\longrightarrow d_1$ is an automorphism of B and the map $D:d\longrightarrow d_0$ is a ρ -derivation of B. Further, if $x^2=xb_1+b_0$ for some $b_1,\ b_0\in B$, the map σ of A defined by $\sigma(xb'+c')=(xc+b)b'+c'(b,\ c,\ b',\ c'\in B)$ is a B ring epimorphism of A if and only if there hold followings

- (I) c is a unit element of Z, the center of B.
- (II) $(1-c)D(d) = db b\rho(d)$ for each $d \in B$.
- (III) $cb_1 = c(\rho(c)b_1 + D(c) + b + \rho(b)).$
- (IV) $bb_1 + b_0 = c(\rho(c)b_0 + D(b)) + b^2$.

For if σ is a *B*-homomorphism, we obtain

 $\sigma(dx) = d(\sigma(x)) = d(xc+b) = x\rho(d)c + D(d)c + db$ and $\sigma(dx) = \sigma(x\rho(d) + D(d)) = xc\rho(d) + b\rho(d) + D(d)$.

Hence $c \in \mathbb{Z}$. Moreover, if σ is an epimorphism, cB = B implies that c is a unit element. Under the assumption that $c \in U(\mathbb{Z})$, the validity of (II)–(IV) is equivalent to that σ is a homomorphism of A by [2].

Now, we set the condition*) as following:

*) If M is a right, as well as left, free A-module of finite rank, then the rank is unique¹⁾.

In all that follows, we assume that A satisfies *).

1. Necessary and sufficient conditions for A to be Galois over B.

We shall begin our study from the following

Lemma 1. Let A/B be a Galois extension with a Galois group \mathfrak{G} . Then

¹⁾ If A is commutative, A satisfies *).

- (a) S is of order 2.
- (b) For $\sigma(\neq 1) \in \mathfrak{G}$, $x \sigma(x)$ is inversible.
- (c) $\{1, x\}$ is a free B-basis for $A^{(2)}$.

Proof. Let $\sigma(\neq 1) \in \mathfrak{G}$. We suppose that $x - \sigma(x)$ is not right inversible. Then there exists a proper right ideal x of A such that $x \ni x - \sigma(x)$. On the other hand, since $A = B \oplus xB$, $(1 - \sigma)A = \{y - \sigma(y) | y \in A\}$ is contained in x. Let $\{x_1, x_2, \dots, x_n; y_1, y_2, \dots, y_n\}$ be a \mathfrak{G} -Galois coordinate system for A/B with $\sum_{i=1}^n \tau(x_i)y_i = \delta_1$, τ for each $\tau \in \mathfrak{G}$. Then we have a contradiction $1 = \sum_{i=1}^n (x_i - \sigma(x_i))y_i \in x$. Thus $x - \sigma(x)$ is right inversible. Since $A = B \oplus Bx$, the same arguments enable us to see that $x - \sigma(x)$ is left inversible.

Now, let c' + xb' = 0 (resp. c' + b'x = 0) for some c', $b' \in B$. Then $0 = (c' + xb') - \sigma(c' + xb') = (x - \sigma(x))b'$ (resp. $(c' + b'x) - \sigma(c' + b'x) = b'(x - \sigma(x))$ yields c' = b' = 0.

Regarding that $A \otimes_B A$ is a left (resp. right) A-module by $a(b' \otimes c') = ab' \otimes c'$ (resp. $(b' \otimes c')a = b' \otimes c'a$) for each a, b', $c' \in A$, $A \otimes_B A = A \otimes_B (B \oplus Bx) = A \oplus A \otimes_B Bx = A(1 \otimes 1) + A(1 \otimes x)$ (resp. $A \otimes_B A = (B \oplus xB) \otimes_B A = A \oplus xB \otimes_B A = (1 \otimes 1)A + (x \otimes 1)A$) is a free A-module of rank 2. On the other hand, (b), (c), (d) and (e) of [1], Theorem 1.3 are equivalent without assumptions that A and B are commutative³). Therefore $A \otimes_B A$ is isomorphic to a direct sum of $|\mathfrak{G}|$ -copies of A. Consequently we have $|\mathfrak{G}| = 2$ by *).

Theorem 1. ⁴⁾ Let A have a relation $x^2 = xb_1 + b_0$ for some b_0 , $b_1 \in B$. Then A/B is a Galois extension if and only if there hold that

- (a) $\{1, x\}$ is a free B-basis for A.
- (b) there exists an element b of B satisfying
- (i) $2D(d) = db b\rho(d)$,
- (ii) $b + \rho(b) = 2b_1$,
- (iii) $bb_1 = b^2 D(b)$,
- (iv) 2x b is inversible, where ρ , D are maps of B defined by $d \longrightarrow d_1$, $d \longrightarrow d_0$ respectively for each $d \in B$ with $dx = xd_1 + d_0$ $(d_1, d_0 \in B)$.

Moreover, if A is commutative (i), (ii) and (iii) of (b) are needless and (iv) can be replaced (iv') $2x - b_1$ is inversible.

Proof. Let A/B be a Galois extension. Then by Lemma 1, \mathfrak{G} , the group of B-automorphisms of A is $\{1, \sigma\}$ and $\{1, x\}$ is a free B-basis for A.

Let $\sigma(x) = xc + b$. Then $B \ni x + \sigma(x) = x(1+c) + b$ implies c = -1, and hence, $x - \sigma(x) = 2x - b$ is inversible by Lemma 1. The validity of (i), (ii) and (iii) of (b) is a direct consequence of (II), (III) and (IV).

²⁾ A free basis means a free right, as well as, left basis.

³⁾ Needless to say a B-algebra homomorphism of [1] replace to a B-module homomorphism.

⁴⁾ Cf. [7], Lemma 1.

Conversely, assume that A satisfy (a) and (b). Then by (a) and (i), (ii) and (iii) of (b), the map σ defined by $xb'+c'\longrightarrow (-x+b)b'+c'$ ($b',c'\in B$) is a B-automorphism of A. Let $\sigma(xb'+c')=xb'+c'$. Then $(x-\sigma(x))b'=(2x-b)b'=0$ implies b'=0 by (iv) of (b). Thus $A^{\sigma}=B$. Since $(x-\sigma(x))^{-1}x-(x-\sigma(x))^{-1}$. $\sigma(x)\cdot 1=1$ and $(x-\sigma(x))^{-1}\sigma(x)-(x-\sigma(x))^{-1}\sigma(x)\sigma(1)=0$, A/B is a Galois extension.

Let A be commutative. Then we have $bb_1 = b^2$ by (iii) of (b), and the map $\eta: xb' + c' \longrightarrow (-x + b_1)b' + c'$ is a B-automorphism of A by (I), (II), (III) and (IV). If $\eta = 1$ then $x = \eta(x) = -x + b_1$, and hence $2x = b_1 = 0$. On the other hand, since 2x - b is inversible by (iv) of (b), we can see that b is inversible. But, this contradicts to $b^2 = bb_1$. Thus $\eta = \sigma(\neq 1)$ and $x - \sigma(x) = 2x - b_1$ is inversible by Lemma 1 (b).

Let T be a ring, P an automorphism of T, E a P-derivation of T. Then by T[X; P, E] we denote a ring of polynomials $\{\sum X^i t_i | t_i \in T\}$ whose multiplication is defined by the distributive laws and the rule tX = XP(t) + E(t) for each $t \in T$. A monic polynomial $f(X) \in T[X; P, E]$ is called a non-vanishing polynomial if the right ideal f(X)T[X; P, E] is a two-sided ideal of T[X; P, E], and, an element $t \in T$ is called a root of f(X) if f(t) = 0 and X - t is non-vanishing⁵.

Corollary 1. Let A/B be a Galois extension with $x^2 = xb_1 + b_0$ $(b_1, b_0 \in B)$ and $dx = x\rho(d) + D(d)$ for each $d \in B$. Then the following conditions are equivalent:

- (a) $2 \cdot 1 = 0$
- (b) $x \sigma(x)$ is an element of B.
- (c) there exists a free B-basis $\{1, y\}$ for A with $\sigma(y) = y 1$.
- (d) there exists a free B-basis $\{1, w\}$ for A such that w and w+1 are roots of the polynomial $X^2 X (w^2 w) \in A[X; I_w]^{.6}$

Moreover, if A has no proper central idempotents, then the only roots of the polynomial $X^2 - X - (w^2 - w)$ given in (d) are w and w + 1.

Proof. (a) \longrightarrow (b). Let $2 \cdot 1 = 0$. Then $x + \sigma(x) = x - \sigma(x)$ means that $x - \sigma(x) \in B$.

- (b) \longrightarrow (c). Let $b = x \sigma(x) \in B$. Then, by Lemma 1, b is inversible. Hence if we set $y = xb^{-1}$, $\{1, y\}$ is a free B-basis for A and $\sigma(y) = (x-b)b^{-1} = y 1$.
- (c) \longrightarrow (d). Since $dy yd \in B$ for each $d \in B$, dy = yd + D(d), where D is a derivation of B. Now we shall show that $X^2 X (y^2 y) \in A[X; I_y]$ is the requested polynomial. X(X y) = (X y)X, X(X (y + 1)) = (X (y + 1))X and d(X y) = Xd dy + D(d) = (X y)d, d(X (y + 1)) = (X (y + 1))d show that y and y + 1 are roots of $X^2 X (y^2 y)$.
- (d) \longrightarrow (a). Let $\{1, w\}$ be a free B-basis for A such that w and w+1 are roots of $X^2-X-(w^2-w)$. Then $0=(w+1)^2-(w+1)-(w^2-w)=2w$ shows that

⁵⁾ Cf. [4]

⁶⁾ I_w means the inner derivation generated by w.

 $2 \cdot 1 = 0.$

Let A be a ring without proper central idempotents, and let z be a root of $X^2-X-(w^2-w)$ given in (d). Then X(X-z)=(X-z)X=X(X-z)-D(z) and d(X-z)=(Xd-dz+D(d))=(X-z)d for each $d\in B$. Hence we have D(z)=zw-wz=0 and dw-wd=dz-zd respectively. Hence $w+z\in V$, the centralizer of B in A. Since zw=wz, we have $w+z\in C$, that is, z=w+c for some $c\in C$. Noting that $2\cdot 1=0$, $0=z^2-z-(w^2-w)=(z+w)^2-(z+w)=c^2+c$, c is a central idempotents, and hence c=0 or c=1.

Theorem 2. Let A/B be a Galois extension. Then $2 \cdot 1$ is inversible if and only if there exists an element $y \in A$ such that $A = B \oplus yB = B \oplus By$, $y^2 \in B$ and $y\sigma(y) = \sigma(y)y$ for each $\sigma \in \mathfrak{G} = \mathfrak{G}(A/B)$, and if this is the case, y is inversible.

Proof. Let 2•1 be inversible, and let $y = (x - \sigma(x))/2$. Then y is inversible, $\sigma(y) = -y$ and $y^2 \in U(B)$. Since $y^{-1}/2 \cdot y + y^{-1}/2 \cdot y \cdot 1 = 1$ and $y^{-1}/2 \cdot \sigma(y) + y^{-1}/2 \cdot y \cdot \sigma(1) = 0$, B[y] = B + yB = B + By = A by [6, Theorem 2.3]. By Lemma 1, $\{1, y\}$ is a free B-basis for A.

Conversely, assume that there exists an element $y \in A$ such that $A = B \oplus yB$ = $B \oplus By$, $y^2 \in B$ and $y\sigma(y) = \sigma(y)y$ for each $\sigma \in \mathfrak{G}$. Then $y(y + \sigma(y)) = y^2 + y\sigma(y)$ $\in B$ yields $y + \sigma(y) = 0$, and hence $\sigma(y) = -y$. Consequently, we can see that 2y is inversible by Theorem 1. Thus $2 \cdot 1$ and y are inversible.

Corollary 2. Let A be a Galois extension with $x^2 \in B$, and $dx = x \rho(d) + D(d)$ for each $d \in B$. Then the following conditions are equivalent:

- (a) $x\sigma(x) = \sigma(x)x$ for each $\sigma \in \mathfrak{G}$.
- (b) D = 0 and $2 \cdot 1$, x are inversible.
- (c) $\rho = \widehat{x}^{-1} | B \text{ and } 2 \cdot 1 \text{ is inversible.}$
- (d) ρ can be extended to an automorphism P of A with P(x) = x, x and -x are distinct roots of $X^2 x^2$ of A[X; P] in A.

Proof. Firstly, we shall note that if $\sigma(x) + x = b$ for some $b \in B$, then b satisfies $2D(d) = db - b\rho(d)$ for each $d \in B$ (Theorem. 1 (b), (i)).

- (a) \longrightarrow (b). As is shown in the proof of the sufficiency of Theorem 2, $\sigma(x) = -x$, 2·1 and x are inversible. Since $\sigma(x) + x = 0$, we have $D(d) = d(b/2) (b/2)\rho(d) = 0$ for each $d \in B$,
 - (b) \longrightarrow (c). This implication is evident.
- (c) \longrightarrow (d). If $\rho = \hat{x}^{-1} | B$ then $P = \hat{x}^{-1}$ is an automorphism of A with P(x) = x, and $X(X \pm x) = (X \pm x)X$, $d(X \pm x) = (X \pm x)\rho(d)$ are clear.
- (d) \longrightarrow (a). Since $d(X-x)=(X-x)\rho(d)$ for each $d\in B$, $\rho=\widehat{x}^{-1}|B$. Hence the map σ defined by $\sigma(xb'+c')=-xb'+c'$ $(b',c'\in B)$ is a B-automorphism of A. Thus $x\sigma(x)=\sigma(x)x$ for each $\sigma\in \mathfrak{G}$.

Let A be a ring without proper central idempotents, and let z be a root of $X^2 - x^2$ given in (d). Then X(x - z) = (X - z)X and $d(X - z) = (X - z)\rho(d)$ for each

 $d \in B$. Hence we have xz = zx, $dz = z\rho(d)$ respectively. Hence z = xc for some $c \in U(C)$ with $c^2 = 1$. Since C is a commutative ring without proper idempotents, $c = \pm 1$ by $\lceil 3$, Corollary 2.5 \rceil .

The following will be easily seen from Theorem 2 and Corollary 2.

Corollary 3. 7) Let A have a relation $x^2 \in B$. Then A/B is a Galois extension with $x\sigma(x) = \sigma(x)x$ for each $\sigma \in \mathfrak{G}$ if and only if there holds that

- (a) $\{1, x\}$ is a free B-basis for A.
- (b) 2.1 and x are inversible.
- (c) D=0 where D is the map defined by $dx=x_{\rho}(d)+D(d)$ foreach $d\in B$.

2. Structure of the centralizer.

In the rest, we shall determine the structure of the centralizer of a quadratic extension.

Let $A=B\oplus xB=B\oplus Bx$ be a $\mathfrak{G}=\{1,\,\sigma\}$ Galois extension, and let V be the centralizer of B in A. Then we may assume that $x^2\in U(B)$, $\sigma(x)=-x$ and $dx=x\rho(d)$ for some automorphism ρ of B if $2\cdot 1$ is inversible for each $d\in B$, and dx=xd+D(d), $\sigma(x)=x+1$ for some derivation D of B if $2\cdot 1=0$ for each $d\in B$.

Theorem 4. Let $2 \cdot 1$ be inversible or $2 \cdot 1 = 0$. Then V = C[Z], the composite of the center C of A and the center Z of B. More precisely, $V = C \oplus Z_{\sigma}$, where $Z_{\sigma} = Z \cap J_{\sigma}$ and $J_{\sigma} = \{a \in A \mid ay = \sigma(y)a \text{ for each } y \in A\}$.

Proof. It is evident that V=Z if $\sigma=\bar{v}$ for some $v\in V$. Hence we consider the case $\sigma\neq\hat{v}$ for each $v\in U(V)$. Firstly, we note that $V=C\oplus J_{\sigma}$.

case $2 \cdot 1 = 0$. Let v = xb + c (b, $c \in B$). Then dv = vd for each $d \in B$ imply xdb + D(d)b + dc = xbd + cd and hence

$$b \in Z \tag{1}$$

and D(d)b = cd - dc.

Thus.

$$D(b)b = 0 (2)$$

Next, let us assume that $v \in J_{\sigma}$. Then $J_{\sigma} \ni \sigma(v) - v = b$ yields $bx = \sigma(x)b = (x+1)b$, and hence

$$D(b) = b (3)$$

By (2) and (3), we have $b^2 = 0$. Then $1 + b \in U(Z)$ by (1).

On the other hand, since $\sigma \neq \tilde{v}$ for each $v \in U(V)$, $U(Z) \subseteq C$. Thus we obtain 0 = D(1+b) = D(b) = b. Therefore $v = c \in B \cap V = Z$ means that $J_{\sigma} \subseteq Z$. Thus

⁷⁾ Cf. [7], Lemma 2.

 $V = C \oplus Z_{\sigma} = C \lceil Z \rceil$.

case 2•1 is inversible. Let $v = xb + c(b, c \in B)$. Then dv = vd for each $d \in B$ implies $x\rho(d)b + dc = xbd + cd$, and hence

$$\rho(d)b = bd, \ c \in Z \tag{1}$$

Thus

$$\rho(b)b = b^2 \tag{2}$$

Next, let us assume that $v \in J_{\sigma}$. Then $J_{\sigma} \ni 1/2(\sigma(v) - v) = xb$ and $xbx = x^2\rho(b) = \sigma(x)xb = -x^2b$, and hence

$$\rho(b) = -b \tag{3}$$

By (2) and (3), we have $\rho(b)b=b^2=0$. Thus $(xb)^2=x^2\rho(b)b=0$, and hence $1-xb\in U(V)$. Since $U(V)\subseteq U(C)$, we have $xb\in J_\sigma\cap C=0$. Consequently, $V=C\oplus Z_\sigma=C[Z]$.

References

- [1] S. U. CHASE, D. K. HARRISON and A. ROSENBERG: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc., No. 52 (1965).
- [2] P. M. COHN: Quadratic extensions of skew fields, Proc. London Math. Soc., 11 (1961), 531-556.
- [3] G. J. Janusz: Separable algebras over commutative rings, Trans. Amer. Math. Soc., 122 (1966), 461-479.
- [4] K. KISHIMOTO: Zeros of polynomials and Galois extensions of simple rings, J. Fac. Sci. Shinshu Univ., 2 (1967), 117–122.
- [5] ———: Note on quadratic extensions of rings, J. Fac. Sci. Shinshu Univ., 5 (1970), 25-28.
- [6] Y. MIYASHITA: Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ., 19 (1966), 114-134.
- [7] T. NAGAHARA: A quadratic extension, Proc. Jap. Acad., 47 (1971), 6-7.