Homotopy groups of homogeneous space SU(n)/SO(n)

Dedicated to Professor A. Komatu on his 70th birthday

By HIDEYUKI KACHI

Department of Mathematics, Faculty of Science Shinshu University (Received may, 24 1978)

§ 1. Introduction

Let SU(n), SO(n) denote the special unitary, special orthogonal group respectively and Y_n the homogeneous space SU(n)/SO(n). In [2], B. Harris showed that the homotopy exact sequence of the fibrations

$$SO(2n+1) \longrightarrow SU(2n+1) \longrightarrow Y_{2n+1}$$

reduces to the following direct sum decompsitions modulo 2-primary components; i.e., there exist the following \mathscr{C} -isomorphisms

$$\pi_i(SU(2n+1)) \cong \pi_i(SO(2n+1)) \oplus \pi_i(Y_{2n+1})$$

for all i, where \(\mathscr{C} \) denotes the class of 2-primary abelian groups.

If r < 0, then the homotopy group $\pi_{n+r}(Y_n)$ is called stable and has been determined by Bott $\lceil 1 \rceil$; he showed that in the stable range,

$$\pi_q(Y_n)\cong Z$$
 for $q\equiv 1,\ 5\ ext{mod}\ 8,$ $\pi_q(Y_n)\cong Z_2$ for $q\equiv 2,\ 3\ ext{mod}\ 8,$ $\pi_q(Y_n)=0$ for $q\equiv 0,\ 4,\ 6,\ 7\ ext{mod}\ 8.$

In this paper we calculate the first few unstable homotopy groups of the homogeneous spaces Y_n . The homotopy groups $\pi_{n+r}(Y_n)$ are given in the following table valid for $s \ge 1$:

r	8 <i>s</i>	8s+1	8s+2	8s+3	8s+4	8s + 5	8s+6	8s + 7
0	Z	$Z+Z_2$	$Z+Z_2$	$Z_2 + Z_2$	Z	$Z+Z_2$	Z	Z_2
1	$Z + Z_2 + Z_2$	$Z_2 + Z_2$	$Z_2 + Z_4$	0	$Z+Z_2+Z_2$	Z_2	Z_4	0
2	$Z_2 + Z_2 + Z_2$	Z_2+Z_8	0	$Z+Z_2$	$Z_2 + Z_2$	Z_8	0	$Z+Z_2$
3	$Z_2 + Z_{24} + Z_8$	Z_2	$Z\!+\!Z_2$	$Z_2 + Z_2$	$Z_4 + Z_{24d}$	Z_2	$Z + Z_{12}$	$Z_2\!+\!Z_2$
4	Z_2	Z	Z_2	Z_{8d}	Z_2	Z	Z_2	$Z_2\!+\!Z_8$
5	Z	Z_2	Z_{8d}	Z_2	Z	Z_2	$Z_2 + Z_8$	Z_2

Table of $\pi_{n+r}(Y_n)$

where d = 1 or 2 (if s = 1, then d = 1).

§ 2. Preliminaries

Let $k_n: SO(n) \longrightarrow SU(n)$ be the inclusion map and $p_n: SU(n) \longrightarrow Y_n = SU(n)/SO(n)$ the projection. Inparticular we put $SU(\infty) = SU$ and $SO(\infty) = SO$. Let $j_n: SO(n) \longrightarrow SO$ and $r_n: SU(n) \longrightarrow SU$ be the natural inclusion maps. Then we have the commutative diagram

(2. 1)
$$SO(n) \xrightarrow{k_n} SU(n)$$

$$\downarrow j_n \qquad \downarrow r_n$$

$$SO \xrightarrow{k} SU$$

and the fibration

$$(2.2) SO(n) \xrightarrow{k_n} SU(n) \xrightarrow{p_n} Y_n.$$

The following two lemmas are well known;

Lemma 2.1. For the homomorphism $k: \pi_n(SO) \longrightarrow \pi_n(SU)$ induced by the inclusion map $k: SO \longrightarrow SU$, we have that

- (1) k is a trivial homomorphism for $n \not\equiv -1$, 3 mod 8,
- (2) k is an epimorphism for $n \equiv -1 \mod 8$ and
 - (3) k map a generator onto 2 time generator for $n \equiv 3 \mod 8$.

Lemma 2.2. (See [4]) Consider the homomorphism $j_n^m : \pi_m$ (SO(n)) $\longrightarrow \pi_m$ (SO) induced by the inclusion map $j_n : SO(n) \longrightarrow SO$. Then,

- (1) $j_{8s-i}^{8s}: \pi_{8s}(SO(8s-i)) \longrightarrow \pi_{8s}(SO)$ is a split epimorphism for $s \geqslant 2$, $i \leqslant 4$ or s = 1, $i \leqslant 1$.
- (2) $j_{8s-i}^{8s+1}: \pi_{8s+1}(SO(8s-i)) \longrightarrow \pi_{8s+1}(SO)$ is an epimorphism for $s \ge 2$, $i \le 4$ or s = 1, $i \le 2$.

- (3) $j_{8s-i}^{8s+8}: \pi_{8s+3}(SO(8s-i)) \longrightarrow \pi_{8s+3}(SO)$ is an epimorphism for $s \ge 2$, $i \le 2$ or s = 1, $i \le 0$.
- (4) $j_{8s-i}^{8s-1}: \pi_{8s-i}(SO(8s-i)) \longrightarrow \pi_{8s-i}(SO)$ is an epimorphism for $s \geqslant 2$, $i \leqslant 5$.
- (5) $j_{n-i}^n: \pi_n(SO(n-i)) \longrightarrow \pi_n(SO)$ is trivial homomorphism for $n \neq 8s$, 8s+1, 8s+3, 8s-1 and all i, $s \geqslant 1$.

Consider the commutative diagram

$$\pi_{n}(SO(n-i)) \xrightarrow{k_{n-i}^{n}} \pi_{n}(SU(n-i))$$

$$\downarrow j_{n-i}^{n} \qquad \qquad \downarrow r_{n}$$

$$\pi_{n}(SO) \xrightarrow{k} \pi_{n}(SU)$$

induced by (2.1). If $n \ge 2i + 1$, then r_n is an isomorphism.

Thus from Lemma 2.1 and Lemma 2.2, we have

Lemma 2.3. If $n \geqslant 2i + 1$, then

- (1) $k_{n-i}^n : \pi_n(SO(n-i)) \longrightarrow \pi_n(SU(n-i))$ is trivial homomorphism for $n \not\equiv -1$, 3 mod 8.
- (2) $k_{8s-1-i}^{8s-1}: \pi_{8s-1}(SO(8s-1-i)) \longrightarrow \pi_{8s-1}(SU(8s-1-i))$ is an epimorphism for $s \ge 2$ and $i \le 4$.

§ 3. Calculations

If n is even and $n \ge 2i + 1$, then $\pi_n(SU(n-i)) \cong \pi_n(SU) = 0$. Thus, the homotopy exact sequence associated with the fibration (2,2) breaks into the following exact sequence

$$(3.1) 0 \longrightarrow \pi_{n+1}(Y_{n-i}) \longrightarrow \pi_n(SO(n-i)) \xrightarrow{k_{n-i}^n} \pi_n(SU(n-i)) \longrightarrow \pi_n(Y_{n-i}) \longrightarrow \pi_{n-1}(SO(n-i)) \longrightarrow 0$$

where $n \ge 2i + 2$ and n odd.

Proposition 3.1. Let n = 8s + 1 or 8s + 5 $(s \ge 1)$ and $n \ge 2i + 2$. Then,

- (i) $\pi_{n+1}(Y_{n-i}) \cong \pi_n(SO(n-i)),$
- (ii) The sequence

$$0 \longrightarrow \pi_n(SU(n-i)) \cong Z \longrightarrow \pi_n(Y_{n-i}) \longrightarrow \pi_{n-1}(SO(n-i)) \longrightarrow 0$$

is exact.

Proof. From (3.1) and (1) of Lemma 2.3, we obtain the results.

Proposition 3.2. Let n = 8s - 1, $s \ge 2$ and $i \le 4$. Then

- (i) $\pi_n(Y_{n-i}) \cong \pi_{n-1}(SO(n-i)),$
- (ii) The sequence

$$0 \longrightarrow \pi_{n+1}(Y_{n-i}) \longrightarrow \pi_n(SO(n-i)) \longrightarrow \pi_n(SU(n-i)) \cong Z \longrightarrow 0$$

is split exact.

Proof. From (3.1) and (2) of Lemma 2.3, we obtain the lemma.

Lemma 3.3. If the diagram of groups and homomorphisms

$$\longrightarrow A_{i} \xrightarrow{f_{i}} B_{i} \xrightarrow{g_{i}} C_{i} \xrightarrow{h_{i}} A_{i+1} \xrightarrow{f_{i+1}} B_{i+1} \longrightarrow$$

$$\downarrow \alpha_{i} \qquad \downarrow \beta_{i} \qquad \downarrow \gamma_{i} \qquad \downarrow \alpha_{i+1} \qquad \downarrow \beta_{i+1}$$

$$\longrightarrow A'_{i} \xrightarrow{f'_{i}} B'_{i} \xrightarrow{g'_{i}} C'_{i} \xrightarrow{h'_{i}} A'_{i+1} \xrightarrow{f'_{i+1}} B'_{i+1} \longrightarrow$$

is commutative, horizontal sequences are exact and γ_i are isomorphism, then the sequence

$$\cdots \longrightarrow A'_i \xrightarrow{(\alpha_i, f_i)} A'_i + B_i \xrightarrow{f_i' - \beta_i} B'_i \xrightarrow{h_i \gamma_i^{-1} g'_i} A_{i+1} \longrightarrow \cdots$$

is exact.

Proposition 3.4. Assume that $s \ge 2$, $i \le 2$ or s = 1, $i \le 0$. Then,

(i)
$$\pi_{8s+3}(Y_{8s-i}) \cong \pi_{8s+3}(Y) \oplus \pi_{8s+2}(SO(8s-i))$$
 $\cong Z_2 \oplus \pi_{8s+2}(SO(8s-i))$

where Y = SU/SO,

(ii) The sequence

$$0 \longrightarrow \pi_{8s+4}(Y_{8s-i}) \longrightarrow \pi_{8s+3}(SO(8s-i)) \longrightarrow \pi_{8s+3}(SO) \cong Z \longrightarrow 0$$

is split exact.

Proof. From (2.1) and (3.1), it follows that the diagram

$$0 \longrightarrow \pi_{8s+4}(Y_{8s-i}) \longrightarrow \pi_{8s+3}(SO(8s-i)) \longrightarrow \pi_{8s+3}(SU(8s-i))$$

$$\downarrow \qquad \qquad \downarrow j_{8s-i}^{8s+3} \qquad \qquad \downarrow r_{8s-i}$$

$$0 \longrightarrow \pi_{8s+3}(SO) \longrightarrow \pi_{8s+3}(SU)$$

$$\begin{array}{cccc}
\longrightarrow & \pi_{8s+3}(Y_{8s-i}) & \longrightarrow & \pi_{8s+2}(SO(8s-i)) & \longrightarrow & 0 \\
\downarrow & & & \downarrow & & \downarrow \\
\longrightarrow & \pi_{8s+3}(Y) & \longrightarrow & 0
\end{array}$$

is commutative with rows exact.

If $4s \geqslant i+2$, then r_{8s-i} is an isomorphism. Thus, from Lemma 3.3, we have the following exact sequence;

$$0 \longrightarrow \pi_{8s+4}(Y_{8s-i}) \longrightarrow \pi_{8s+3}(SO(8s-i)) \stackrel{j \overset{8s+3}{_{8s-i}}}{\longrightarrow} \pi_{8s+3}(SO) \cong Z$$
 $\longrightarrow \pi_{8s+3}(Y_{8s-i}) \longrightarrow \pi_{8s+3}(Y) \oplus \pi_{8s+3}(SO(8s-i)) \longrightarrow 0.$

By (3) of Lemma 2.2, j_{8s-i}^{8s+8} is an epimorphism for $s \ge 2$, $i \le 2$ or s=1, $i \le 0$. Thus we obtain the results.

Put $n = 8s + 5 \ge 2i + 2$. Then, from (2.1) and (ii) of Proposition 3.1, it follows that the diagram

$$0 \longrightarrow \pi_{n}(SU) \longrightarrow \pi_{n}(Y) \longrightarrow \pi_{n-1}(SO) \longrightarrow 0$$

$$\uparrow r_{n-i} \qquad \qquad \uparrow \qquad \qquad \uparrow j_{n-i}^{n-1}$$

$$0 \longrightarrow \pi_{n}(SU(n-i)) \longrightarrow \pi_{n}(Y_{n-i}) \longrightarrow \pi_{n-1}(SO(n-i)) \longrightarrow 0$$

is commutative and r_{n-i} is an isomorphism. It follows that the lower sequence is a split extension if the upper is. But the upper sequence splits trivially, since $\pi_{8S+4}(SO) = 0$. Thus we have

Proposition 3.5. Let $n = 8s + 5 \ge 2i + 2$. Then

$$\pi_n(Y_{n-i}) \cong \pi_n(SU(n-i)) \oplus \pi_{n-1}(SO(n-i))$$
$$\cong Z \oplus \pi_{n-1}(SO(n-i)).$$

Lemma 3.6. If the diagram of groups and homomorphisms

$$0 \longrightarrow G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow 0$$

$$\downarrow f \qquad \downarrow g \qquad \downarrow h$$

$$0 \longrightarrow H_1 \longrightarrow H_2 \longrightarrow H_3 \longrightarrow 0$$

is commutative, horizontal sequences are exact, h is a split epimorphism and f is an isomorphism, then

- (i) ker. $g \cong ker$. h
- (ii) The sequence

$$0 \longrightarrow ker, g \longrightarrow G_2 \xrightarrow{g} H_2 \longrightarrow 0$$

is split exact.

Proposition 3.7. Put n = 8s + 1. Assume that $s \ge 2$, $i \le 5$ or s = 1, $i \le 2$. Then

$$\pi_n(Y_{n-i}) \cong \pi_n(Y) \oplus kernel \ of \ j_{n-i}^{n-1}$$

$$\cong Z \oplus \pi_n(V_{m,m-n+i})$$

where m is to be large.

Proof. From (ii) of Proposition 3.1 and (2.1), it follows that the diagram

$$0 \longrightarrow \pi_{n}(SU(n-i)) \longrightarrow \pi_{n}(Y_{n-i}) \longrightarrow \pi_{n-1}(SO(n-i)) \longrightarrow 0$$

$$\downarrow r_{n-i} \qquad \qquad \downarrow \qquad \qquad \downarrow j_{n-i}^{n-1}$$

$$0 \longrightarrow \pi_{n}(SU) \longrightarrow \pi_{n}(Y) \longrightarrow \pi_{n-1}(SO) \longrightarrow 0$$

is commutative and r_{n-i} is an isomorphism. From (1) of Lemma 2.2, j_{n-i}^{n-1} is a split epimorphism. Thus from Lemma 3.6, we obtain the result.

§ 4 The homotopy groups of Y_n for low values of n.

Proposition 4.1. $\pi_3(Y_3) \cong Z_4$, $\pi_3(Y_4) \cong Z_2$, $\pi_4(Y_3) = 0$ and $\pi_4(Y_4) \cong Z$.

Proof. Consider the commutative diagram

$$0 \longrightarrow \pi_{8}(SO(5)) \xrightarrow{k_{5}} \pi_{8}(SU(5)) \longrightarrow \pi_{8}(Y_{5}) \longrightarrow 0$$

$$\uparrow j_{4} \qquad \uparrow r_{4} \qquad \uparrow$$

$$0 \longrightarrow \pi_{4}(Y_{4}) \longrightarrow \pi_{3}(SO(4)) \xrightarrow{k_{4}} \pi_{8}(SU(4)) \longrightarrow \pi_{3}(Y_{4}) \longrightarrow \pi_{2}(SO(4)) \longrightarrow 0$$

$$\uparrow \qquad \uparrow j_{3} \qquad \uparrow r_{3} \qquad \uparrow$$

$$0 \longrightarrow \pi_{4}(Y_{3}) \longrightarrow \pi_{3}(SO(3)) \xrightarrow{k_{3}} \pi_{8}(SU(3)) \longrightarrow \pi_{3}(Y_{3}) \longrightarrow \pi_{2}(SO(3)) \longrightarrow 0$$

where r_8 , r_4 are isomorphism. Now $j_4: \pi_8(SO(4)) \cong Z + Z \longrightarrow \pi_8(SO(5)) \cong Z$ is an epimorphism and $k_5: \pi_8(SO(5)) \cong Z \longrightarrow \pi_8(SU(5)) \cong Z$ maps a generator of $\pi_8(SO(5))$ onto 2-time generator of $\pi_8(SU(5))$. Thus, from the commutativity of diagram, $k_4(\pi_8(SO(4))) = 2Z \subset \pi_8(SU(4))$. Since $\pi_2(SO(4)) = 0$, we obtain that $\pi_8(Y_4) \cong Z_2$ and $\pi_4(Y_4) \cong Z$.

From [6], $j_4j_3:\pi_3(SO(3))\cong Z\longrightarrow \pi_3(SO(5))\cong Z$ maps a generator of $\pi_3(SO(3))$ onto 2-time generator of $\pi_3(SO(5))$. Thus, from (3) of Lemma 2.1, k_3 maps a generator onto 4-time generator of π_3 (SU(3)). Since π_2 (SO(3)) = 0, we obtain that $\pi_3(Y_3)\cong Z_4$ and $\pi_4(Y_3)=0$.

Proposition 4.2. (i) $\pi_6(Y_{6-i}) \cong \pi_5(SO(6-i))$ for i = 0, 1, 2 and 3.

(ii) The sequence

$$0 \longrightarrow \pi_5(SU(6-i)) \cong Z \longrightarrow \pi_5(Y_{6-i}) \longrightarrow \pi_4(SO(6-i)) \longrightarrow 0$$

is split exact for $0 \le i \le 3$.

Proof. Since $j_{6-i}^5: \pi_5(SO(6-i)) \longrightarrow \pi_5(SO)$ is trivial we obtain the results by the same calculations in Propositions 3.1 and 3.5.

Proposition 4.3. (i) $\pi_7(Y_7) \cong Z_2$, $\pi_7(Y_6) \cong Z_4$ and $\pi_7(Y_5) \cong Z_8$. (ii) $\pi_8(X_8) \cong Z$ and $\pi_8(Y_{8-i}) = 0$ for $1 \le i \le 3$.

Proof. $\pi_6(SO(m)) = 0$ for $m \ge 5$. Thus, from (3.1), we obtain the following commutative diagram;

$$\pi_{7}(SO) \xrightarrow{k} \pi_{7}(SU)$$

$$\downarrow j_{8} \qquad \uparrow r_{8}$$

$$0 \longrightarrow \pi_{8}(Y_{8}) \longrightarrow \pi_{7}(SO(8)) \xrightarrow{k_{8}} \pi_{7}(SU(8)) \longrightarrow \pi_{7}(Y_{8}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow j_{7} \qquad \uparrow r_{7} \qquad \qquad \uparrow$$

$$0 \longrightarrow \pi_{8}(Y_{7}) \longrightarrow \pi_{7}(SO(7)) \xrightarrow{k_{7}} \pi_{7}(SU(7)) \longrightarrow \pi_{7}(Y_{7}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow j_{6} \qquad \qquad \uparrow r_{6} \qquad \qquad \uparrow$$

$$0 \longrightarrow \pi_{8}(Y_{6}) \longrightarrow \pi_{7}(SO(6)) \xrightarrow{k_{6}} \pi_{7}(SU(6)) \longrightarrow \pi_{7}(Y_{6}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow j_{5} \qquad \qquad \uparrow r_{5} \qquad \qquad \uparrow$$

$$0 \longrightarrow \pi_{8}(Y_{5}) \longrightarrow \pi_{7}(SO(5)) \xrightarrow{k_{5}} \pi_{7}(SU(5)) \longrightarrow \pi_{7}(Y_{5}) \longrightarrow 0$$

where r_i is an isomorphism for $5 \le i \le 8$ and $\pi_7(SO(8)) \cong Z + Z$ and $\pi_7(SO(m)) \cong Z$ for $5 \le m \le 7$. Now $k: \pi_7(SO) \longrightarrow \pi_7(SU)$ is an isomorphism and j_8 is an epimorphism. Thus $k_8: \pi_7(SO(8) \longrightarrow \pi_7(SU(8))$ is an epimorphism. Therefore, form the exactness, we have $\pi_8(Y_8) \cong Z$ and $\pi_7(Y_8) = 0$.

 $j_8j_7(\pi_7(SO(7)))=2Z\subset\pi_7(SO)$. From the commutativity of diagram, $k_7(\pi_7(SO(7)))=2Z\subset\pi_7(SU(7))$. Thus, from the exactness, it follows that $\pi_7(Y_7)\cong Z_2$ and $\pi_8(Y_7)=0$.

 $j_m(m=5, 6)$ maps a generator of $\pi_7(SO(m))$ onto 2-time generator of $\pi_7(SO(m+1))$. From the commutativity of the diagram, $k_6(\pi_7(SO(6))) = 4Z \subset \pi_7(SU(6))$ and $k_5(\pi_7(SO(5))) = 8Z \subset \pi_7(SU(5))$. Then, from the exactness of the horizontal sequences, we have

$$\pi_7(Y_6)\cong Z_4$$
, $\pi_7(Y_5)\cong Z_8$ and $\pi_8(Y_m)=0$

for m = 5, 6.

References

- 1. R. Bott, The stable homotopy of the classical groups, Ann. of Math., (2) 70 (1959) 313-337.
- 2. B. HARRIS, On the homotopy groups of the classical groups, Ann. of Math., (2) 74 (1961) 407-413.
- 3. ———, Suspensions and characteristic maps for symmetric spaces, Ann. of Math., 76 (1962) 295–306.
- 4. M. KERVAIRE, Some non-stable homotopy groups of Lie groups, Illinois J. Math., 4 (1960) 161-169.
- 5. G. F. PAECHTER, The groups $\pi_r(V_{n,m})$, Quart. J. Math. Oxford. Ser., 7 (1956) 247-268.
- 6. W. E. Steenrod, The topology of fibre bundles, Princeton, 1951.