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                          gl. gntroductioifi

   Let SP(n), U(n) denote the symplectic, unitary group respectiveiy and Zit the

homogeneous space SP(n)/U(n).

   The homotopy group rr2..i(Zn) (i <O) is called stabte and by Bott [1],

                rtq(SP/U) == rrq+i(Sp) q==O, 1, 2, ''''''.

   In this paper we compute the unstable homotopy groups of the homogeneous

spaces Zn. Fori<:7, the group T2.+i(Zn) are computed and the results are given

by the following table:
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   Consider the commutative diagram

                             Sn                   rr2n+i(U(n)) . x2.n+i(SP(n))

                     lin iin'

                   rr2n+i(U) - T2n+i(SP)

induced by inclusion maps, where i'n is an isomorphism for i<2n+1. 0n the

other hand, rt2n+i(U(n)) is finite group for i)O and rt2.+i(U) is trivial or infinite

cyclic group. Thus the homomorphism

                   Sn : n2n+i(U(n)) --' T2n+i(SP(n))

induced by the inclusion sn : U(n) - SP(n) is trivial for O<i<2n+1.

   From the homotopy exact sequence associated with the fibration Pn : SP(n) }

Zh with a fibre U(n), it foilows that the sequence

(2. 1) O - rr2n+i(SP(n)) -2t'l'" rr2n+i(Zn)A rr2n+i.i(U(n)) -- O

is exact for 1<i<2n -F 1.

   Consider the fibration SP(n+1)/U(n) - SP(n+1)/SP(n) === S`""3 with a fibre

at:== SP(n)/U(n). Then we have the isomorphism

(2. 2) rrk(Zh) :-)t Tk(Sp(n)/U(n))

    From the fibration

     S2n+i == U(n ÷ 1)/U(n) - SP(n+1)/U(n) - SP(n + 1)/U(n + 1) = Zn÷i

and (2. 2), we have an exact sequence

(2. 3) -･･- Tle(s2n-i) L' rch(zh) -Zle'+ rtle(zh.,) O+ nk-,(s2n+i) ･-･

for i< 4fe + 1.

    Further, we obtain the foilowing commutative diagrams

         mrr. rrh(s2n+i) L' rrk(zh) -k'Lt zk(zh,,) e. rrh(s2n÷!) -----.

(2'4) - .,(s2..i) a ,.,-IZ(n)) rmti'!-.i T,.-,(3thti))L xk-i(s2"'i) '

with exact rows for k <{ 4n +1 and
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        o- Tk(Sp(n)) -L' rh(Zh) d-, Tkmt(u(n)) -o

(2' 5) o- .,(ssi'j:+o) pn+i .,(ll'l".,) a. .,..l(ib(.+i)) -o

with exact rows for 2n+3<k<4n+5.
   From (2. 4), we have' the commutative diagram

                      7'n O            Z2n+i(S2'l'1) -                                 - X2n+i-i(S2n'i)                         rr2n+i(Zh)

                  aX.,, l //`q

                        rr2n+i-i.(U(n)).

Then, from Lemrna 1.1 of [3], q: rt2.((]/(n)) - T2.(S2"-i) is given by

                   q(Oe2n+i) == O for n odd

                   q(6c2n+i) == rp2n-i for n even

where Oe2n+i is a generator of z2.(U(n)). Then we obtain that

(2.6) Ol'n(c2n+i)=v2n-i forneven
                   61'n(c2n+i) = O for n odd

and for the boundary homomorphism MO, we have the formu!a

(2. 7) 07'n(aoEP) :== ((O]'n)(ev))oP

where E ia a suspension homomorphism.

                            ss3. Calculatio"s.

   Let 1 <{i<< 2n + 1. Then

                   n2n+i(SP(n)) = O

for 2n +i-= O, 1, 2, 6 mod 8. Hence, from (2. 1),

(3. 1) rc2n+i(Zn) 21[ Z2n+i-i(U(fl))

for 2n +i -== O, 1, 2, 6 mod 8 and 1<{i< 2n + 1.

   From (2. 5) it follows that the diagram

     O - rrsn+d(SP(4n+1)) m- zsn+4(Z4n+1) - rtsn+3(U(4n+1))

                 ii' 1 1
     O ' rrsn+4(SP(4n+1rmfe))-- rtsn+4(Z4n+i--le)- rcsn+3(U(4n+1-fe))

o

o

37
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is commutative. i' is an isomorphlsm for 4le<8n+1. Because of commutativity

in the above diagram, it follows that lower sequence is a split extension if the

upper is. The sequence splits trivially, since rrsn+3(U(4n+1)) == O. Thus

(3. 2) xsn+4(Z4n+i-k) Z ts + rsn+s(U(4n +1- k))

for 4le < 8n + 1.

    Consider the exact sequence

         rrsn+6(Z4n+3) ' zsn+s(S8n+5) ' rcsn+s(Z4n+2) - Tsn+s(Z4n+3)

of (2. 3) where Tsn+6(kn+3) Elil Z, Tsn+s(Z4n+3) =O and rcs.+s(S8"'5) =t' ZL Thus, from

the exactness of the sequence,

(3. 3) xsn+s(Z4n+2) isacyclic group.

    From (2. 5), we have the commutative diagram

      O - rrsn+s(SP(4n+2)) - rcsn+s(Z4n+2) - ffsn+4(U(4n+2)) 'mrr' O

                ii' lr4n+! li4n+i
      O -- rcsn+s(SP(4n+1)) - ffsn+s(Z4n+i) - ffsn+4(U(4n+1)) mrm' O

                ii' lr4n li4n
      O - ffsn+s(SP(4n)) - Tsn+s(Z4n) - rrsn+d(U(4n)) F--"- O

                li' lr4n-i li4n-i
      O ' rsn+s(SP(4n-1)) -"-L- rrsn+s(Z4n..i) ww-, rsn+4(U(4n-1)) , O

 where i' are isomorphisms for n)1. From [3], i4.+i is a monomorphism and from

[4], i4n, i4n-i are monomorphisms. Hence, from the five lemma, it foilows that the

 homomorphism r4n+i;rtgn+s(Z4n+i) + z4n+s(Z4n+i+i) (i=1, O, -1) is a monomor-

 phism. Since a subgroup of a cyclic group is cyclic, we have that Tsn+s(Z4n+2.i)

 (i = O, 1, 2, 3) is a cyclic group.

    Now let 0(8n + 4, 4n + 2 - i) be the order of the cyclic group nvs.+4(U(4n + 2 - i))

 for O<i<3. From the exact sequence
                       '
      O - T6n+s(SP(4n + i)) - rrsn+s(Z4n+i) - rsn+4(U(4n {- i)) ' O

 of (2. 1) and rcs.+s(SP(4n +i)) frfy Z2 for -1 ({i <{ 2,

 (3. 4) the group itsn+s(Z4n+2.i) is a cyclic group of order 2 × 0(8n +4, 4n +2-i)

 for n}}) 1, O<i<3.

    Consider the exact sequence
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         rrsn+s(Z4n+4) ---" xsn+7(S8n+7) - ffsn+7(Z4n+3) - TBn+7(Z4n+4)

of (2. 3) where Tsn+7(ZILn+4) =O= xsn+s(Zan+t). Thus

(3. 5) Tsn+7(Z4n+3) Zl
    Consider the diagram

                        Tsn+6(S6n+3)

                     ' lb

         rtsn+7(S8M'5) "-Z-' rtsn+7(ZIIn+2) - Tsn+7(Z{n+B) - "sn+6(SBn+5)

                                                           'with exact row. From (2.6) and (2.7),

(3. 6) Ol'(v2sn+s) = OIKeBu+s)?2sn+4 = v3sn+3 = 12vsn+3 71 0･

    Hence ]' : rrsn+7(S8"'5) !)i{ Zli - Tsn+7(Z4n+2) is a monomorphism. Thus, from the

exactness of the above sequence,

(3. 7) zsn+7(Z4n+2) {)I Z+ ZLi

where th is generated by j'(o2sn+s).

    From the exact sequence

                                                    b
      O = Tsn+?(S8n+3) - rrsn+7(Z4n+!) - Tsn+7(Z4n+2) - rtsn+6(S8n+S)

and (3. 6), (3. 7), we obtain that

(3. 8) nsn+7(Z4n+i) 21 Z･

    From (2. 5), it follows that the diagram

      O ' Tsn+7(SP(4n+1)) ' nsn+7(Z4nn) - ffBn+6(U(4n+1)) ' O

                 ii' lr4n ii4n
      O- Tsn+7(SP(4n)) ' Zsn+7(Z4n) --- rtsn+6(U(4n)) -O
                                                           '
is commutative. i' is an isomorphism for i;}}i: 1. From [5], i4n is the split epimor-

phism and a kernel of i4n is isomorphic to Z2. From lemma 3.6 of [7], r4n is the

split epimorphism and the kernel of r4n is isomorphic to Zli. Thus

(3. 9) rtsn+7(&n) =N Z+ Zli･

    Consider the commutative diagram
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                                            o
                                            1

     O " Tsn+B( U) - ffsn+3(SP) - Zsn+3(Z) -O
                          li' ir '
                 O - rrsn+3(SP(4n+1)) L xsn+s(Z4n+i) nT- rcsn+2(U(4n+1))-O

                                            ij

                                       rrsn+3(S8n+3)

                                            f

                                            o

where rows, column are exact and i' is an isomorphism. From the exactness of

the column sequence, the group rrs.+3(Z4.+i) is either Z or Z+Z2. From the

commutativity of .the above diagram, rrs.+3(Z4n+i) must be Z+ Zli. Hence

(3. 10) rrsn+3(an+i) =Z+ th･

   Consider the commutative diagram

     O ' rcBn+3(SP(4n÷1)) ' ' xsn+3(Z4n+i) -'rr' Tsn+2(U(4n+1)) -L-' O

               ii' ir4n *i4n
     O- Tsn+3(SP(4n)) - rrsn+3(Z4n) ' nsn+2(U(4n)) 'O

of (2. 5) where i' is an isomorphism for n}}}i 1. i4. is the split epimorphism and its

kernel is isomorphic to Zli. Thus from lemma 3.6 of [7], r4. is the split epimor-

ph'tsm and its kernel is isornorphic to Zli. Hence

(3.11) Tsn÷3(Z4n) ilZ+Z2+Zli･

   Consider the exact sequence

                                                  b
        O =: rcsn+3(S8iiff1) ' Tsn+3(Z4nnl) +uz' xBn+3(Z4n) - rrlin+2(S8nn-1)

                                           v

                ' xsn+3(S8n+1).
From (2. 6) and (2. 7),

            O]'(rp2sn+1) == (al')(csn+1)v2sn+1 == rp3sn-1 := 12psn-1 74 O.

Hence from the exactness, we have

(3. 12) ffsn+3(kn-t) or Z+ k･
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    From (2. 5), the following diagram

      O - TBn+3(SP(4n - 1)) - xBn+3(Z4n-i) - rtsn+2(U(4n ' 1)) ' O

                 ii' lr4n-2 li{.-.2

      O - rcsn+3(SP(47¢ nv 2)) - rtsn+3(an-2) " rc6n+3(U(4n - 2)) - O

is commutative where i' is an isomorphism for n)2. Since i4n-2 is an isomorphism,

r4n-2 is so. Thus

(3. 13) Tsn+3(Z4n-2) IIIi: Z+ ZLi

for n )' 2.
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