Homotopy groups of homogeneous space Sp(n)/U(n)

Dedicated to Professor A. Komatu on his 70th birthday

By HIDEYUKI KACHI

Department of Mathematics, Faculty of Science Shinshu University (Received May, 24, 1978)

§1. Introduction

Let Sp(n), U(n) denote the symplectic, unitary group respectively and Z_n the homogeneous space Sp(n)/U(n).

The homotopy group $\pi_{2n+i}(Z_n)$ $(i \leq 0)$ is called stable and by Bott [1],

$$\pi_q(Sp/U) = \pi_{q+1}(Sp) \quad q = 0, 1, 2, \dots$$

In this paper we compute the unstable homotopy groups of the homogeneous spaces Z_n . For $i \leq 7$, the group $\pi_{2n+i}(Z_n)$ are computed and the results are given by the following table :

Table of $n_{2n+1}(\mathbb{Z}_n)$				
n	4 <i>k</i>	4k + 1	4k + 2	4k + 3
1	$Z_{n!}$	$Z + Z_2$	$Z_{2 \times n}!$	Z
2	Z_2	Z_2	Z_2	0
3	$Z + Z_2 + Z_2$	$Z_{(n+1)}!$	$Z+Z_2$	$Z_{(n+1)}!$ / 2
4	$Z_2 + Z_{(24,n)}$	$Z_{(24,n+3)/2}$	$Z_{(24,n)}$	$Z_{(24,n+8)/2}$
5	$Z_{(n+2)}! (24,n)/24$	Ζ	$Z_{(n+2)}!_{(24,n)/48}$	$Z+Z_2$
6	$Z_{(24,n+4)/2}$	$Z_{(24,n+1)}$	$Z_{(24,n+4)/2}$	$Z_2 + Z_{(24,n+1)}$
7	$Z+Z_2$	$Z_{(n+3)}!$ (24,n+1)/48	$Z+Z_2$	$Z_{(n+3)!} (24, n+1)/24$

Table of $\pi_{2n+i}(Z_n)$

where (24, n) is the g. c. d. of 24 and n.

The computations will be done by use of the homotopy exact sequences (2, 1) and (2, 3).

§2. Preliminaries

Let $s_n: U(n) \longrightarrow Sp(n)$ be the inclusion and $p_n: Sp(n) \longrightarrow Z_n = Sp(n)/U(n)$ the projection.

Consider the commutative diagram

$$\begin{aligned} \pi_{2n+i}(U(n)) & \xrightarrow{S_n} \pi_{2n+i}(Sp(n)) \\ & \downarrow i_n & \downarrow i_n' \\ \pi_{2n+i}(U) & \longrightarrow \pi_{2n+i}(Sp) \end{aligned}$$

induced by inclusion maps, where i'_n is an isomorphism for $i \leq 2n + 1$. On the other hand, $\pi_{2n+i}(U(n))$ is finite group for $i \geq 0$ and $\pi_{2n+i}(U)$ is trivial or infinite cyclic group. Thus the homomorphism

$$s_n: \pi_{2n+i}(U(n)) \longrightarrow \pi_{2n+i}(Sp(n))$$

induced by the inclusion $s_n: U(n) \longrightarrow Sp(n)$ is trivial for $0 \le i \le 2n+1$.

From the homotopy exact sequence associated with the fibration $p_n: Sp(n) \longrightarrow Z_n$ with a fibre U(n), it follows that the sequence

$$(2.1) \qquad 0 \longrightarrow \pi_{2n+i}(Sp(n)) \xrightarrow{p_n} \pi_{2n+i}(Z_n) \xrightarrow{\Delta} \pi_{2n+i-1}(U(n)) \longrightarrow 0$$

is exact for $1 \leq i \leq 2n + 1$.

Consider the fibration $Sp(n+1) / U(n) \longrightarrow Sp(n+1) / Sp(n) = S^{4n+3}$ with a fibre $Z_n = Sp(n)/U(n)$. Then we have the isomorphism

(2.2)
$$\pi_k(Z_n) \cong \pi_k(S_p(n)/U(n))$$

for $k \leq 4n + 1$.

From the fibration

$$S^{2n+1} = U(n+1)/U(n) \longrightarrow Sp(n+1)/U(n) \longrightarrow Sp(n+1)/U(n+1) = Z_{n+1}$$

and (2, 2), we have an exact sequence

(2.3)
$$\cdots \longrightarrow \pi_k(S^{2n+1}) \xrightarrow{j_n} \pi_k(Z_n) \xrightarrow{\gamma_n} \pi_k(Z_{n+1}) \xrightarrow{\overline{\partial}} \pi_{k-1}(S^{2n+1}) \xrightarrow{\cdots} \cdots$$

for $i \leq 4k + 1$.

Further, we obtain the following commutative diagrams

with exact rows for $k \leq 4n + 1$ and

Homotopy groups of homogeneous space Sp(n)/U(n)

$$(2.5) \qquad \begin{array}{cccc} 0 & \longrightarrow & \pi_k(Sp(n)) & \xrightarrow{p_n} & \pi_k(Z_n) & \xrightarrow{\Delta} & \pi_{k-1}(U(n)) & \longrightarrow & 0 \\ & & & \downarrow i'_n & & \downarrow r_n & & \downarrow i_n \\ 0 & \longrightarrow & \pi_k(Sp(n+1)) & \xrightarrow{p_{n+1}} & \pi_k(Z_{n+1}) & \xrightarrow{\Delta} & \pi_{k-1}(U(n+1)) & \longrightarrow & 0 \end{array}$$

with exact rows for $2n + 3 \le k \le 4n + 5$.

From (2.4), we have the commutative diagram

Then, from Lemma 1.1 of [3], $q: \pi_{2n}(U(n)) \longrightarrow \pi_{2n}(S^{2n-1})$ is given by

$$q(\partial \iota_{2n+1}) = 0 \quad \text{for } n \text{ odd}$$
$$q(\partial \iota_{2n+1}) = \eta_{2n-1} \quad \text{for } n \text{ even}$$

where $\partial_{\ell_{2n+1}}$ is a generator of $\pi_{2n}(U(n))$. Then we obtain that

(2.6)
$$\overline{\partial} j_n(\iota_{2n+1}) = \eta_{2n-1}$$
 for *n* even
 $\overline{\partial} j_n(\iota_{2n+1}) = 0$ for *n* odd

and for the boundary homomorphism $\overline{\partial}$, we have the formula

(2.7)
$$\overline{\partial} j_n(\alpha \circ E\beta) = ((\overline{\partial} j_n)(\alpha)) \circ \beta$$

where E is a suspension homomorphism.

§ 3. Calculations.

Let $1 \leq i \leq 2n + 1$. Then

$$\pi_{2n+i}(Sp(n))=0$$

for $2n + i \equiv 0, 1, 2, 6 \mod 8$. Hence, from (2.1),

(3.1)
$$\pi_{2n+i}(Z_n) \cong \pi_{2n+i-1}(U(n))$$

for $2n + i \equiv 0$, 1, 2, 6 mod 8 and $1 \le i \le 2n + 1$. From (2.5) it follows that the diagram

is commutative. *i'* is an isomorphism for $4k \leq 8n + 1$. Because of commutativity in the above diagram, it follows that lower sequence is a split extension if the upper is. The sequence splits trivially, since $\pi_{8n+3}(U(4n + 1)) = 0$. Thus

(3.2)
$$\pi_{8n+4}(Z_{4n+1-k}) \cong Z_2 + \pi_{8n+3}(U(4n+1-k))$$

for $4k \leq 8n + 1$.

Consider the exact sequence

$$\pi_{8n+6}(Z_{4n+3}) \longrightarrow \pi_{8n+5}(\mathbf{S}^{8n+5}) \longrightarrow \pi_{8n+5}(Z_{4n+2}) \longrightarrow \pi_{8n+5}(Z_{4n+3})$$

of (2.3) where $\pi_{8n+6}(Z_{4n+3}) \cong Z$, $\pi_{8n+5}(Z_{4n+3}) = 0$ and $\pi_{8n+5}(S^{8n+5}) \cong Z$. Thus, from the exactness of the sequence,

(3.3)
$$\pi_{8n+5}(Z_{4n+2})$$
 is a cyclic group.

From (2.5), we have the commutative diagram

where i' are isomorphisms for $n \ge 1$. From [3], i_{4n+1} is a monomorphism and from [4], i_{4n} , i_{4n-1} are monomorphisms. Hence, from the five lemma, it follows that the homomorphism r_{4n+i} ; $\pi_{4n+5}(Z_{4n+i}) \longrightarrow \pi_{4n+5}(Z_{4n+1+i})$ (i = 1, 0, -1) is a monomorphism. Since a subgroup of a cyclic group is cyclic, we have that $\pi_{8n+5}(Z_{4n+2-i})$ (i = 0, 1, 2, 3) is a cyclic group.

Now let O(8n + 4, 4n + 2 - i) be the order of the cyclic group $\pi_{8n+4}(U(4n + 2 - i))$ for $0 \leq i \leq 3$. From the exact sequence

$$0 \longrightarrow \pi_{8n+5}(Sp(4n+i)) \longrightarrow \pi_{8n+5}(Z_{4n+i}) \longrightarrow \pi_{8n+4}(U(4n+i)) \longrightarrow 0$$

of (2.1) and $\pi_{8n+5}(Sp(4n+i)) \cong Z_2$ for $-1 \le i \le 2$,

(3.4) the group $\pi_{8n+5}(Z_{4n+2-i})$ is a cyclic group of order $2 \times O(8n+4, 4n+2-i)$ for $n \ge 1$, $0 \le i \le 3$.

Consider the exact sequence

Homotopy groups of homogeneous space Sp(n)/U(n)

$$\pi_{8n+8}(Z_{4n+4}) \longrightarrow \pi_{8n+7}(S^{8n+7}) \longrightarrow \pi_{8n+7}(Z_{4n+3}) \longrightarrow \pi_{8n+7}(Z_{4n+4})$$

of (2.3) where $\pi_{8n+7}(Z_{4n+4}) = 0 = \pi_{8n+8}(Z_{4n+4})$. Thus

(3, 5)
$$\pi_{8n+7}(Z_{4n+3}) \cong Z$$
,

Consider the diagram

$$\pi_{8n+6}(S^{6n+3})$$

$$\uparrow \overline{\partial}$$

$$\pi_{8n+7}(S^{8n+5}) \xrightarrow{j} \pi_{8n+7}(Z_{4n+2}) \longrightarrow \pi_{8n+7}(Z_{4n+3}) \longrightarrow \pi_{8n+6}(S^{8n+5})$$

with exact row. From (2.6) and (2.7),

(3.6)
$$\overline{\partial} j(\eta^2_{8n+5}) = \overline{\partial} j(\iota_{8u+5})\eta^2_{8n+4} = \eta^3_{8n+3} = 12\nu_{8n+3} \neq 0.$$

Hence $j: \pi_{8n+7}(S^{8n+5}) \cong Z_2 \longrightarrow \pi_{8n+7}(Z_{4n+2})$ is a monomorphism. Thus, from the exactness of the above sequence,

(3.7)
$$\pi_{8n+7}(Z_{4n+2}) \cong Z + Z_2$$

where Z_2 is generated by $j(\eta^2_{8n+5})$.

From the exact sequence

$$0 = \pi_{8n+7}(S^{8n+3}) \longrightarrow \pi_{8n+7}(Z_{4n+1}) \longrightarrow \pi_{8n+7}(Z_{4n+2}) \xrightarrow{\partial} \pi_{8n+6}(S^{8n+3})$$

and (3.6), (3.7), we obtain that

(3.8)
$$\pi_{8n+7}(Z_{4n+1}) \cong Z.$$

From (2.5), it follows that the diagram

is commutative. i' is an isomorphism for $i \ge 1$. From [5], i_{4n} is the split epimorphism and a kernel of i_{4n} is isomorphic to Z_2 . From lemma 3.6 of [7], r_{4n} is the split epimorphism and the kernel of r_{4n} is isomorphic to Z_2 . Thus

(3.9)
$$\pi_{8n+7}(Z_{4n}) \cong Z + Z_2.$$

Consider the commutative diagram

$$0 \longrightarrow \pi_{8n+3}(U) \longrightarrow \pi_{8n+3}(Sp) \longrightarrow \pi_{8n+3}(Z) \longrightarrow 0$$

$$\downarrow i' \qquad \uparrow r$$

$$0 \longrightarrow \pi_{8n+3}(Sp(4n+1)) \xrightarrow{p} \pi_{8n+3}(Z_{4n+1}) \longrightarrow \pi_{8n+2}(U(4n+1)) \longrightarrow 0$$

$$\uparrow j$$

$$\pi_{8n+3}(S^{8n+3})$$

$$\uparrow$$

$$0$$

where rows, column are exact and i' is an isomorphism. From the exactness of the column sequence, the group $\pi_{8n+3}(Z_{4n+1})$ is either Z or $Z + Z_2$. From the commutativity of the above diagram, $\pi_{8n+3}(Z_{4n+1})$ must be $Z + Z_2$. Hence

$$(3. 10) \qquad \qquad \pi_{8n+3}(Z_{4n+1}) \cong Z + Z_2.$$

Consider the commutative diagram

of (2.5) where i' is an isomorphism for $n \ge 1$. i_{4n} is the split epimorphism and its kernel is isomorphic to Z_2 . Thus from lemma 3.6 of [7], r_{4n} is the split epimorphism and its kernel is isomorphic to Z_2 . Hence

$$(3.11) \pi_{8n+3}(Z_{4n}) \cong Z + Z_2 + Z_2.$$

Consider the exact sequence

$$0 = \pi_{8n+8}(S^{8n-1}) \longrightarrow \pi_{8n+8}(Z_{4n-1}) \longrightarrow \pi_{8n+8}(Z_{4n}) \xrightarrow{\overline{\partial}} \pi_{8n+2}(S^{8n-1})$$

$$\uparrow j$$

$$\pi_{8n+8}(S^{8n+1}).$$

From (2.6) and (2.7),

$$\overline{\partial} j(\eta^2_{8n+1}) = (\overline{\partial} j)(\iota_{8n+1})\eta^2_{8n+1} = \eta^3_{8n-1} = 12\nu_{8n-1} \neq 0.$$

Hence from the exactness, we have

(3.12)
$$\pi_{8n+8}(Z_{4n-1}) \cong Z + Z_2.$$

From (2.5), the following diagram

is commutative where i' is an isomorphism for $n \ge 2$. Since i_{4n-2} is an isomorphism, r_{4n-2} is so. Thus

$$(3. 13) \qquad \qquad \pi_{8n+8}(Z_{4n-2}) \cong Z + Z_2$$

for $n \ge 2$.

References

- 1. R. BOTT, The stable homotopy of the classical groups, Ann. of Math., 70 (1956) 313-337.
- 2. B. HARRIS, On the homotopy groups of the classical groups, Ann. of Math., 74 (1961) 407-413.
- 3. M. KERVAIRE, Some non-stable homotopy groups of Lie groups, III. J. Math., 4 (1960) 161-169.
- 4. H. MATSUNAGA, The homotopy groups $\pi_{2n+i}(U(n))$ for i = 3, 4 and 5, Mem. Fac. Sci. Kyushu Univ., 15 (1961) 72-80.
- 5. _____, Applications of functional cohomology operations to the calculus of $\pi_{2n+i}(U(n))$ for i=6 and 7, Mem. Fac. Sci. Kyushu Univ., 17 (1963) 29-62.
- Corrections of the preceding paper and note on the James number, Memo. Fac. Sci. Kyushu Univ., 16 (1962) 60-61
- H. KACHI, Homotopy groups of homogeneous space SU(n)/SO(n), J. Fac. Sci. Shinshu Univ., 13 (1978) 27-23