Non-compact Simple Lie Group G_2' of Type G_2

By ICHIRO YOKOTA

Department of Mathematics, Faculty of Science Shinshu University (Received March 15, 1977)

It is known that there exist two simple Lie group of type G_2 up to local isomorphism, one of them is compact and the other is non-compact. The compact simple Lie group $G_2 = G_{2(-14)}$ of type G_2 is obtained as the automorphism group Aut(\mathfrak{S}) of the Cayley algebra \mathfrak{S} and it is a connected, simply connected, simple (in the sense of the center $z(G_2) = 1$) Lie group. It is also known that the Lie algebra \mathfrak{g}_2' of the non-compact simple Lie group $G_{2(2)}$ of type G_2 is obtained as the derivation Lie algebra of the split Cayley algebra \mathfrak{S}' and the maximal compact subgroup of $G_{2(2)}$ has the type of $A_1 \oplus A_1$. In this paper, we investigate some global properties of the automorphism group $G_2' = \operatorname{Aut}(\mathfrak{S}')$ of the split Cayley algebra \mathfrak{S}' . The results are as follows. The group G_2' is homeomorphic to SO(4) $\times \mathbb{R}^8$ and a simple (in the sense of the center $z(G_2') = 1$) Lie group. And hence the center $z(\widetilde{G}_2')$ of the non-compact simply connected simple Lie group $\widetilde{G}'_2 = G_{2(2)}$ of type G_2 is \mathbb{Z}_2 .

1. Split Cayley algebra ©'

Let \mathfrak{C}' be the split Cayley algebra over the real numbers R. This algebra \mathfrak{C}' is defined as follows. Let $H = \{a = a_1 + a_2i + a_3j + a_4k | a_i \in R\}$ be the field of quaternions. In $\mathfrak{C}' = H \oplus He$, if we define a multiplication by

$$(a + be)(c + de) = (ac + db) + (bc + da)e$$

then \mathfrak{C}' becomes an 8-dim. (non-commutative non-associative) algebra over \mathbf{R} with the conjugation $\overline{a+be} = \overline{a} - be$.

The Q-norm Q(x) and the inner product (x, y)' in \mathfrak{G}' are defined respectively by

$$Q(a + be) = |a|^2 - |b|^2$$
$$(a + be, c + de)' = (a, c) - (b, d)$$

The Q-norm has the following properties.

$$Q(x) = x\overline{x} = \overline{x}x, \quad Q(x\overline{y}) = Q(x)Q(\overline{y}), \quad x, \quad y \in \mathfrak{C}'$$

Remark. In the usual Cayley algebra $\mathfrak{C} = H + He$, the multiplication is defined by

$$(a + be)(c + de) = (ac - \overline{db}) + (b\overline{c} + da)e$$

2. Definition of group $G_{2'}$

We denote the automorphism group $Aut(\mathfrak{C}')$ of the split Cayley algebra \mathfrak{C}' by $G\mathfrak{L}'$, i.e.

$$G_{2}' = \{ \alpha \in \operatorname{Iso}_{\mathbf{P}}(\mathfrak{C}', \mathfrak{C}') | \alpha(x \mathcal{Y}) = \alpha(x) \alpha(\mathcal{Y}) \}$$

Obviously $\alpha(1)=1$ holds for $\alpha \in G_2'$. We shall show that the group G_2' is contained in the Lorentz group $O'(\mathfrak{C}')$, where

$$O(4, 4) = O'(\mathfrak{C}') = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{C}', \mathfrak{C}') | Q(\alpha(x)) = Q(x) \}$$
$$= \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{C}', \mathfrak{C}') | (\alpha(x), \alpha(y))' = (x, y)' \}$$

Lemma 1. For $\alpha \in G_2'$ and $x \in \mathfrak{G}'$, we have

(1) if xx = -1 then $Q(\alpha(x)) = 1$ and $\overline{\alpha(x)} = -\alpha(x)$

(2) if xx = 1, $x \notin \mathbf{R}$ then $Q(\alpha(x)) = -1$ and $\overline{\alpha(x)} = -\alpha(x)$

Proof (1) From xx = -1 we have $\alpha(x)\alpha(x) = -1$, so $(Q(\alpha(x)))^2 = 1$, i.e. $Q(\alpha(x)) = \pm 1$. Assume $Q(\alpha(x)) = -1$, then

$$\begin{aligned} \alpha(x) &= -Q(\alpha(x))\alpha(x) = -\overline{\alpha(x)}\alpha(x))\alpha(x) = -\overline{\alpha(x)}(\alpha(x)\alpha(x)) \\ &= -\overline{\alpha(x)}(-1) = \overline{\alpha(x)} \end{aligned}$$

(Although C' is not associative, $(\overline{xx})y = \overline{x}(xy)$ is always valid). This means $\alpha(x)$ is a real number a, therefore $\alpha(x) = a = \alpha(a)$. Since α is injective, x = a is real and xx = -1. This is a contradiction. Hence $Q(\alpha(x)) = 1$ and we get $\overline{\alpha(x)} = -\alpha(x)$ by a calculation similar to the above. (2) is analogously obtained.

Proposition 2. The group $G_{2'}$ is a subgroup of the Lorentz group $O'(\mathfrak{C}')$.

Proof Let $\alpha \in G_2$. Choose a basis 1, *i*, *j*, *k*, *e*, *ie*, *je*, *ke* in \mathbb{C}' , then these elements except 1 satisfy the conditions of Lemma 1:

$$i^2 = j^2 = k^2 = -1$$
, $e^2 = (ie)^2 = (je)^2 = (ke)^2 = 1$

Therefore, for these elements x we have $\overline{\alpha(x)} = -\alpha(x) = \alpha(\overline{x})$. And since $\overline{\alpha(1)} = 1 = \alpha(\overline{1})$, we get $\overline{\alpha(x)} = \alpha(\overline{x})$ for any element x of \mathfrak{C}' . Now

46

$$Q(\alpha(x)) = \overline{\alpha(x)}\alpha(x) = \alpha(\overline{x})\alpha(x) = \alpha(\overline{x}x) = \alpha(Q(x)) = Q(x), \ x \in \mathbb{G}'$$

This means $\alpha \in O'(\mathfrak{G}')$.

3. Compact subgroup $(G_2)_K$ of G_2'

We shall consider the subgroup $(G_2')_K$ of G_2' :

$$(G_2')_K = \{ \alpha \in G_2' | \alpha(\boldsymbol{H}) = \boldsymbol{H} \}$$

Since **H** and **H**e are orthogonal with respect to the inner product (x, y)', $\alpha \in (G_2')_K$ also satisfies $\alpha(He) = He$.

To determine this group $(G_2')_K$, we shall give some remarks on the rotation group SO(n) of lower dimensions.

$$SO(4) = \{ \sigma \in \operatorname{Iso}_{R}(H, H) | |\sigma(x)| = |x|, \text{ det } \sigma = 1 \}$$

$$SO(3) = \{ \sigma \in SO(4) | \sigma(1) = 1 \}$$

$$= \{ \sigma \in \operatorname{Iso}_{R}(H, H) | \sigma(xy) = \sigma(x)\sigma(y) \} = \operatorname{Aut}(H)$$

$$S^{3} = \{ p \in H | | p | = 1 \}$$

In the topological product of S^3 and SO(3), if we give a multiplication by

$$(q, \tau)(p, \sigma) = (q\tau(p), \tau\sigma)$$

then $S^3 \times SO(3)$ becomes a group. We denote this group by $S^3 \cdot SO(3)$.

Lemma 3. The rotation group SO(4) is isomorphic to the group $S^3 \cdot SO(3)$.

Proof Define a mapping $f: S^3 \cdot SO(3) \rightarrow SO(4)$ by

$$f(p, \sigma) = L_p \sigma$$

where $L_p \in SO(4)$ is defined by $L_p(x) = px$, $x \in H$. Then it is easy to verify that f is an isomorphism.

Proposition 4. The group $(G_2)_K$ is isomorphic to the rotation group SO(4).

Proof Define a mapping $\varphi : S^3 \cdot SO(3) \to (G_2')_K$ by

$$\varphi(p, \sigma)(a + be) = \sigma(a) + (p\sigma(b))e, \quad a, b \in H$$

First we must show $\varphi(p, \sigma) \in (G_{2'})_{K}$. However it is easy; in fact, $\varphi(p, \sigma)(H) = H$ is trivial and

$$(\varphi(p, \sigma)(a + be))(\varphi(p, \sigma)(c + de))$$

47

$$= (\sigma(a) + (p\sigma(b))e)(\sigma(c) + (p\sigma(d))e)$$

= $(\sigma(a)\sigma(c) + \overline{p\sigma(d)}p\sigma(b)) + (p\sigma(b)\overline{\sigma(c)} + p\sigma(d)\sigma(a))e$
= $\sigma(ac + \overline{d}b) + (p\sigma(b\overline{c} + da))e$
= $\varphi(p, \sigma)((ac + \overline{d}b) + (b\overline{c} + da)e) = \varphi(p, \sigma)((a + bc)(c + de))$

 φ is a homomorphism because

$$\begin{split} \varphi(q, \tau)(\varphi(p, \sigma)(a + be)) &= \varphi(q, \tau)(\sigma(a) + (p\sigma(b))e) \\ &= \tau\sigma(a) + (q\tau(p\sigma(b))e = \tau\sigma(a) + (q\tau(p)\tau\sigma(b))e \\ &= \varphi(q\tau(p), \tau\sigma)(a + be) = \varphi((p, \tau)(p, \sigma))(a + be) \end{split}$$

Next we shall show that φ is onto. For a given $\alpha \in (G_2')_K$, consider the restriction $\sigma = \alpha | \mathbf{H}$ of α to \mathbf{H} , then $\alpha \in \text{Aut}(\mathbf{H}) = SO(3)$. Put $\beta = \alpha \varphi(1, \sigma)^{-1}$, then $\beta | \mathbf{H} = 1$. Set $\beta(e) = pe$, $p \in \mathbf{H}$, then |p| = 1 and

$$\beta(a+be) = a+b\beta(e) = a+b(pe) = a+(pb)e = \varphi(p, 1)(a+be)$$

i.e. $\beta = \varphi(p, 1)$. Hence $\alpha = \beta \varphi(1, \sigma) = \varphi(p, 1)\varphi(1, \sigma) = \varphi(p, \sigma)$, so that φ is onto. Obviously φ is one-to-one. Thus the proof is completed.

Remark. The compact Lie group $G_2 = \operatorname{Aut}(\mathfrak{G})$ also contains a subgroup $(G_2)_K$ which is isomorphic to SO(4) by a mapping $\mathcal{P} : S^3 \cdot SO(3) \to G_2$,

 $\varphi(p, \sigma)(a + be) = \sigma(a) + (p\sigma(b))e$

4. Polar decompsition of $G_{2'}$

To give a polar decomposition of G_2' we use the following

Lemma 5 ([1] p. 345). Let G be a real algebraic subgroup of the general linear group $GL(n, \mathbf{R})$ such that the condition $A \in G$ implies $tA \in G$. Then G is homeomorphic to the topological product of $G \cap O(n)$ (which is a maximal compact subgroup of G) and a Euclidean space \mathbf{R}^d :

$$G \simeq (G \cap O(n)) \times \mathbb{R}^d, \quad d = \dim(\mathfrak{g} \cap \mathfrak{h}(n))$$

where O(n) is the orthogonal subgroup of $GL(n, \mathbf{R})$, \mathfrak{g} the Lie algebra of G and $\mathfrak{h}(n)$ the vector space of all real symmetric matrices of degree n.

To use the above lemma, we define a positive definite inner product (x, y) in \mathfrak{C}' by

$$(a + be, c + de) = (a, c) + (b, d)$$

48

Two inner products (x, y), (x, y)' in \mathfrak{C}' are combined with the following relations

$$(x, y) = (x, \gamma(y))', (x, y)' = (x, \gamma(y))$$

where $\gamma = \varphi(-1, 1)$. We denote by $t\alpha$ the transpose of $\alpha \in \text{Iso}_{R}(\mathfrak{C}', \mathfrak{C}')$ with respect to $(x, y) : (\alpha(x), y) = (x, t\alpha(y))$.

Lemma 6. G_2' is a real algebraic subgroup of $GL(8, \mathbb{R}) = \text{Iso}_{\mathbb{R}}(\mathfrak{C}', \mathfrak{C}')$ and satisfies the condition $\alpha \in G_2'$ implies $t\alpha \in G_2'$.

Proof Since $(x, \gamma(y)) = (x, y)' = (\alpha(x), \alpha(y))' = (\alpha(x), \gamma\alpha(y)) = (x, \tau\alpha\gamma\alpha(y))$ for $\alpha \in G_2'$, we have $\gamma = \tau\alpha\gamma\alpha$. Hence $\tau\alpha = \gamma\alpha-1\gamma \in G_2'$. It is trivial that G_2' is real algebraic because it is defined by the algebraic relation $\alpha(xy) = \alpha(x)\alpha(y)$.

Let $O(\mathfrak{C}')$ be the orthogonal subgroup of $\operatorname{Iso}_{R}(\mathfrak{C}', \mathfrak{C}')$:

$$O(8) = O(\mathfrak{C}') = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{C}', \mathfrak{C}') | (\alpha(x), \alpha(y)) = (x, y) \}$$

Then $\alpha \in G_2' \cap O(\mathfrak{C}')$ induces a linear transformation of H. In fact, $(\alpha(a), u) = -(\alpha(a), u)' = -(a, \alpha^{-1}(u))' = -(a, \alpha^{-1}(u)) = -(\alpha(a), u)$, for $a \in H$, $u \in He$, therefore $(\alpha(a), u) = 0$ and $\alpha(a) \in H$. Hence we have

$$G_2' \cap O(\mathfrak{G}') = (G_2')_K \cong SO(4)$$

by Proposition 4. Next we shall determine the Euclidian part $\mathfrak{g}_2' \cap \mathfrak{h}(\mathfrak{C}')$ of G_2' , where

$$\mathfrak{g}_{2}' = \{\mathfrak{s} \in \operatorname{Hom}_{R}(\mathfrak{C}', \mathfrak{C}') | \mathfrak{s}(x\mathfrak{Y}) = \mathfrak{s}(x)\mathfrak{Y} + x\mathfrak{s}(\mathfrak{Y}) \}$$
$$\mathfrak{h}(\mathfrak{S}) = \mathfrak{h}(\mathfrak{C}') = \{\mathfrak{s} \in \operatorname{Hom}_{R}(\mathfrak{C}', \mathfrak{C}') | (\mathfrak{s}(x, \mathfrak{Y}) = (x, \mathfrak{s}(\mathfrak{Y})) \}$$

Since \mathfrak{g}_2' is a Lie subalgebra of the Lie algebra $\mathfrak{o}(4, 4) = \mathfrak{o}'(\mathfrak{C}') = \{\mathfrak{s} \in \operatorname{Hom}_R(\mathfrak{C}', \mathfrak{C}') | (\mathfrak{s}(x), y)' + (x, \mathfrak{s}(y))' = 0\}, \ \mathfrak{s} \in \mathfrak{g}_2' \cap \mathfrak{h}(\mathfrak{C}') \text{ induces a linear transformation } \mathfrak{s}|H : H \to He$ and $\mathfrak{s}|He = \mathfrak{t}(\mathfrak{s}|H)$. Put

$$\mathfrak{S}(i) = pe, \quad \mathfrak{S}(j) = qe, \quad p, q \in \mathbf{H}$$

then $\mathfrak{s}(k)$ is determined by $\mathfrak{s}(k) = \mathfrak{s}(ij) = \mathfrak{s}(i)j + i\mathfrak{s}(j) = (pe)j + i(qe) = (-pj + qi)e$ and obviously $\mathfrak{s}(1) = 0$. Conversely two elements $p, q \in H$ determine \mathfrak{s} of $\mathfrak{g}_2' \cap \mathfrak{h}(\mathfrak{C}')$. Hence

$$\dim(\mathfrak{g}_{2'}\cap\mathfrak{h}(\mathfrak{C}'))=4+4=8$$

Thus we have the following

Theorem 7. The group G_{2}' is homeomorphic to the topological product of the rotation group SO(4) and an 8-dim. Euclidean space \mathbb{R}^{8} :

$$G_{2'}\,{\simeq}\,SO(4) imes I\!\!R^{8}$$

In particular, $G_{2'}$ is a connected (but not simply connected) Lie group.

5. Simplicity of $G_{2'}$

Lemma 8. The Lie algebra \mathfrak{g}_2' of \mathfrak{G}_2' is simple.

Proof The complexification $\mathfrak{g}_2'^C$ of the Lie algebra \mathfrak{g}_2' is isomorphic to the complexification \mathfrak{g}_2^C of the derivation Lie algebra \mathfrak{g}_2 of the Cayley algebra \mathfrak{G} , because the complexification \mathfrak{G}'^C of \mathfrak{G}' is isomorphic to the one \mathfrak{G}^C of \mathfrak{G} . As is well known \mathfrak{g}_2^C is simple, so that $\mathfrak{g}_2'^C$ is so, hence \mathfrak{G}_2' is also simple.

Since G_2' is a connected group from Theorem 7 and a simple group as Lie group from Lemma 8, any normal subgroup of G_2' is contained in the center $z(G_2')$ of G_2' . We shall show $z(G_2') = 1$.

Let $\alpha \in z(G_2')$. First we show that α induces a linear transformation of H: $\alpha \in (G_2')_K$. In fact, put $\alpha(a) = c + de$ for $a \in H$, then from the commutativity condition $\varphi(-1, 1)\alpha = \alpha \varphi(-1, 1)$, we have

$$c - de = \varphi(-1, 1)(c + de) = \varphi(-1, 1)\alpha(a) = \alpha\varphi(-1, 1)(a) = \alpha(a) = c + de$$

Therefore de = 0 and $\alpha(a) = c \in H$. Hence there exists an element $(p, \sigma) \in S^3 \cdot SO(3)$ such that $\alpha = \varphi(p, \sigma)$ by Proposition 4. Furthermore from the commutativity condition $\alpha\varphi(q, 1) = \varphi(q, 1)\alpha, \ \alpha\varphi(1, \sigma) = \varphi(1, \tau)\alpha$, we have

$$pq = qp \qquad \text{for all } q \in S^3$$

$$\sigma\tau = \tau\sigma \qquad \text{for all } \tau \in SO(3)$$

so that $p = \pm 1$, $\sigma = 1$. Hence $\alpha = \varphi(1, 1)$ or $\alpha = \varphi(-1, 1)$. We shall show that $\varphi(-1, 1)$ is not an element of the center $z(G_2)$ using the following β . Let β be a linear transformation of \mathfrak{C}' satisfying

$$eta(1)=1, \quad eta(i)=ie, \quad eta(j)=je, \quad eta(k)=k, \ eta(e)=e, \quad eta(ie)=i, \quad eta(je)=j, \quad eta(ke)=ke$$

then $\beta \in G_{2'}$ and $\varphi(-1, 1)$ does not commute with β because $\varphi(-1, 1) \beta(i) = \varphi(-1, 1)(i) = \varphi(-1, 1)(i) = \beta(i) = ie$. Thus we have the following

Theorem 9. The group $G_{2'}$ is simple (in the algebraic sense) Lie group.

Since the fundamental group of $G_{2'}$ is \mathbb{Z}_{2} from Theorem 7 and $G_{2'}$ is a simple group, we have the following

Theorem 10. The center $z(\widetilde{G}_2)$ of the non-compact simply connected Lie group

 $\widetilde{G}_{2}' = G_{2(2)}$ of type G_2 is \mathbb{Z}_2 .

6. Some subgroups of $G_{2'}$

I. We shall investigate the structures of subgroups of G_2' under which some elements of the basis 1, *i*, *j*, *k*, *e*, *ie*, *je*, *ke* of \mathfrak{C}' are invariant.

(1) The group $G_{2'}(i) = \{ \alpha \in G_{2'} | \alpha(i) = i \}$ is isomorphic to the group

 $SU(1, 2) = \{A \in M(3, C) | AJA^* = J, \det A = 1\}$

where C is the complex numbers, A^* the conjugate transposed matrix of A and

 $J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$ And $G_{2'}(i)$ is homeomorphic to

$$G_{2'}(i) \simeq U(2) \times \mathbb{R}^4$$

where U(2) is the unitary group.

(2) The group $G_{2'}(e) = \{ \alpha \in G_{2'} | \alpha(e) = e \}$ is isomorphic to the group

$$SU(3, \mathfrak{a}) = \{A \in M(3, \mathfrak{a}) | AA^* = E, \det A = 1\}$$

where a is the algebra $a = \{a + b\iota | a, b \in \mathbb{R}, \iota^2 = 1\}$ with the conjugation $\overline{a + b\iota} = a - b\iota$ and A^* is the conjugate transposed matrix of A. And $G_{2'}(e)$ is homeomorphic to

$$G_2'(e) \simeq SO(3) \times \mathbb{R}^5$$

(3) The group $G_2'(i, j, k) = \{ \alpha \in G_2' | \alpha(i) = i, \alpha(j) = j, \alpha(k) = k \}$ is isomorphic to the group S^3 .

(4) The group $G_2'(i, e, ie) = \{ \alpha \in G_2' | \alpha(i) = i, \alpha(e) = e, \alpha(ie) = ie \}$ is isomorphic to the general linear group $GL(2, \mathbb{R})$, hence $G_2'(i, e, ie)$ is homeomorphic to $S^1 \times \mathbb{R}^2$.

II. Let $M_{m,n}$ be the manifold defined by

$$M_{m,n} = \{(x_1, \dots, x_m, x_{m+1}, \dots, x_{m+n}) \in \mathbb{R}^{m+n} | \sum_{i=1}^m x_i^2 - \sum_{j=m+1}^{m+n} x_j^2 = 1\}$$

Then we have the following homogeneous spaces.

$$G_2'/G_2'(i) \simeq M_3, 4,$$
 $G_2'(i)/G_2'(i, j, k) \simeq M_2, 4,$
 $G_2'/G_2'(e) \simeq M_4, s,$ $G_2'(e)/G_2'(i, e, ie) \simeq M_3, s$

References [1] S. HELGASON; Differential Geometry and Symmetric Spaces, Pure and Applied Math., 1962.