Non-compact Simple Lie Group $G_{2}{ }^{\prime}$ of Type G_{2}

By Ichiro Yokota
Department of Mathematics, Faculty of Science Shinshu University
(Received March 15, 1977)

It is known that there exist two simple Lie group of type G_{2} up to local isomorphism, one of them is compact and the other is non-compact. The compact simple Lie group $G_{2}=G_{2(-14)}$ of type G_{2} is obtained as the automorphism group Aut(©) of the Cayley algebra $\mathbb{C}^{\mathbb{C}}$ and it is a connected, simply connected, simple (in the sense of the center $z\left(G_{2}\right)=1$) Lie group. It is also known that the Lie algebra $9_{2}{ }^{\prime}$ of the non-compact simple Lie group $G_{2(2)}$ of type G_{2} is obtained as the derivation Lie algebra of the split Cayley algebra $\mathbb{~}^{\prime}$ and the maximal compact subgroup of $G_{2(2)}$ has the type of $A_{1} \oplus A_{1}$. In this paper, we investigate some global properties of the automorphism group $G 2^{\prime}=A u t\left(\mathbb{C}^{\prime}\right)$ of the split Cayley algebra \mathbb{C}^{\prime}. The results are as follows. The group $G_{2}{ }^{\prime}$ is homeomorphic to $S O(4)$ $\times \boldsymbol{R}^{8}$ and a simple (in the sense of the center $z\left(G_{2^{\prime}}\right)=1$) Lie group. And hence the center $z\left(\widetilde{G}_{2}{ }^{\prime}\right)$ of the non-compact simply connected simple Lie group $\widetilde{G}_{2}^{\prime}=G_{\Omega(2)}$ of type G_{2} is \mathscr{Z}_{2}.

1. Split Cayley algebra © ${ }^{\prime}$

Let \mathbb{C}^{\prime} be the split Cayley algebra over the real numbers \boldsymbol{R}. This algebra \mathbb{S}^{\prime} is defined as follows. Let $\boldsymbol{H}=\left\{a=a_{1}+a_{2 i}+a_{3} j+a_{4} k \mid a_{i} \in \boldsymbol{R}\right\}$ be the field of quaternions. In $\mathbb{@}^{\prime}=\boldsymbol{H} \oplus \boldsymbol{H} e$, if we define a multiplication by

$$
(a+b e)(c+d e)=(a c+\bar{d} b)+(b \vec{c}+d a) e
$$

then \mathbb{E}^{\prime} becomes an 8-dim. (non-commutative non-associative) algebra over \boldsymbol{R} with the conjugation $\overline{a+b e}=\bar{a}-b e$.

The Q-norm $Q(x)$ and the inner product $(x, y)^{\prime}$ in \mathbb{C}^{\prime} are defined respectively by

$$
\begin{gathered}
Q(a+b e)=|a|^{2}-|b|^{2} \\
(a+b e, c+d e)^{\prime}=(a, c)-(b, d)
\end{gathered}
$$

The Q-norm has the following properties.

$$
Q(x)=\overline{x x}=\bar{x} x, \quad Q(x y)=Q(x) Q(y), \quad x, y \in \mathbb{E}^{\prime}
$$

Remark. In the usual Cayley algebra $\mathfrak{C}=\boldsymbol{H}+\boldsymbol{H} e$, the multiplication is defined by

$$
(a+b e)(c+d e)=(a c-\bar{d} b)+(b \vec{c}+d a) e
$$

2. Definition of group $\boldsymbol{G}_{2}{ }^{\prime}$

We denote the automorphism group Aut($\left(\mathbb{C}^{\prime}\right)$ of the split Cayley algebra \mathbb{S}^{\prime} by $G 2^{\prime}$, i. e.

$$
G_{2^{\prime}}=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}\left(\mathbb{®}^{\prime}, \mathbb{®}^{\prime}\right) \mid \alpha(x y)=\alpha(x) \alpha(y)\right\}
$$

Obviously $\alpha(1)=1$ holds for $\alpha \in G z^{\prime}$. We shall show that the group $G_{2}{ }^{\prime}$ is contained in the Lorentz group $O^{\prime}\left(\mathbb{E}^{\prime}\right)$, where

$$
\begin{aligned}
O(4,4)=O^{\prime}\left(\mathbb{S}^{\prime}\right) & =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}\left(\mathbb{\bigotimes}^{\prime}, \mathbb{ভ}^{\prime}\right) \mid Q(\alpha(x))=Q(x)\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}\left(\mathbb{\bigotimes}^{\prime}, \mathbb{\mho}^{\prime}\right) \mid(\alpha(x), \alpha(y))^{\prime}=(x, y)^{\prime}\right\}
\end{aligned}
$$

Lemma 1. For $\alpha \in G a^{\prime}$ and $x \in \mathbb{E}^{\prime}$, we have
(1) if $x x=-1$ then $Q(\alpha(x))=1$ and $\overline{\alpha(x)}=-\alpha(x)$
(2) if $x x=1, x \notin \boldsymbol{R}$ then $Q(\alpha(x))=-1$ and $\overline{\alpha(x)}=-\alpha(x)$

Proof (1) From $x x=-1$ we have $\alpha(x) \alpha(x)=-1$, so $(Q(\alpha(x)))^{2}=1$, i. e. $Q(\alpha(x))$ $= \pm 1$. Assume $Q(\alpha(x))=-1$, then

$$
\begin{aligned}
\alpha(x) & =-Q(\alpha(x)) \alpha(x)=-\overline{\alpha(x)} \alpha(x)) \alpha(x)=-\overline{\alpha(x)}(\alpha(x) \alpha(x)) \\
& =-\overline{\alpha(x)(-1)}=\overline{\alpha(x)}
\end{aligned}
$$

(Although (5) is not associative, $(\bar{x} x) y=\bar{x}(x y)$ is always valid). This means $\alpha(x)$ is a real number a, therefore $\alpha(x)=a=\alpha(a)$. Since α is injective, $x=a$ is real and $x x=-1$. This is a contradiction. Hence $Q(\alpha(x))=1$ and we get $\overline{\alpha(x)}=-\alpha(x)$ by a calculation similar to the above. (2) is analogously obtained.

Proposition 2. The group $G_{2}{ }^{\prime}$ is a subgroup of the Lorentz group $O^{\prime}\left(\mathbb{C}^{\prime}\right)$.
Proof Let $\alpha \in G \varepsilon^{\prime}$. Choose a basis $1, i, j, k, e, i e, j e, k e$ in \mathbb{E}^{\prime}, then these elements except 1 satisfy the conditions of Lemma 1 :

$$
i^{2}=j^{2}=k^{2}=-1, \quad e^{2}=(i e)^{2}=(j e)^{2}=(k e)^{2}=1
$$

Therefore, for these elements x we have $\overline{\alpha(x)}=-\alpha(x)=\alpha(\bar{x})$. And since $\overline{\alpha(1)}=1$ $=\alpha(\overline{1})$, we get $\overline{\alpha(x)}=\alpha(\bar{x})$ for any element x of $\mathbb{1}^{\prime}$. Now

$$
Q(\alpha(x))=\overline{\alpha(x)} \alpha(x)=\alpha(\bar{x}) \alpha(x)=\alpha(\bar{x} x)=\alpha(Q(x))=Q(x), x \in \mathbb{S}^{\prime}
$$

This means $\alpha \in O^{\prime}\left(\mathbb{C}^{\prime}\right)$.
3. Compact subgroup $\left(G_{2}\right)_{K}$ of $G 2^{\prime}$

We shall consider the subgroup $\left(G 2^{\prime}\right)_{K}$ of $G 2^{\prime}$:

$$
\left(G z^{\prime}\right)_{K}=\left\{\alpha \in G z^{\prime} \mid \alpha(\boldsymbol{H})=\boldsymbol{H}\right\}
$$

Since \boldsymbol{H} and $\boldsymbol{H} e$ are orthogonal with respect to the inner product $(x, y)^{\prime}, \alpha \in\left(G a^{\prime}\right)_{K}$ also satisfies $\alpha(\boldsymbol{H} \boldsymbol{e})=\boldsymbol{H e}$.

To determine this group $\left(G_{2}\right)_{K}$, we shall give some remarks on the rotation group $S O(n)$ of lower dimensions.

$$
\begin{aligned}
& S O(4)=\left\{\sigma \in \operatorname{Iso}_{\boldsymbol{R}}(\boldsymbol{H}, \boldsymbol{H}) \| \sigma(x)|=|x|, \operatorname{det} \sigma=1\}\right. \\
& S O(3)=\{\sigma \in S O(4) \mid \sigma(1)=1\} \\
&=\left\{\sigma \in \operatorname{Iso}_{\boldsymbol{R}}(\boldsymbol{H}, \boldsymbol{H}) \mid \sigma(x y)=\sigma(x) \sigma(y)\right\}=\operatorname{Aut}(\boldsymbol{H}) \\
& S^{3}=\{p \in \boldsymbol{H} \| p \mid=1\}
\end{aligned}
$$

In the topological product of S^{3} and $S O(3)$, if we give a multiplication by

$$
(q, \tau)(p, \sigma)=(q \tau(p), \tau \sigma)
$$

then $S^{3} \times S O(3)$ becomes a group. We denote this group by $S^{3} \cdot S O(3)$.
Lemma 3. The rotation group $S O(4)$ is isomorphic to the group $S^{\mathbf{3}} \cdot S O(3)$.
Proof Define a mapping $f: S^{3} \cdot S O(3) \rightarrow S O(4)$ by

$$
f(p, \sigma)=L_{p} \sigma
$$

where $L_{p} \in S O$ (4) is defined by $L_{p}(x)=p x, x \in \boldsymbol{H}$. Then it is easy to verify that f is an isomorphism.

Proposition 4. The group $\left(G_{2^{\prime}}\right)_{K}$ is isomorphic to the rotation group $S O$ (4).
Proof Define a mapping $\varphi: S^{3} \cdot S O(3) \rightarrow\left(G a^{\prime}\right)_{K}$ by

$$
\varphi(p, \sigma)(a+b e)=\sigma(a)+(p \sigma(b)) e, \quad a, b \in \boldsymbol{H}
$$

First we must show $\varphi(p, \sigma) \in\left(G_{2}{ }^{\prime}\right)_{K}$. However it is easy ; in fact, $\varphi(p, \sigma)(\boldsymbol{H})=\boldsymbol{H}$ is trivial and

$$
(\varphi(p, \sigma)(a+b e)\rangle\left(\varphi(p, \sigma)\left(c^{\prime}+d e\right)\right)
$$

$$
\begin{aligned}
& =\langle\sigma(a)+(p \sigma(b)) e)(\sigma(c)+(p \sigma(d)) e) \\
& =(\sigma(a) \sigma(c)+\overline{p \sigma(d)} p \sigma(b))+(p \sigma(b) \overline{\sigma(c)}+p \sigma(d) \sigma(a)) e \\
& =\sigma(a c+\bar{d} b)+(p \sigma(b \bar{c}+d a)) e \\
& =\varphi(p, \sigma)((a c+\bar{d} b)+(b \bar{c}+d a) e)=\varphi(p, \sigma)((a+b c)(c+d e))
\end{aligned}
$$

φ is a homomorphism because

$$
\begin{gathered}
\varphi(q, \tau)(\varphi(p, \sigma)(a+b e))=\varphi(q, \tau)(\sigma(a)+(p \sigma(b)) e) \\
=\tau \sigma(a)+(q \tau(p \sigma(b)) e=\tau \sigma(a)+(q \tau(p) \tau \sigma(b)) e \\
=\varphi(q \tau(p), \tau \sigma)(a+b e)=\varphi((p, \tau)(p, \sigma))(a+b e)
\end{gathered}
$$

Next we shall show that φ is onto. For a given $\alpha \in\left(G z^{\prime}\right)_{K}$, consider the restriction $\sigma=\alpha \mid \boldsymbol{H}$ of α to \boldsymbol{H}, then $\alpha \in \operatorname{Aut}(\boldsymbol{H})=S O(3)$. Put $\beta=\alpha \varphi(1, \sigma)^{-1}$, then $\beta \mid \boldsymbol{H}=1$. Set $\beta(e)=p e, p \in H$, then $|p|=1$ and

$$
\beta(a+b e)=a+b \beta(e)=a+b(p e)=a+(p b) e=\varphi(p, 1)(a+b e)
$$

i. e. $\beta=\varphi(p, 1)$. Hence $\alpha=\beta \varphi(1, \sigma)=\varphi(p, 1) \varphi(1, \sigma)=\varphi(p, \sigma)$, so that φ is onto.

Obviously φ is one-to-one. Thus the proof is completed.
Remark. The compact Lie group $G 2=$ Aut(©) also contains a subgroup $\left(G_{2}\right)_{K}$ which is isomorphic to $S O(4)$ by a mapping $\varphi: S^{3} \cdot S O(3) \rightarrow G 2$,

$$
\varphi(p, \sigma)(a+b e)=\sigma(a)+(p \sigma(b)) e
$$

4. Polar decompsition of $\boldsymbol{G}_{2}{ }^{\prime}$

To give a polar decomposition of $G 2^{\prime}$ we use the following
Lemma 5 ([1] p. 345). Let G be a real algebraic subgroup of the general linear group $G L(n, \boldsymbol{R})$ such that the condition $A \in G$ implies $t A \in G$. Then G is homeomor . phic to the topological product of $G \cap O(n)$ (which is a maximal compact subgroup of G) and a Euclidean space R^{d} :

$$
G \simeq(G \cap O(n)) \times \boldsymbol{R}^{d}, \quad d=\operatorname{dim}(g \cap \mathfrak{b}(n))
$$

where $O(n)$ is the orthogonal subgroup of $G L(n, R), 8$ the Lie algebra of G and $\mathfrak{h}(n)$ the vector space of all real symmetric matrices of degree n.

To use the above lemma, we define a positive definite inner product (x, y) in (5) by

$$
(a+b e, c+d e)=(a, c)+(b, d)
$$

Two inner products $(x, y),(x, y)^{\prime}$ in \mathfrak{C}^{\prime} are combined with the following relations

$$
(x, y)=(x, \gamma(y))^{\prime}, \quad(x, y)^{\prime}=(x, \gamma(y))
$$

where $\gamma=\varphi(-1,1)$ ．We denote by t_{α} the transpose of $\alpha \in$ Iso $_{\boldsymbol{R}}\left(\right.$ 区 $\left.^{\prime}, \mathrm{g}^{\prime}\right)$ with respect to $(x, y):(\alpha(x), y)=\left(x, t^{\alpha}(y)\right)$ ．

Lemma 6．$G_{2}{ }^{\prime}$ is a real algebraic subgroup of $G L(8, \boldsymbol{R})=\mathrm{Iso}_{\boldsymbol{R}}\left(\mathrm{E}^{\prime}, \mathrm{E}^{\prime}\right)$ and satisfies the condition $\alpha \in G 2^{\prime}$ implies $t \alpha \in G a^{\prime}$ ．

Proof Since $(x, \gamma(y))=(x, y)^{\prime}=(\alpha(x), \alpha(y))^{\prime}=(\alpha(x), \gamma \alpha(y))=(x, \operatorname{t\alpha \gamma } \alpha(y))$ for $\alpha \in$ $G 2^{\prime}$ ，we have $\gamma=t_{\alpha \gamma} \alpha$ ．Hence $t_{\alpha}=\gamma \alpha^{-1 \gamma} \in G 2^{\prime}$ ．It is trivial that $G a^{2}$ is real algebraic because it is defined by the algebraic relation $\alpha(x y)=\alpha(x) \alpha(y)$ ．

Let $O\left(\mathfrak{E}^{\prime}\right)$ be the orthogonal subgroup of $\mathrm{Iso}_{\boldsymbol{R}}\left(\mathfrak{s}^{\prime}, \mathfrak{E}^{\prime}\right)$ ：

$$
O(8)=O\left(\mathbb{®}^{\prime}\right)=\left\{\alpha \in \operatorname{Iso}_{\boldsymbol{R}}\left(\mathbb{\S}^{\prime}, \mathbb{®}^{\prime}\right) \mid(\alpha(x), \alpha(y))=(x, y)\right\}
$$

Then $\alpha \in G 2^{\prime} \cap O\left(\bigotimes^{\prime}\right)$ induces a linear transformation of \boldsymbol{H} ．In fact，$(\alpha(a), u)=$ $-(\alpha(a), u)^{\prime}=-\left(a, \alpha^{-1}(u)\right)^{\prime}=-\left(a, \alpha^{-1}(u)\right)=-(\alpha(a), u)$ ，for $a \in \boldsymbol{H}, u \in \boldsymbol{H} e$ ，therefore $(\alpha(a), u)=0$ and $\alpha(a) \in \boldsymbol{H}$ ．Hence we have

$$
G z^{\prime} \cap O\left(\mathbb{E}^{\prime}\right)=\left(G z^{\prime}\right)_{K} \cong S O(4)
$$

by Proposition 4．Next we shall determine the Euclidian part $\left.\mathrm{ga}^{\prime} \cap \mathfrak{\cap}\right)\left(\mathcal{E}^{\prime}\right)$ of $G 2^{\prime}$ ， where

$$
\begin{aligned}
& g_{2^{\prime}}=\left\{\varsigma \in \operatorname{Hom}_{R}\left(\varsigma^{\prime}, 区^{\prime}\right) \mid \varsigma(x y)=\varsigma(x) y+x \varsigma(y)\right\} \\
& \mathfrak{h}(8)=\mathfrak{l}\left(\mathfrak{s}^{\prime}\right)=\left\{s \in \operatorname{Hom}_{R}\left(\mathbb{S}^{\prime}, \mathbb{s}^{\prime}\right) \mid(\mathrm{s}(x, y)=(x, \mathrm{~s}(y))\}\right.
\end{aligned}
$$

 $\left.(\mathrm{s}(x), y)^{\prime}+(x, \mathrm{~s}(y))^{\prime}=0\right\}, \mathrm{s} \in \mathfrak{g}_{2} \cap \mathfrak{\mathfrak { h }}\left(\mathrm{(}^{\prime}\right)$ induces a linear transformation $\mathrm{s} \mid \boldsymbol{H}: \boldsymbol{H} \rightarrow \boldsymbol{H} \boldsymbol{e}$ and $\mathrm{s} \mid \boldsymbol{H} \boldsymbol{e}=t(\mathrm{~s} \mid \boldsymbol{H})$ ．Put

$$
\varsigma(i)=p e, \quad s(j)=q e, \quad p, q \in H
$$

then $s(k)$ is determined by $s(k)=s(i j)=s(i) j+i s(j)=(p e) j+i(q e)=(-p j+q i) e$ and
 Hence

$$
\operatorname{dim}\left(g_{2^{\prime}} \cap \mathfrak{I}\left(\mathbb{e}^{\prime}\right)\right)=4+4=8
$$

Thus we have the following
Theorem 7．The group $G_{2^{\prime}}$ is homeomorphic to the topological product of the rotation group $S O(4)$ and an 8－dim．Euclidean space \boldsymbol{R}^{8} ：

$$
G 2^{\prime} \simeq S O(4) \times R^{8}
$$

In particular, $G_{2}{ }^{\prime}$ is a connected (but not simply connected) Lie group.

5. Simplicity of Ge^{\prime}

Lemma 8. The Lie algebra $\mathfrak{g}_{2}^{\prime}$ of G_{2}^{\prime} is simple.
Proof The complexification $g_{2}{ }^{\prime} C$ of the Lie algebra $\Theta_{2}{ }^{\prime}$ is isomorphic to the complexification $g_{2} C$ of the derivation Lie algebra g_{2} of the Cayley algebra \mathfrak{C}, because the complexification $\mathbb{C}^{\prime} \boldsymbol{C}$ of $\mathscr{C}^{\prime \prime}$ is isomorphic to the one \mathbb{C}^{C} of \mathbb{C}. As is well known $\mathfrak{g}_{2}{ }^{C}$ is simple, so that $\mathfrak{g}_{2}{ }^{\prime} C$ is so, hence $\mathscr{C}_{2}{ }^{\prime}$ is also simple.

Since $G_{2}{ }^{\prime}$ is a connected group from Theorem 7 and a simple group as Lie group from Lemma 8, any normal subgroup of $G_{2}{ }^{\prime}$ is contained in the center $z\left(G_{2}{ }^{\prime}\right)$ of $G 2^{\prime}$. We shall show $z\left(G{ }^{2}\right)=1$.

Let $\alpha \in z\left(G_{2}{ }^{\prime}\right)$. First we show that α induces a linear transformation of \boldsymbol{H} : $\alpha \in\left(G 2^{\prime}\right)_{K}$. In fact, put $\alpha(a)=c+d e$ for $a \in H I$, then from the commutativity condition $\varphi(-1,1) \alpha=\alpha \varphi(-1,1)$, we have

$$
c-d e=\varphi(-1,1)(c+d e)=\varphi(-1,1) \alpha(a)=\alpha \varphi(-1,1)(a)=\alpha(a)=c+d e
$$

Therefore $d e=0$ and $\alpha(a)=c \in H$. Hence there exists an element $(p, \sigma) \in S^{3} \cdot S O(3)$ such that $\alpha=\varphi(p, \sigma)$ by Proposition 4. Furthermore from the commutativity condition $\alpha \varphi(q, 1)=\varphi(q, 1) \alpha, \alpha \varphi(1, \sigma)=\varphi(1, \tau) \alpha$, we have

$$
\begin{array}{ll}
p q=q p & \text { for all } q \in S^{3} \\
\sigma \tau=\tau \sigma & \text { for all } \tau \in S O(3)
\end{array}
$$

so that $p= \pm 1, \sigma=1$. Hence $\alpha=\varphi(1,1)$ or $\alpha=\varphi(-1,1)$. We shall show that $\varphi(-1,1)$ is not an element of the center $z\left(G_{2}{ }^{\prime}\right)$ using the following β. Let β be a linear transformation of $\mathcal{C r}^{\prime}$ satisfying

$$
\left.\begin{array}{lll}
\beta(1)=1, & \beta(i)=i e, \quad \beta(j)=j e, & \beta(k)=k \\
\beta(e)=e, & \beta(i e)=i, & \beta(j e)=j,
\end{array} \quad \beta(k e)=k e\right) ~ l
$$

then $\beta \in G_{2}^{\prime}$ and $\varphi(-1,1)$ does not commute with β because $\varphi(-1,1) \beta(i)=\varphi(-1$, 1) $(i e)=-i e$ and $\beta \varphi(-1,1)(i)=\beta(i)=i e$. Thus we have the following

Theorem 9. The group G_{2} is simple (in the algebraic sense) Lie group.
Since the fundamental group of $G_{2}{ }^{\prime}$ is \mathscr{Z}_{2} from Theorem 7 and $G_{2}{ }^{\prime}$ is a simple group, we have the following

Theorem 10. The center $z\left(\widetilde{G}_{2}{ }^{\prime}\right)$ of the non-compact simply connected Lie group
$\widetilde{G}_{2^{\prime}}=G_{2(2)}$ of type $G 2$ is \mathbb{Z}_{2}.
6. Some subgroups of $G_{2}{ }^{\prime}$
I. We shall investigate the structures of subgroups of $G_{2}{ }^{\prime}$ under which some elememts of the basis $1, i, j, k, e, i e, j e, k e$ of \mathbb{E}^{\prime} are invariant.
(1) The group $G_{2^{\prime}}(i)=\left\{\alpha \in G_{2}{ }^{\prime} \mid \alpha(i)=i\right\}$ is isomorphic to the group

$$
S U(1,2)=\left\{A \in M(3, C) \mid A J A^{*}=J, \operatorname{det} A=1\right\}
$$

where \boldsymbol{C} is the complex numbers, A^{*} the conjugate transposed matrix of A and $J=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right) . \quad$ And $G_{2}{ }^{\prime}(i)$ is homeomorphic to

$$
G_{2^{\prime}}(i) \simeq U(2) \times \boldsymbol{R}^{4}
$$

where $U(2)$ is the unitary group.
(2) The group $G_{2^{\prime}}{ }^{\prime}(e)=\left\{\alpha \in G a^{\prime} \mid \alpha(e)=e\right\}$ is isomorphic to the group

$$
S U(3, \mathfrak{a})=\left\{A \in M(3, \mathfrak{a}) \mid A A^{*}=E, \operatorname{det} A=1\right\}
$$

where \mathfrak{a} is the algebra $a=\left\{a+b \leq \mid a, b \in R, \iota^{2}=1\right\}$ with the conjugation $\overline{a+b}=$ $a-b c$ and A^{*} is the conjugate transposed matrix of A. And $G 2^{\prime}(e)$ is homeomorphic to

$$
G_{2^{\prime}}(e) \simeq S O(3) \times \boldsymbol{R}^{5}
$$

(3) The group $G 2^{\prime}(i, j, k)=\left\{\alpha \in G 2^{\prime} \mid \alpha(i)=i, \alpha(j)=j, \alpha(k)=k\right\}$ is isomorphic to the group S^{3}.
(4) The group $G 2^{\prime}(i, e, i e)=\left\{\alpha \in G a^{\prime} \mid \alpha(i)=i, \alpha(e)=e, \alpha(i e)=i e\right\}$ is isomorphic to the general linear group $G L(2, R)$, hence $G_{2}{ }^{\prime}(i, e, i e)$ is homeomorphic to $S^{1} \times$ R^{2}.
II. Let $M m, n$ be the manifold defined by

$$
M m, n=\left\{\left(x_{1}, \cdots, x_{m}, x_{m+1}, \cdots, x_{m+n}\right) \in \boldsymbol{R}^{m+n} \mid \sum_{i=1}^{m} x_{i}{ }^{2}-\sum_{j=m+1}^{m+n} x_{j}=1\right\}
$$

Then we have the following homogeneous spaces.

$$
\begin{array}{ll}
G 2^{\prime} / G 2^{\prime}(i) \simeq M_{3,4}, & G 2^{\prime}(i) / G 2^{\prime}(i, j, k) \simeq M_{2,4} \\
G 2^{\prime} / G_{2}{ }^{\prime}(e) \simeq M_{4,3}, & G_{2}{ }^{\prime}(e) / G 2^{\prime}(i, e, i e) \simeq M_{3,3}
\end{array}
$$

References

[1] S. Helgason ; Differential Geometry and Symmetric Spaces, Pure and Applied Math., 1962.

