Homotopy groups of homogeneous space $\mathbb{S} p(n) / \mathbb{U}(n)$

Dedicated to Professor A. Komatu on his 70th birthday

By Hideyuki Kachi

Department of Mathematics, Faculty of Science
Shinshu University
(Received May, 24, 1978)

§1. Introduction

Let $S p(n), U(n)$ denote the symplectic, unitary group respectively and Z_{n} the homogeneous space $S p(n) / U(n)$.

The homotopy group $\pi_{2 n+i}\left(Z_{n}\right)(i \leqslant 0)$ is called stable and by Bott [1],

$$
\pi_{q}(\mathbb{S} p / U)=\pi_{q+1}(S p) \quad q=0,1,2, \cdots \cdots
$$

In this paper we compute the unstable homotopy groups of the homogeneous spaces Z_{n}. For $i \leqslant 7$, the group $\pi_{2 n+i}\left(Z_{n}\right)$ are computed and the results are given by the following table:

Table of $\pi_{2 n+i}\left(Z_{n}\right)$

\boldsymbol{n}	$4 k$	$4 k+1$	$4 k+2$	$4 k+3$
1	$Z_{n!}$	$Z+Z_{2}$	$Z_{2 \times n!}$	Z
2	Z_{2}	Z_{2}	Z_{2}	0
3	$Z+Z_{2}+Z_{2}$	$Z_{(n+1)!}$	$Z+Z_{2}$	$Z_{(n+1)!/ 2}$
4	$Z_{2}+Z_{(24, n)}$	$Z_{(24, n+3) / 2}$	$Z_{(24, n)}$	$Z_{(24, n+3) / 2}$
5	$Z_{(n+2)!(24, n) / 24}$	Z	$Z_{(n+2)!(24, n) / 48}$	$Z+Z_{2}$
6	$Z_{(24, n+4) / 2}$	$Z_{(24, n+1)}$	$Z_{(24, n+4) / 2}$	$Z_{2}+Z_{(24, n+1)}$
7	$Z+Z_{2}$	$Z_{(n+3)!(24, n+1) / 48}$	$Z+Z_{2}$	$Z_{(n+3)!(24, n+1) / 24}$

where $(24, n)$ is the g. c. d. of 24 and n.
The computations will be done by use of the homotopy exact sequences (2.1) and (2.3).

§2. Preliminaries

Let $s_{n}: U(n) \longrightarrow S p(n)$ be the inclusion and $p_{n}: S p(n) \longrightarrow Z_{n}=S p(n) / U(n)$ the projection.

Consider the commutative diagram

induced by inclusion maps, where $i^{\prime} n$ is an isomorphism for $i \leqslant 2 n+1$. On the other hand, $\pi_{2 n+i}(U(n))$ is finite group for $i \geqslant 0$ and $\pi_{2 n+i}(U)$ is trivial or infinite cyclic group. Thus the homomorphism

$$
s_{n}: \pi_{2 n+i}(U(n)) \longrightarrow \pi_{2 n+i}(S p(n))
$$

induced by the inclusion $s_{n}: U(n) \longrightarrow S p(n)$ is trivial for $0 \leqslant i \leqslant 2 n+1$.
From the homotopy exact sequence associated with the fibration $p_{n}: S p(n) \longrightarrow$ Z_{n} with a fibre $U(n)$, it follows that the sequence

$$
\begin{equation*}
0 \longrightarrow \pi_{2 n+i}(S p(n)) \xrightarrow{p_{n}} \pi_{2 n+i}\left(Z_{n}\right) \xrightarrow{\Delta} \pi_{2 n+i-1}(U(n)) \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

is exact for $1 \leqslant i \leqslant 2 n+1$.
Consider the fibration $S p(n+1) / U(n) \longrightarrow S p(n+1) / S p(n)=S^{4 n+3}$ with a fibre $Z_{n}=S p(n) / U(n)$. Then we have the isomorphism

$$
\begin{equation*}
\pi_{k}\left(Z_{n}\right) \cong \pi_{k}\left(S_{p}(n) / U(n)\right) \tag{2.2}
\end{equation*}
$$

for $k \leqslant 4 n+1$.
From the fibration

$$
S^{2 n+1}=U(n+1) / U(n) \longrightarrow S p(n+1) / U(n) \longrightarrow S p(n+1) / U(n+1)=Z_{n+1}
$$

and (2.2), we have an exact sequence

$$
\begin{equation*}
\cdots \longrightarrow \pi_{k}\left(S^{2 n+1}\right) \xrightarrow{j_{n}} \pi_{k}\left(Z_{n}\right) \xrightarrow{\gamma_{n}} \pi_{k}\left(Z_{n+1}\right) \xrightarrow{\bar{\partial}} \pi_{k-1}\left(S^{2 n+1}\right) \longrightarrow \cdots \tag{2.3}
\end{equation*}
$$

for $i \leqslant 4 k+1$.
Further, we obtain the following commutative diagrams

with exact rows for $k \leqslant 4 n+1$ and

with exact rows for $2 n+3 \leqslant k \leqslant 4 n+5$.
From (2.4), we have the commutative diagram

Then, from Lemma 1.1 of [3], $q: \pi_{2 n}(U(n)) \longrightarrow \pi_{2 n}\left(S^{2 n-1}\right)$ is given by

$$
\begin{aligned}
& q\left(\partial \epsilon_{2 n+1}\right)=0 \text { for } n \text { odd } \\
& q\left(\partial \epsilon_{2 n+1}\right)=\eta_{2 n-1} \text { for } n \text { even }
\end{aligned}
$$

where $\partial t_{2 n+1}$ is a generator of $\pi_{2 n}(U(n))$. Then we obtain that

$$
\begin{array}{ll}
\bar{\partial} j_{n}\left(\varepsilon_{2 n+1}\right)=\eta_{2 n-1} & \text { for } n \text { even } \tag{2.6}\\
\bar{\partial} j_{n}\left(c_{2 n+1}\right)=0 & \text { for } n \text { odd }
\end{array}
$$

and for the boundary homomorphism $\bar{\partial}$, we have the formula

$$
\begin{equation*}
\bar{\partial} j_{n}(\alpha \circ E \beta)=\left(\left(\bar{\partial} j_{n}\right)(\alpha)\right) \circ \beta \tag{2.7}
\end{equation*}
$$

where E ia a suspension homomorphism.

§ 3. Calculations.

Let $1 \leqslant i \leqslant 2 n+1$. Then

$$
\pi_{2 n+i}(S p(n))=0
$$

for $2 n+i \equiv 0,1,2,6 \bmod 8$. Hence, from (2.1),

$$
\begin{equation*}
\pi_{2 n+i}\left(Z_{n}\right) \cong \pi_{2 n+i-1}(U(n)) \tag{3.1}
\end{equation*}
$$

for $2 n+i \equiv 0,1,2,6 \bmod 8$ and $1 \leqslant i \leqslant 2 \mathrm{n}+1$.
From (2.5) it follows that the diagram

is commutative. i^{\prime} is an isomorphism for $4 k \leqslant 8 n+1$. Because of commutativity in the above diagram, it follows that lower sequence is a split extension if the upper is. The sequence splits trivially, since $\pi_{8 n+3}(U(4 n+1))=0$. Thus

$$
\begin{equation*}
\pi_{8 n+4}\left(Z_{4 n+1-k}\right) \cong Z_{2}+\pi_{8 n+8}(U(4 n+1-k)) \tag{3.2}
\end{equation*}
$$

for $4 k \leqslant 8 n+1$.
Consider the exact sequence

$$
\pi_{8 n+6}\left(Z_{4 n+3}\right) \longrightarrow \pi_{8 n+5}\left(S^{8 n+5}\right) \longrightarrow \pi_{8 n+5}\left(Z_{4 n+2}\right) \longrightarrow \pi_{8 n+5}\left(Z_{4 n+8}\right)
$$

of (2.3) where $\pi_{8 n+6}\left(Z_{4 n+3}\right) \cong Z, \pi_{8 n+5}\left(Z_{4 n+3}\right)=0$ and $\pi_{8 n+5}\left(S^{8 n+5}\right) \cong Z$. Thus, from the exactness of the sequence,

$$
\begin{equation*}
\pi_{8 n+5}\left(Z_{4 n+2}\right) \text { is a cyclic group. } \tag{3.3}
\end{equation*}
$$

From (2.5), we have the commutative diagram

where i^{\prime} are isomorphisms for $n \geqslant 1$. From [3], $i_{4 n+1}$ is a monomorphism and from [4], $i_{4 n}, i_{4 n-1}$ are monomorphisms. Hence, from the five lemma, it follows that the homomorphism $r_{4 n+i} ; \pi_{4 n+5}\left(Z_{4 n+i}\right) \longrightarrow \pi_{4 n+5}\left(Z_{4 n+1+i}\right)(i=1,0,-1)$ is a monomorphism. Since a subgroup of a cyclic group is cyclic, we have that $\pi_{8 n+5}\left(Z_{4 n+2-i}\right)$ ($i=0,1,2,3$) is a cyclic group.

Now let $O(8 n+4,4 n+2-i)$ be the order of the cyclic group $\pi_{8 n+4}(U(4 n+2-i))$ for $0 \leqslant i \leqslant 3$. From the exact sequence

$$
0 \longrightarrow \pi_{8 n+5}(S p(4 n+i)) \longrightarrow \pi_{8 n+5}\left(Z_{4 n+i}\right) \longrightarrow \pi_{8 n+4}(U(4 n+i)) \longrightarrow 0
$$

of $\langle 2.1)$ and $\pi_{8 n+5}(S p(4 n+i)\rangle \cong Z_{2}$ for $-1 \leqslant i \leqslant 2$,
the group $\pi_{8 n+5}\left(Z_{4 n+2-i}\right)$ is a cyclic group of order $2 \times \boldsymbol{O}(8 n+4,4 n+2-i)$
for $n \geqslant 1,0 \leqslant i \leqslant 3$.
Consider the exact sequence

$$
\pi_{8 n+8}\left(Z_{4 n+4}\right) \longrightarrow \pi_{8 n+7}\left(S^{8 n+7}\right) \longrightarrow \pi_{8 n+7}\left(Z_{4 n+3}\right) \longrightarrow \pi_{8 n+7}\left(Z_{4 n+4}\right)
$$

of (2.3) where $\pi_{8 n+7}\left(Z_{4 n+4}\right)=0=\pi_{8 n+8}\left(Z_{4 n+4}\right)$. Thus

$$
\begin{equation*}
\pi_{8 n+7}\left(Z_{4 n+3}\right) \cong Z \tag{3,5}
\end{equation*}
$$

Consider the diagram

$$
\begin{gathered}
\begin{array}{c}
\pi_{8 n+6}\left(S^{8 n+3}\right) \\
\pi_{8 n+7}\left(S^{8 n+5}\right) \xrightarrow{2}
\end{array} \begin{array}{c}
j \\
\pi_{8 n+7}\left(Z_{4 n+2}\right) \longrightarrow
\end{array} \pi_{8 n+7}\left(Z_{4 n+8}\right) \longrightarrow \pi_{8 n+6}\left(S^{8 n+5}\right)
\end{gathered}
$$

with exact row. From (2.6) and (2.7),

$$
\begin{equation*}
\bar{\partial} j\left(\eta^{2}{ }_{8 n+5}\right)=\bar{\partial} j\left(c_{8 u+5}\right) \eta^{2}{ }_{8 n+4}=\eta^{3}{ }_{8 n+3}=12 \nu_{8 n+3} \neq 0 \tag{3.6}
\end{equation*}
$$

Hence $j: \pi_{8 n+7}\left(S^{8 n+5}\right) \cong Z_{2} \longrightarrow \pi_{8 n+7}\left(Z_{4 n+2}\right)$ is a monomorphism. Thus, from the exactness of the above sequence,

$$
\begin{equation*}
\pi_{8 n+7}\left(Z_{4 n+2}\right) \cong Z+Z_{2} \tag{3.7}
\end{equation*}
$$

where Z_{2} is generated by $j\left(\eta^{2}{ }_{8 n+5}\right)$.
From the exact sequence

$$
0=\pi_{8 n+7}\left(S^{8 n+3}\right) \longrightarrow \pi_{8 n+7}\left(Z_{4 n+1}\right) \longrightarrow \pi_{8 n+7}\left(Z_{4 n+2}\right) \xrightarrow{\bar{\partial}} \pi_{8 n+6}\left(S^{8 n+3}\right)
$$

and (3.6), (3.7), we obtain that

$$
\begin{equation*}
\pi_{8 n+7}\left(Z_{4 n+1}\right) \cong Z \tag{3.8}
\end{equation*}
$$

From (2.5), it follows that the diagram

is commutative. i^{\prime} is an isomorphism for $i \geqslant 1$. From [5], $i_{\$ n}$ is the split epimorphism and a kernel of $i_{4 n}$ is isomorphic to Z_{2}. From lemma 3.6 of [7], $r_{4 n}$ is the split epimorphism and the kernel of $r_{4 n}$ is isomorphic to Z_{2}. Thus

$$
\begin{equation*}
\pi_{8 n+7}\left(Z_{4 n}\right) \cong Z+Z_{2} \tag{3.9}
\end{equation*}
$$

Consider the commutative diagram

where rows, column are exact and i^{\prime} is an isomorphism. From the exactness of the column sequence, the group $\pi_{8 n+3}\left(Z_{4 n+1}\right)$ is either Z or $Z+Z_{2}$. From the commutativity of the above diagram, $\pi_{8 n+3}\left(Z_{4 n+1}\right)$ must be $Z+Z_{2}$. Hence

$$
\begin{equation*}
\pi_{8 n+3}\left(Z_{4 n+1}\right) \cong Z+Z_{2} \tag{3.10}
\end{equation*}
$$

Consider the commutative diagram

of (2.5) where i^{\prime} is an isomorphism for $n \geqslant 1 . i_{4 n}$ is the split epimorphism and its kernel is isomorphic to Z_{2}. Thus from lemma 3.6 of [7], $r_{4 n}$ is the split epimorphism and its kernel is isomorphic to Z_{2}. Hence

$$
\begin{equation*}
\pi_{8 n+3}\left(Z_{4 n}\right) \cong Z+Z_{2}+Z_{2} . \tag{3.11}
\end{equation*}
$$

Consider the exact sequence

From (2.6) and (2.7),

$$
\vec{\partial} j\left(\eta^{2}{ }_{8 n+1}\right)=(\vec{\partial} j)\left(\epsilon_{8 n+1}\right) \eta_{8 n+1}^{2}=\eta^{3}{ }_{8 n-1}=12 \nu_{8 n-1} \neq 0 .
$$

Hence from the exactness, we have

$$
\begin{equation*}
\pi_{8 n+3}\left(Z_{4 n-1}\right) \cong Z+Z_{2} . \tag{3.12}
\end{equation*}
$$

From (2.5), the following diagram

is commutative where i^{\prime} is an isomorphism for $n \geqslant 2$. Since $i_{4 n-2}$ is an isomorphism, $r_{4 n-2}$ is so. Thus

$$
\begin{equation*}
\pi_{8 n+3}\left(Z_{4 n-2}\right) \cong Z+Z_{2} \tag{3.13}
\end{equation*}
$$

for $n \geqslant 2$.

References

1. R. Bott, The stable homotopy of the classical groups, Ann. of Math., 70 (1956) 313337.
2. B. Harris, On the homotopy groups of the classical groups, Ann. of Math., 74 (1961) 407-413.
3. M. Kervaire, Some non-stable homotopy groups of Lie groups, III. J. Math., 4 (1960) 161-169.
4. H. Matsunaga, The homotopy groups $\pi_{2 n+i}(U(n))$ for $i=3,4$ and 5 , Mem. Fac. Sci. Kyushu Univ., 15 (1961) 72-80.
5. - Applications of functional cohomology operations to the calculus of $\pi_{2 n+i}(U(n))$ for $i=6$ and 7, Mem. Fac. Sci. Kyushu Univ., 17 (1963) 29-62.
6. \quad Corrections of the preceding paper and note on the James number, Memo. Fac. Sci. Kyushu Univ., 16 (1962) 60-61
7. H. Kachi, Homotopy groups of homogeneous space $S U(n) / S O(n)$, J. Fac. Sci. Shinshu Univ., 13 (1978) 27-23
