by TAKAO IMAI and ICHIRO YOKOTA

Department of Mathematics, Faculty of Science, Shinshu University (Received Feb. 28, 1980)

It is known that there exist four simple Lie groups of type E_7 up to local isomorphism, one of them is compact and the others are non-compact. As for the compact case, it is known that the following group

$$E_{7} = \left\{ \alpha \in \operatorname{Iso}_{C}(\mathfrak{P}^{C}, \mathfrak{P}^{C}) \middle| \begin{array}{c} \alpha \mathfrak{M}^{C} = \mathfrak{M}^{C}, \{\alpha 1, \alpha 1\} = 1\\ <\alpha P, \alpha Q > = < P, Q > \end{array} \right\}$$

is a simply connected compact simple Lie group of type E_7 [4]. As for one of noncompact cases, H. Freudenthal showed in [2] that the Lie algebra of the group

$$E_{7,1} = \{ \alpha \in \operatorname{Iso}_{\mathbb{R}}(\mathfrak{P}, \mathfrak{P}) \mid \alpha \mathfrak{M} = \mathfrak{M}, \{ \alpha P, \alpha Q \} = \{ P, Q \} \}$$

is a simple Lie algebra of type E_7 , where \mathfrak{M} is the Freudenthal's manifold in $\mathfrak{P} = \mathfrak{F} \oplus \mathfrak{F} \oplus \mathbb{R} \oplus \mathbb{R}$, \mathfrak{M}^c , \mathfrak{P}^c the complexification of \mathfrak{M} , \mathfrak{P} respectively and $\{P, Q\}$, $\langle P, Q \rangle$ inner products in \mathfrak{P} or \mathfrak{P}^c . In this paper, we shall investigate the structures of this group $E_{7,1}$. Our results are as follows. The group $E_{7,1}$ is a connected non-compact simple Lie group of type E_7 and its center is the cyclic group of order 2:

$$z(E_{7,1}) = \{1, -1\}.$$

The polar decomposition of the group $E_{7,1}$ is given by

$$E_{7,1} \simeq (U(1) imes E_6) / \mathbb{Z}_3 imes \mathbb{R}^{54}.$$

In order to give the above decomposition, we construct another group

$$E_{7,\iota} = \left\{ \alpha \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{P}^{\mathcal{C}}, \mathfrak{P}^{\mathcal{C}}) \middle| \begin{array}{l} \alpha \mathfrak{M}^{\mathcal{C}} = \mathfrak{M}^{\mathcal{C}}, \ \{ \alpha 1, \ \alpha 1 \} = 1 \\ < \alpha P, \ \alpha Q >_{\iota} = < P, \ Q >_{\iota} \end{array} \right\}$$

(where $\langle P, Q \rangle_{\iota}$ is another inner product in \mathfrak{P}^{C}) which is isomorphic to $E_{\tau,1}$ and find the subgroup $(U(1) \times E_{\mathfrak{f}})/\mathbb{Z}_{\mathfrak{f}}$ explicitly in this group $E_{\tau,\iota}$.

1. Preliminaries.

Let \mathfrak{G} denote the Cayley algebra over the field of real numbers R and \mathfrak{F} the Jordan algebra consisting of all 3×3 Hermitian matrices in \mathfrak{G} with respect to the multiplication $X \circ Y = \frac{1}{2}(XY + YX)$. In \mathfrak{F} , the positive definite symmetric inner product (X, Y), the crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant detX are defined respectively by

$$\begin{array}{ll} (X, \ Y) = {\rm tr}(X \circ Y), \\ X \times Y = \frac{1}{2} (2X \circ Y - {\rm tr}(X)Y - {\rm tr}(Y)X + ({\rm tr}(X){\rm tr}(Y) - (X, \ Y))E), \\ (X, \ Y, \ Z) = (X \times Y, \ Z) = (X, \ Y \times Z), \\ {\rm det} \, X = \frac{1}{3} (X, \ X, \ X) \end{array}$$

where E is the 3×3 unit matrix.

Now we define a 56 dimensional vector space \mathfrak{P} by

$$\mathfrak{P}=\mathfrak{I}\oplus\mathfrak{I}\oplus\mathfrak{R}\oplus R.$$

An element $P = \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix}$ of \mathfrak{P} is often denoted by $P = X + \dot{Y} + \xi + \dot{\eta}$ briefly. We

define a bilinear mapping $\times : \mathfrak{P} \times \mathfrak{P} \longrightarrow \mathfrak{F} \oplus \mathfrak{F} \oplus \mathfrak{R}$ by

and a space M by

$$\mathfrak{M} = \{ L \in \mathfrak{P} \mid L \times L = 0, \ L \neq 0 \}$$
$$= \left\{ L = \begin{pmatrix} M \\ N \\ \mu \\ \nu \end{pmatrix} \in \mathfrak{P} \mid \begin{array}{c} M \times M = \nu N \\ N \times N = \mu M \\ (M, \ N) = 3\mu \nu \\ L \neq 0 \end{pmatrix} \right\}$$

For example, the following elements of \mathfrak{P}

$$egin{pmatrix} X \ rac{1}{\eta}(X imes X) \ rac{1}{\eta^2} \mathrm{det} X \ \eta \end{pmatrix}$$
, $egin{pmatrix} rac{1}{\xi}(Y imes Y) \ Y \ rac{1}{\xi^2} \mathrm{det} Y \ \eta \end{pmatrix}$, $1 = egin{pmatrix} 0 \ 0 \ 1 \ 0 \end{pmatrix}$, $1 = egin{pmatrix} 0 \ 0 \ 1 \ 0 \end{pmatrix}$, $i = egin{pmatrix} 0 \ 0 \ 0 \ 1 \ 1 \end{pmatrix}$

where $\eta \neq 0$, $\xi \neq 0$, belong to \mathfrak{M} . Finally in \mathfrak{P} we define the skew-symmetric inner product $\{P, Q\}$ by

$$\{P, Q\} = (X, W) - (Z, Y) + \xi \omega - \zeta \eta$$

for $P = X + \dot{Y} + \xi + \dot{\eta}$, $Q = Z + \dot{W} + \zeta + \dot{\omega} \in \mathfrak{P}$.

2. Group $E_{7,1}$ and its Lie algebra $e_{7,1}$.

The group $E_{7,1}$ is defined to be the group of linear isomorphisms of \mathfrak{P} leaving the space \mathfrak{M} and the skew-symmetric inner product $\{P, Q\}$ invariant :

$$E_{7,1} = \{ \alpha \in \operatorname{Iso}_{R}(\mathfrak{P}, \mathfrak{P}) \mid \alpha \mathfrak{M} = \mathfrak{M}, \{ \alpha P, \alpha Q \} = \{ P, Q \} \}.$$

We define a subgroup $E_{6,1}$ of $E_{7,1}$ by

$$E_{6,1} = \{ \alpha \in E_{7,1} \mid \alpha 1 = 1, \ \alpha \dot{1} = \dot{1} \}.$$

Proposition 1. The group $E_{6,1}$ is a simply connected non-compact simple Lie group of type $E_{6(-26)}$.

Proof. We define a group $E_{6(-26)}$ by

$$E_{6(-26)} = \{ \beta \in \operatorname{Iso}_{\boldsymbol{R}}(\mathfrak{F}, \mathfrak{F}) \mid \det \beta X = \det X \}$$
$$= \{ \beta \in \operatorname{Iso}_{\boldsymbol{R}}(\mathfrak{F}, \mathfrak{F}) \mid \beta X \times \beta Y = {}^{t}\beta^{-1}(X \times Y) \}$$

where ${}^{t}\beta$ is the transpose of β with respect to the inner product $(X, Y) : (\beta X, Y) = (X, {}^{t}\beta Y)$. Then $E_{6(-26)}$ is a simply connected simple Lie group of type E_{6} [1] and moreover of type $E_{6(-26)}$, since its polar decomposition is given by

$$E_{6(-26)} \simeq F_4 imes I\!\!R^{26}$$

where F_4 is a simply connected compact simple Lie group of type F_4 [1]. We shall show that the group $E_{6,1}$ is isomorphic to the group $E_{6(-26)}$. It is easy to verify that, for $\beta \in E_{6(-26)}$, the linear transformation α of \mathfrak{P} defined by

$$\alpha = \begin{pmatrix} \beta & 0 & 0 & 0 \\ 0 & {}^t\beta^{-1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

belongs to $E_{7,1}$. Conversely suppose $\alpha \in E_{7,1}$ satisfies $\alpha 1 = 1$ and $\alpha \dot{1} = \dot{1}$. Then from the conditions $\{\alpha X, \alpha 1\} = \{\alpha X, \alpha \dot{1}\} = 0$ and $\{\alpha \dot{X}, \alpha 1\} = \{\alpha \dot{X}, \alpha \dot{1}\} = 0$, we see that α has the form

$$\alpha = \begin{pmatrix} \beta & \varepsilon & 0 & 0 \\ \delta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where β , γ , δ , ε are linear transformations of \Im . Since

$$\alpha \begin{pmatrix} X \\ \frac{1}{\eta}(X \times X) \\ \frac{1}{\eta^2} \det X \\ \eta \end{pmatrix} = \begin{pmatrix} \beta X + \frac{1}{\eta} \varepsilon (X \times X) \\ \delta X + \frac{1}{\eta} \gamma (X \times X) \\ \frac{1}{\eta^2} \det X \\ \eta \end{pmatrix} \in \mathfrak{M},$$

we have

$$(\beta X + \frac{1}{\eta} \varepsilon (X \times X)) \times (\beta X + \frac{1}{\eta} \varepsilon (X \times X)) = \eta (\delta X + \frac{1}{\eta} \gamma (X \times X))$$

for all $0 \neq \eta \in \mathbf{R}$. Hence we have $\delta X = 0$ for all $X \in \mathfrak{J}$ as the coefficient of η , therefore $\delta = 0$. Similarly $\varepsilon = 0$. Thus

$$lpha = \left(egin{array}{ccccc} eta & 0 & 0 & 0 \ 0 & m{\gamma} & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight).$$

Again the condition $\alpha(X + (X \times X)) + \det X + i) = \beta X + (\gamma(X \times X)) + \det X + i \in \mathfrak{M}$ implies

$$\left\{ egin{array}{l} eta X imes eta X = eta (X imes X), \ (eta X, \ eta (X imes X)) = 3 ext{det} X \end{array}
ight.$$

Hence det $\beta X = \frac{1}{3}(\beta X, \ \beta X \times \beta X) = \frac{1}{3}(\beta X, \ \gamma(X \times X)) = \text{det}X$, therefore $\beta \in E_{6(-26)}$ and $\gamma = {}^t\beta^{-1} \in E_{6(-26)}$. Thus Proposition 1 is proved.

The group $E_{7,1}$ contains also a subgroup

$$\boldsymbol{R}^* = \left\{ r = \begin{pmatrix} r^{-1} 1 \ 0 & 0 & 0 \\ 0 & r 1 & 0 & 0 \\ 0 & 0 & r^3 & 0 \\ 0 & 0 & 0 & r^{-3} \end{pmatrix} \middle| 0 \neq r \in \boldsymbol{R} \right\}$$

(where 1 denotes the identity mapping of \mathfrak{F}) which is isomorphic to the group $\mathbf{R}^* = \{ r \in \mathbf{R} \mid r \neq 0 \}$.

From now on, we identify these groups $E_{6(-26)}$ and $E_{6,1}$, \mathbb{R}^* and \mathbb{R}^* under the above correspondences.

We consider the Lie algebra $e_{7,1}$ of the group $E_{7,1}$

$$\mathfrak{e}_{7,1} = \left\{ \Phi \in \operatorname{Hom}_{R}(\mathfrak{P}, \mathfrak{P}) \middle| \begin{array}{c} \Phi L \times L = 0 \text{ for } L \in \mathfrak{M} \\ \{ \Phi P, Q \} + \{ P, \Phi Q \} = 0 \text{ for } P, Q \in \mathfrak{P} \end{array} \right\}.$$

H. Freudenthal proved in [2] the following

Theorem 2. Any element Φ of the Lie algebra $e_{7,1}$ of the group $E_{7,1}$ is represented by the form

$$\Phi = \Phi(\phi, A, B \rho) = \begin{pmatrix} \phi - \frac{1}{3}\rho 1 & 2B & 0 & A \\ 2A & \phi' + \frac{1}{3}\rho 1 & B & 0 \\ 0 & A & \rho & 0 \\ B & 0 & 0 & -\rho \end{pmatrix}$$

where $\phi \in c_{6,1} = \{ \phi \in \operatorname{Hom}_{\mathbf{R}}(\mathfrak{F}, \mathfrak{F}) \mid (\phi X, X, X) = 0 \}$ (which is the Lie algebra of the group $E_{6,1}$), ϕ' is the skew-transpose of ϕ with respect to the inner product (X, Y): $(\phi X, Y) + (X, \phi' Y) = 0$, $A, B \in \mathfrak{F}, \rho \in \mathbf{R}$ and the action of Φ on \mathfrak{F} is defined by

Φ	' X Y		$\left(egin{array}{l} \phi X - rac{1}{3} ho X + 2B imes Y + \eta A ight) \ 2A imes X + \phi' Y + rac{1}{3} ho Y + \xi B \end{array}$	
	ξ		$(A, Y) + \rho \xi$	
	η,)	$(B, X) - ho\eta$	

And the type of the Lie algebra $e_{7,1}$ is E_7 .

We shall determine the Cartan index of the group $E_{7,1}$. For this purpose we use the following

Lemma 3 ([3] p. 345). Let G be an algebraic subgroup of the general linear group $GL(n, \mathbb{R})$ such that the condition $A \in G$ implies ${}^{t}A \in G$. Then G is homeomorphic to the topological product of the group $G \cap O(n)$ (which is a maximal compact

subgroup of G) and a Euclidean space \mathbb{R}^d :

 $G \simeq (G \cap O(n)) \times \mathbb{R}^d$

where O(n) is the orthogonal subgroup of $GL(n, \mathbb{R})$. In particular, the Cartan index of G is dim $G - 2\dim(G \cap O(n))$.

Theorem 4. The group $E_{7,1}$ is a simple Lie group of type $E_{7(-25)}$.

Proof. We define in \mathfrak{P} a positive definite symmetric inner product (P, Q) by

$$\langle P, \ Q
angle = (X, \ Z) + (Y, \ W) + \xi \zeta + \eta \omega$$

for $P = X + \dot{Y} + \xi + \dot{\eta}$, $Q = Z + \dot{W} + \zeta + \dot{\omega} \in \mathfrak{P}$ and denote the transpose of Φ with respect to this inner product (P, Q) by ${}^t \Phi : (\Phi P, Q) = (P, {}^t \Phi Q)$. Then for

$$\Phi = \begin{pmatrix} \phi -\frac{1}{3}\rho_1 & 2B & 0 & A \\ 2A & \phi' + \frac{1}{3}\rho_1 & B & 0 \\ 0 & A & \rho & 0 \\ B & 0 & 0 & -\rho \end{pmatrix} \in \mathfrak{e}_{7,1},$$

we see easily that

$${}^t arPsi = egin{pmatrix} -\phi' -rac{1}{3}
ho 1 & 2A & 0 & B \ 2B & -\phi +rac{1}{3}
ho 1 & A & 0 \ 0 & B &
ho & 0 \ A & 0 & 0 & -
ho \end{pmatrix},$$

therefore ${}^{t} \Phi$ also belongs to $\mathfrak{e}_{7,1}$. Since $E_{7,1}$ is an algebraic subgroup of the general linear group $\operatorname{Iso}_{\mathbf{R}}(\mathfrak{P}, \mathfrak{P}) = GL(56, \mathbf{R})$, from Lemma 3, the Lie algebra $\mathfrak{e}_{7,1} \cap \mathfrak{o}(\mathfrak{P})$ (where $\mathfrak{o}(\mathfrak{P}) = \mathfrak{o}(56) = \{ \Phi \in \operatorname{Hom}_{\mathbf{R}}(\mathfrak{P}, \mathfrak{P}) \mid \Phi + {}^{t} \Phi = 0 \}$) of the group $E_{7,1} \cap O(\mathfrak{P})$ (where $O(\mathfrak{P}) = O(56) = \{ \alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{P}, \mathfrak{P}) \mid (\alpha P, \alpha Q) = (P, Q) \}$) is a maximal compact Lie subalgebra of $\mathfrak{e}_{7,1}$. Now if $\Phi \in \mathfrak{e}_{7,1}$ satisfies $\Phi + {}^{t} \Phi = 0$, then

where $\delta \in \mathfrak{f}_4 = \{ \delta \in \mathfrak{e}_{6,1} \mid \delta' = \delta \}$ (which is the Lie algebra of F_4). Therefore dim $(\mathfrak{e}_{7,1} \cap \mathfrak{o}(\mathfrak{P})) = \dim \mathfrak{f}_4 + \dim \mathfrak{P} = 52 + 27 = 79$. Hence

The Cartan index of $e_{7,1} = \dim e_{7,1} - 2\dim(e_{7,1} \cap \mathfrak{o}(\mathfrak{P}))$

$$= 133 - 2 \times 79 = -25.$$

Thus we see that the type of the Lie algebra $e_{7,1}$ is $E_{7(-25)}$.

3. Connectedness of $E_{7,1}$.

We shall prove that the group $E_{7,1}$ is connected. We denote, for a while, the connected component of $E_{7,1}$ containing the identity 1 by $(E_{7,1})_0$.

Lemma 5, For $A \in \mathfrak{Z}$, the linear transformation $\exp_1(A)$ of \mathfrak{P} defined by

$$\exp_{\mathbf{I}}(A) = \begin{pmatrix} 1 & 0 & 0 & A \\ 2A & 1 & 0 & A \times A \\ A \times A & A & 1 & \det A \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(the action of $\exp_1(A)$ on \mathfrak{P} is as similar to that of Theorem 2) belongs to $(E_{7,1})_0$. Similarly for $B \in \mathfrak{F}$ we can define

$$\exp_2(B) = \begin{pmatrix} 1 & 2B & B \times B & 0 \\ 0 & 1 & B & 0 \\ 0 & 0 & 1 & 0 \\ B & B \times B & \det B & 1 \end{pmatrix} \in (E_{7,1})_0$$

Proof.

For
$$\Phi_1(A) = \begin{pmatrix}
0 & 0 & 0 & A \\
2A & 0 & 0 & 0 \\
0 & A & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \in e_{7,1}$$
, we have $\exp_1(A) = \exp_{1}\Phi_1(A)$, hence

 $\exp_1(A) \in (E_{7,1})_0$. Similarly $\exp_2(B) \in (E_{7,1})_0$.

Proposition 6. The subgroup $G_1 = \{ \alpha \in E_{7,1} \mid \alpha 1 = 1 \}$ is the semi-direct product of the group $\exp_1(\mathfrak{F}) = \{ \exp_1(A) \mid A \in \mathfrak{F} \}$ (which is an abelian group) and the group $E_{6,1}$:

$$G_1 = \exp_1(\mathfrak{Y}) E_{6,1}, \quad \exp_1(\mathfrak{Y}) \cap E_{6,1} = \{1\}.$$

Therefore G_1 is homeomorphic to

$$G_1 \simeq E_{6,1} \times \mathbb{R}^{27} \simeq F_4 \times \mathbb{R}^{53}.$$

In particular, the group G_1 is simply connected.

Proof. Let $\alpha \in G$ and put $\alpha i = M + N + \mu + v$. Then the conditions $\{\alpha 1, \alpha i\} = 1$ and $\alpha i \in \mathfrak{M}$ imply $\nu = 1$ and $N = M \times M$, $\mu = \det M$ respectively. Therefore we have

 $\exp_1(M)i = M + (M \times M) + \det M + i = \alpha i, \ \exp_1(M)i = 1 = \alpha i.$

so $(\exp_1(M))^{-1} \alpha \in E_{6,1}$, i.e.

 $\alpha \in \exp_1(\mathfrak{J})E_{6,1},$

and conversely. Since the Lie subalgebra { $\Phi_1(A) = \Phi(0, A, 0, 0) \in \mathfrak{e}_{7,1} | A \in \mathfrak{F}$ } of $\mathfrak{e}_{7,1}$ is abelian, the group $\exp_1(\mathfrak{F})$ is also abelian. Moreover $\exp_1(\mathfrak{F})$ is a normal subgroup of G_1 , because it holds that

$$\beta \exp_1(A)\beta^{-1} = \exp_1(\beta A) \quad \text{for } \beta \in E_{6,1}, A \in \mathfrak{J}.$$

Therefore we have the following split exact sequence

$$1 \longrightarrow \exp_1(\mathfrak{F}) \longrightarrow G_1 \longrightarrow E_{6,1} \longrightarrow 1$$

Thus we see that G_1 is the semi-direct product of $\exp_1(\mathfrak{F})$ and $E_{6,1}$.

Theorem 7. The group $E_{1,1}$ acts transitively on the manifold \mathfrak{M} (which is connected) and the isotropy subgroup G_1 of $E_{1,1}$ at $1 \in \mathfrak{M}$ is $\exp_1(\mathfrak{Y})E_{\mathfrak{h},1}$ (Proposition 6). Therefore the homogeneous space $E_{1,1}/\exp_1(\mathfrak{Y})E_{\mathfrak{h},1}$ is homeomorphic to \mathfrak{M} :

$$E_{7,1}/\exp_1(\mathfrak{F})E_{6,1}\cong\mathfrak{M}.$$

In particular, the group $E_{7,1}$ is connected.

Proof. Obviously the group $E_{7,1}$ acts on \mathfrak{M} . We shall prove that the group $(E_{7,1})_0$ acts transitively on \mathfrak{M} . Since

$$\exp_1(-E)\exp_2(E)1 = \dot{1}, \ \exp_1(E)\exp_2(-E)1 = -\dot{1}, \ \exp_2(-E)(\exp_1(E))^2\exp_2(-E)1 = -1,$$

it is sufficient to show that any element $L \in \mathfrak{M}$ can be transformed in either of 1, -1, i, -i. Let $L = M + \dot{N} + \mu + \dot{v} \in \mathfrak{M}$. First assume $\mu > 0$. Then $M = \frac{1}{\mu} (N \times N)$, $\nu = \frac{1}{\mu^2} \det N$. Choose $0 < r \in \mathbb{R}$ such that $r^3 = \mu$, then for

$$r = \begin{pmatrix} r^{-1}1 & 0 & 0 & 0 \\ 0 & r1 & 0 & 0 \\ 0 & 0 & r^3 & 0 \\ 0 & 0 & 0 & r^{-3} \end{pmatrix} \in (E_{7,1})_0$$

we have $r1 = \mu$, and hence

$$\begin{split} \exp_2 \left(\frac{N}{\mu}\right) r 1 &= \mu \left(\frac{N}{\mu} \times \frac{N}{\mu}\right) + \mu \left(\frac{N}{\mu}\right)^{\cdot} + \mu + \mu \left(\det \frac{N}{\mu}\right)^{\cdot} \\ &= \frac{1}{\mu} (N \times N) + \dot{N} + \mu + \frac{1}{\mu^2} (\det N)^{\cdot} = L. \end{split}$$

If $\mu < 0$. L can be transformed in -1. Similarly in the case $\nu \neq 0$ the statement is also valid. Next we consider the case $L = M + \dot{N} \in \mathfrak{M}$, $N \neq 0$. Then $M \times M = N$

 $\times N = 0$, detM = 0, $(N, N) \neq 0$ and so

$$\exp_1(N)L = * + * + (N, N) + *.$$

So we can reduce to the first case $\mu \neq 0$. In the case of $M \neq 0$, the statement is also valid. Thus the transitivity of $(E_{7,1})_0$ on \mathfrak{M} is proved. Therefore we have $\mathfrak{M} = (E_{7,1})_0 1$, hence \mathfrak{M} is connected. Since the group $E_{7,1}$ acts transitively on \mathfrak{M} and the isotropy subgroup of $E_{7,1}$ is $\exp_1(\mathfrak{F})E_{6,1}$, we have the following homeomorphism

$$E_{7,1}/\exp_1(\mathfrak{F})E_{6,1}\simeq\mathfrak{M}.$$

Since $\exp_1(\mathfrak{F})E_{6,1}$ is connected, $E_{7,1}$ is also connected. Thus the proof of Theorem 7 is completed.

4. Center $z(E_{7,1})$ of $E_{7,1}$.

Theorem 8. The center $z(E_{7,1})$ of the group $E_{7,1}$ is isomorphic to the cyclic group \mathbb{Z}_2 of order 2:

$$z(E_{7,1}) = \{1, -1\} \cong \mathbb{Z}_2.$$

Proof. Let $\alpha \in z(E_{7,1})$. From the commutativity with $\beta \in E_{6,1} \subset E_{7,1}$. we have $\beta \alpha 1 = \alpha \beta 1 = \alpha 1$. If we denote $\alpha 1 = M + \dot{N} + \mu + \dot{v}$, then $\beta M + \langle {}^t \beta^{-1} N \rangle \cdot + \mu + \dot{v} = M + \dot{N} + \mu + \dot{v}$, hence

$$\beta M = M$$
, $t\beta^{-1}N = N$ for all $\beta \in E_{6,1}$.

Therefore M = N = 0, so $\alpha 1 = \mu + \dot{\nu}$, where $\mu \nu = 0$ (since $\alpha 1 \in \mathfrak{M}$). Suppose that $\mu = 0$, i.e. $\alpha 1 = \dot{\nu} \neq 0$, then from the commutativity with

$$r = \begin{pmatrix} r^{-1}1 & 0 & 0 & 0 \\ 0 & r1 & 0 & 0 \\ 0 & 0 & r^3 & 0 \\ 0 & 0 & 0 & r^{-3} \end{pmatrix} \in \mathbb{R}^* \subset E_{7,1},$$

we have

$$(r^{-3}\nu) = r\dot{\nu} = r\alpha 1 = \alpha r 1 = \alpha r^3 = (r^3\nu)$$
 for all $r \in \mathbb{R}^*$.

This is contradiction. Hence $\alpha 1 = \mu$. Similarly $\alpha 1 = \lambda$. The condition $\{\alpha 1, \alpha 1\} = 1$ implies $\mu \lambda = 1$, hence

$$\alpha 1 = \mu, \quad \alpha 1 = (\mu^{-1}).$$

Next note that

$$\iota' = \left(egin{array}{cccc} 0 & -1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 \ 0 & 0 & 1 & 0 \end{array}
ight)$$

belongs to $E_{7,1}$. Then the commutativity condition $\iota' \alpha = \alpha \iota'$ implies

$$\dot{\mu} = \iota' \mu = \iota' \alpha 1 = \alpha \iota' 1 = \alpha \dot{1} = (\mu^{-1});$$

hence $\mu = \mu^{-1}$, i.e. $\mu = \pm 1$. In the case of $\mu = 1$, $\alpha \in E_{6,1}$ so $\alpha \in z(E_{6,1}) = \{1\}$ [5] i.e. $\alpha = 1$. In the case of $\mu = -1$, $-\alpha \in z(E_{6,1}) = \{1\}$, i.e. $\alpha = -1$. Thus we see that $z(E_{7,1}) = \{1, -1\}$.

5. Group $E_{7,\ell}$ and its Lie algebra $e_{7,\ell}$.

We construct another simple Lie group of type $E_{7(-25)}$. Let *C* denote the field of complex numbers and \mathfrak{F}^{c} the complexification of \mathfrak{F} . In \mathfrak{F}^{c} also, the inner product (X, Y), crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant det*X* are defined as similar in \mathfrak{F} . Let \mathfrak{F}^{c} be also the complexification of \mathfrak{F} :

$$\mathfrak{P}^{C} = \mathfrak{I}^{C} \oplus \mathfrak{I}^{C} \oplus C \oplus C.$$

We define a mapping $\times : \mathfrak{P}^{\mathcal{C}} \times \mathfrak{P}^{\mathcal{C}} \longrightarrow \mathfrak{P}^{\mathcal{C}} \oplus \mathfrak{P}^{\mathcal{C}} \oplus \mathfrak{C}$ as similar as the case \mathfrak{P} and a space $\mathfrak{M}^{\mathcal{C}}$ by

$$\mathfrak{M}^{C} = \{ L \in \mathfrak{P}^{C} \mid L \times L = 0, \ L \neq 0 \}.$$

Finally in \Im^c , \Re^c , positive definite Hermitian inner products $\langle X, Y \rangle$, $\langle P, Q \rangle$ and the inner product $\langle P, Q \rangle_i$, the skew-symmetric inner product $\{P, Q\}$ are defined respectively by

$$\begin{array}{l} <\!\! X, \hspace{0.2cm} Y\!\!\! > = (\tau X, \hspace{0.2cm} Y) = (\overline{X}, \hspace{0.2cm} Y), \\ <\!\! P, \hspace{0.2cm} Q\!\!\! > = <\!\! X, \hspace{0.2cm} Z\!\!\! > + <\!\! Y, \hspace{0.2cm} W\!\!\! > + \overline{\xi}\zeta + \overline{\eta}\omega, \\ <\!\! P, \hspace{0.2cm} Q\!\!\! >_{\iota} = <\!\! X, \hspace{0.2cm} Z\!\!\! > - <\!\! Y, \hspace{0.2cm} W\!\!\! > + \overline{\xi}\zeta - \overline{\eta}\omega, \\ \{P, \hspace{0.2cm} Q\} = (X, \hspace{0.2cm} W) - (Z, \hspace{0.2cm} Y) + \xi\omega - \zeta\eta, \end{array}$$

where $\tau: \Im^C \longrightarrow \Im^C$ is the complex conjugate $(\tau X \text{ is also denoted by } \overline{X})$ and $P = X + \dot{Y} + \xi + \dot{\eta}$, $Q = Z + \dot{W} + \zeta + \dot{\omega} \in \Im^C$.

Now the group $E_{7,\iota}$ is defined to be the group of linear isomorphisms of \mathfrak{P}^{C} leaving the space \mathfrak{M}^{C} , some skew-symmetric inner product $\{P, Q\}$ and the inner product $\langle P, Q \rangle_{\iota}$ invariant :

$$E_{\tau,\iota} = \left\{ \alpha \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{P}^{\mathcal{C}}, \mathfrak{P}^{\mathcal{C}}) \middle| \begin{array}{c} \alpha \mathfrak{M}^{\mathcal{C}} = \mathfrak{M}^{\mathcal{C}}, \ \{\alpha 1, \ \alpha 1\} = 1 \\ < \alpha P, \ \alpha Q >_{\iota} = < P, \ Q >_{\iota} \text{ for } P, \ Q \in \mathfrak{P}^{\mathcal{C}} \end{array} \right\}.$$

We define a subgroup E_6 of $E_{7,\iota}$ by

$$E_6 = \{ \alpha \in E_7, \ell \mid \alpha 1 = 1, \alpha 1 = 1 \}.$$

Proposition 9. The group E_6 is a simply connected compact simple Lie group of type E_6 and isomorphic to the group

$$\begin{split} E_{\mathfrak{b}(-7\mathfrak{b})} &= \{ \beta \in \operatorname{Iso}_{\mathcal{C}}(\Im^{\mathcal{C}}, \ \Im^{\mathcal{C}}) \mid \operatorname{det}\beta X = \operatorname{det}X, \ \langle \beta X, \ \beta Y \rangle = < X, \ Y \rangle \} \\ &= \{ \beta \in \operatorname{Iso}_{\mathcal{C}}(\Im^{\mathcal{C}}, \ \Im^{\mathcal{C}}) \mid \beta X \times \beta Y = \tau \beta \tau (X \times Y), \ \langle \beta X, \ \beta Y \rangle = < X, \ Y \rangle \} \end{split}$$

(see [7]) by the correspondence

$$E_{6(-78)} \in \beta \longrightarrow \begin{pmatrix} \beta & 0 & 0 & 0 \\ 0 & \tau \beta \tau & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in E_{7,\epsilon}.$$

Proof. It is seen by the analogous proof of Proposition 1 (or see [4] Proposition 2).

The group $E_{7,\ell}$ contains also a subgroup

$$U(1) = \left\{ \theta = \begin{pmatrix} \theta^{-1}1 & 0 & 0 & 0 \\ 0 & \theta 1 & 0 & 0 \\ 0 & 0 & \theta^3 & 0 \\ 0 & 0 & 0 & \theta^{-3} \end{pmatrix} \middle| \theta \in \mathbb{C}, \ |\theta| = 1 \right\}$$

which is isomorphic to the unitary group $U(1) = \{ \theta \in C \mid |\theta| = 1 \}$.

From now on, we identify these group $E_{6(-78)}$ and E_{6} , U(1) and U(1) under the above correspondences.

We consider the Lie algebra $e_{7,\iota}$ of the group $E_{7,\iota}$:

$$\mathfrak{e}_{7,\iota} = \left\{ \left. \begin{array}{c} \varPhi \mathcal{P} \in \operatorname{Hom}_{\mathcal{C}}(\mathfrak{P}^{\mathcal{C}}, \mathfrak{P}^{\mathcal{C}}) \right| & \left. \begin{array}{c} \varPhi \mathcal{P} L \times L = 0 \text{ for } L \in \mathfrak{M}^{\mathcal{C}} \\ \{ \varPhi 1, \ i \} + \{1, \ \varPhi 1\} = 0 \\ < \varPhi P, \ Q > \iota + < P, \ \varPhi Q > \iota = 0 \text{ for } P, \ Q \in \mathfrak{P}^{\mathcal{C}} \end{array} \right\}.$$

Theorem 10. Any element Φ of the Lie algebra $e_{1,i}$ is represented by the form

where $\phi \in e_6 = \{\phi \in \operatorname{Hom}_C(\mathfrak{F}^C, \mathfrak{F}^C) \mid (\phi X, X, X) = 0, \langle \phi X, Y \rangle + \langle X, \phi Y \rangle = 0\}$ (which is the Lie algebra of the group E_6), $A \in \mathfrak{F}^C$, $\rho \in C$ such that $\rho + \overline{\rho} = 0$ and the action of Φ on \mathfrak{F}^C is defined by

$$\Phi \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix} = \begin{pmatrix} \phi X - \frac{1}{3}\rho X + 2A \times Y + \eta \overline{A} \\ 2\overline{A} \times X + \tau \phi \tau Y + \frac{1}{3}\rho Y + \xi A \\ < A, \ Y > + \rho \xi \\ (A, \ X) - \rho \eta \end{pmatrix}$$

In particular, the type of the Lie group $E_{7,\iota}$ is E_7 [2].

Proof. It is obtained by the analogous argument as Theorem 3 of [4].

6. Involutive automorphism ι and subgroup $(U(1) \times E_{\delta})/Z_{3}$.

We define an involutive linear isomorphism ι of \mathfrak{P}^{C} by

$$\iota = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Then two inner products $\langle P, Q \rangle$, $\langle P, Q \rangle$ in \mathfrak{P}^{C} are combined with relations

$$\langle P, Q \rangle_{\iota} = \langle \iota P, Q \rangle = \langle P, \iota Q \rangle, \quad \langle P, Q \rangle = \langle \iota P, Q \rangle_{\iota} = \langle P, \iota Q \rangle_{\iota}.$$

The following Lemma is easily verified.

Lemma 11. For $\alpha \in E_{7,\iota}$, we have $\iota \alpha \iota \in E_{7,\iota}$. Therefore we can define an automorphism $\iota : E_{7,\iota} \longrightarrow E_{7,\iota}$ by

$$\iota \alpha = \iota \alpha \iota \qquad \alpha \in E_{7,\iota}.$$

Proposition 12. The subgroup $\{\alpha \in E_{1,\iota} \mid \iota\alpha\iota = \alpha\}$ of the group $E_{1,\iota}$ is isomorphic to the group $(U(1) \times E_6)/\mathbb{Z}_3$:

$$\{\,lpha\in E_7,\iota\mid\iotalpha\iota=lpha\,\}\cong (U(1)\! imes\!E_6)/{oldsymbol{Z}}_3$$

where $Z_3 = \{ (1, 1), (\omega, \omega 1), (\omega^2, \omega^2 1) \}, \omega \in C, \omega^3 = 1, \omega \neq 1, and$

$$\boldsymbol{\omega} = \begin{pmatrix} \boldsymbol{\omega}^{-1} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\omega} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \in U(1), \quad \boldsymbol{\omega} \mathbf{1} = \begin{pmatrix} \boldsymbol{\omega} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\omega}^{-1} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \in E_{6}.$$

Proof. We define a mapping $\psi : U(1) \times E_{6(-78)} \longrightarrow \{ \alpha \in E_{7,t} \mid t\alpha t = \alpha \}$ by

$$\psi(\theta, \ \beta) = \theta\beta = \begin{pmatrix} \theta^{-1}1 & 0 & 0 & 0 \\ 0 & \theta 1 & 0 & 0 \\ 0 & 0 & \theta^3 & 0 \\ 0 & 0 & 0 & \theta^{-3} \end{pmatrix} \begin{pmatrix} \beta & 0 & 0 & 0 \\ 0 & \tau\beta\tau & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \beta\theta.$$

Then obviously ϕ is a homomorphism. We shall prove that ϕ is onto. If $\alpha \in E_{7,\iota}$ satisfies $\iota \alpha \iota = \alpha$, then α has the form

$$lpha = \left(egin{array}{cccccc} eta & 0 & M & 0 \ 0 & \gamma & 0 & N \ a & 0 & \mu & 0 \ 0 & b & 0 & oldsymbol{
u} \end{array}
ight)$$

where β , γ are linear transformations of $\mathfrak{F}^{\mathcal{C}}$, a, b linear functionals of $\mathfrak{F}^{\mathcal{C}}$, M, $N \in \mathfrak{F}^{\mathcal{C}}$ and μ , $\nu \in \mathcal{C}$. The conditions $\alpha \mathbf{i}$, $\alpha \mathbf{i} \in \mathfrak{M}^{\mathcal{C}}$ imply

$$\mu M=0, \qquad \nu N=0$$

respectively. We shall show that M = N = 0. Assume $M \neq 0$, then $\mu = 0$, so *a* is not identically 0. And then from $\{\alpha 1, \alpha 1\}=1$, we have

$$(M, N) = 1, \tag{i}$$

hence $N \neq 0$, so $\nu = 0$. Furthermore the condition

$$\alpha \begin{pmatrix} X \\ \frac{1}{\eta}(X \times X) \\ \frac{1}{\eta^{2}} \det X \\ \eta \end{pmatrix} = \begin{pmatrix} \beta X + \frac{1}{\eta^{2}} (\det X) M \\ \frac{1}{\eta^{2}} (X \times X) + \eta N \\ a(X) \\ \frac{1}{\eta} b(X \times X) \end{pmatrix} \in \mathfrak{M}^{C}$$

implies

$$\begin{cases} \left(\frac{1}{\eta}\gamma(X\times X)+\eta N\right)\times\left(\frac{1}{\eta}\gamma(X\times X)+\eta N\right)=a(X)\left(\beta X+\frac{1}{\eta^{2}}(\det X)M\right),\\ (\beta X+\frac{1}{\eta^{2}}(\det X)M,\ \frac{1}{\eta}\gamma(X\times X)+\eta N)=3a(X)\frac{1}{\eta}b(X\times X) \end{cases}$$

for all $0 \neq \eta \in C$. Hence we have

TAKAO IMAI, ICHIRO YOKOTA

ſ

$$2\gamma(X \times X) \times N = a(X)\beta X,$$
 (ii)

$$\gamma(X \times X) \times \gamma(X \times X) = a(X)(\det X)M,$$
 (iii)

$$(\beta X, \gamma(X \times X)) + \det X = 3a(X)b(X \times X).$$
 (iv)

Therefore

$$a(X) \det X = a(X)(\det X)(M, N) = (\gamma(X \times X) \times \gamma(X \times X), N)$$
$$= (\gamma(X \times X), \gamma(X \times X) \times N) = \frac{1}{2}a(X)(\gamma(X \times X), \beta X)$$
$$= \frac{1}{(iv)}\frac{1}{2}a(X)(3a(X)b(X \times X) - \det X).$$

Hence

$$a(X) \det X = (a(X))^2 b(X \times X)$$

Thus we have

$$\det X = a(X)b(X \times X)$$

(since $a: \mathfrak{F}^{C} \longrightarrow C$ is a linear functional and det $X - a(X)b(X \times X)$ is continuous with respect to X, even if for X such that a(X) = 0). This contradicts to the irreducibility of the determinant detX with respect to the variables of its components. Thus we have M = 0. Similarly N = 0. So

$$\alpha 1 = \mu, \qquad \alpha 1 = (\mu^{-1}) \qquad \mu \in \mathbb{C}, \ |\mu| = 1.$$

Choose $\theta \in C$ such that $\theta^3 = \mu$ and put $\beta = \theta^{-1}\alpha$, then $\beta 1 = 1$ and $\beta i = i$, therefore $\beta \in E_6$. Thus we have

$$\alpha = \theta \beta$$
 $\theta \in U(1), \ \beta \in E_6.$

So ϕ is onto. Ker $\phi = \{(1, 1), (\omega, \omega 1), (\omega^2, \omega^2 1)\}, \omega \in \mathbb{C}, \omega^3 = 1, \omega \neq 1$, is easily obtained. Thus the proof of Proposition 12 is completed.

7. Polar decomposition of $E_{7,\ell}$.

In order to give a polar decomposition of the group $E_{7,\epsilon}$, we use the following Lemma 13 ([3] p. 345). Let G be a pseudoalgebraic subgroup of the general linear group GL(n, C) such that the condition $A \in G$ implies $A^* \in G$. Then G is homeomorphic to the topological product of the group $G \cap U(n)$ (which is a maximal compact subgroup of G) and a Euclidean space \mathbb{R}^d :

$$G \simeq (G \cap U(n)) \times \mathbb{R}^d$$

where U(n) is the unitary subgroup of GL(n, C).

Lemma 14. $E_{1,\iota}$ is a pseudoalgebraic subgroup of the general linear group GL (56, C) = Isoc(\mathfrak{P}^{C} , \mathfrak{P}^{C}) and satisfies the condition $\alpha \in E_{1,\iota}$ implies $\alpha^{*} \in E_{1,\iota}$ where α^{*} is the transpose of α with respect to the inner product $\langle P, Q \rangle : \langle \alpha P, Q \rangle = \langle P, \alpha^{*}Q \rangle$.

Proof. Since $\langle \alpha^* P, Q \rangle = \langle P, \alpha Q \rangle = \langle \iota P, \alpha Q \rangle_\iota = \langle \alpha^{-1} \iota P, Q \rangle_\iota = \langle \iota \alpha^{-1} \iota P, Q \rangle$ for $\alpha \in E_{7,\iota}$, we have

$$\alpha^* = \iota \alpha^{-1} \iota \in E_{\tau, \iota}$$
 (Lemma 11).

And it is obvious that $E_{7,\iota}$ is pseudoalgebraic, because $E_{7,\iota}$ is defined by pseudoalgebraic relations $\alpha \mathfrak{M}^C = \mathfrak{M}^C$, { $\alpha 1, \alpha 1$ } =1 and $\langle \alpha P, \alpha Q \rangle_{\iota} = \langle P, Q \rangle_{\iota}$.

Let $U(56) = U(\mathfrak{P}^{\mathcal{C}}) = \{ \alpha \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{P}^{\mathcal{C}}, \mathfrak{P}^{\mathcal{C}}) \mid \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}$ denote the unitary subgroup of the general linear group $GL(56, \mathbb{C}) = \operatorname{Iso}_{\mathcal{C}}(\mathfrak{P}^{\mathcal{C}}, \mathfrak{P}^{\mathcal{C}})$, then we have

$$E_{7,\iota} \cap U(\mathfrak{P}^{\mathbb{C}}) = \{ \alpha \in E_{7,\iota} \mid \iota \alpha \iota = \alpha \}$$
$$\cong (U(1) \times E_{\mathfrak{s}}) / \mathbb{Z}_{\mathfrak{s}} \qquad (\text{Proposition 12}).$$

Since $E_{7,\iota}$ is a simple Lie group of type E_7 , the dimension of $E_{7,\iota}$ is 133. Hence the dimension d of the Euclidean part of $E_{7,\iota}$ and the Cartan index i are calculated as follows :

$$d = \dim E_{7,\iota} - \dim(U(1) \times E_6) = 133 - (1 + 78) = 54,$$

$$i = \dim E_{7,\iota} - 2\dim(U(1) \times E_6) = 133 - 2(1 + 78) = -25.$$

Thus we get the following

Theorem 15. The group $E_{7,\iota}$ is homeomorphic to the topological product of the group $(U(1) \times E_6)/\mathbb{Z}_3$ and a 54 dimensional Euclidean space \mathbb{R}^{54} :

$$E_{7,\iota} \simeq (U(1) imes E_6) / \mathbb{Z}_3 imes \mathbb{R}^{54}.$$

In particular, the group $E_{7,\iota}$ is a connected non-compact simple Lie group of type $E_{7(-25)}$.

8. Center $z(E_{7,i})$ of $E_{7,i}$.

Lemma 16. For $a \in C$, the transformation of \mathfrak{P}^C defined by

$$\alpha_{1}(a) = \begin{pmatrix} 1 + (\cosh|a| - 1)p_{1} & 2a\frac{\sinh|a|}{|a|}E_{1} & 0 & \overline{a}\frac{\sinh|a|}{|a|}E_{1} & 0 \\ 2\overline{a}\frac{\sinh|a|}{|a|}E_{1} & 1 + (\cosh|a| - 1)p_{1} & a\frac{\sinh|a|}{|a|}E_{1} & 0 \\ 0 & \overline{a}\frac{\sinh|a|}{|a|}E_{1} & \cosh|a| & 0 \\ a\frac{\sinh|a|}{|a|}E_{1} & 0 & 0 & \cosh|a| & 0 \end{pmatrix}$$

$$(if \ a = 0, \ then \ a \frac{\sinh|a|}{|a|} \ means \ 0) \ belongs \ to \ E_{1,\iota}, \ where \ E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{Z}^{C},$$

the mapping $p_1: \mathfrak{I}^C \longrightarrow \mathfrak{I}^C$ is defined by

$$p_1 \begin{pmatrix} \xi_1 & x_3 & \bar{x}_2 \\ \bar{x}_3 & \xi_2 & x_1 \\ x_2 & \bar{x}_1 & \xi_3 \end{pmatrix} = \begin{pmatrix} \xi_1 & 0 & 0 \\ 0 & \xi_2 & x_1 \\ 0 & \bar{x}_1 & \xi_3 \end{pmatrix}$$

and the action of $\alpha_1(a)$ on \mathfrak{P}^C is defined as similar to that of Theorem 10. **Proof.**

For
$$\Phi_1(a) = \begin{pmatrix}
0 & 2aE_1 & 0 & \bar{a}E_1 \\
2\bar{a}E_1 & 0 & aE_1 & 0 \\
0 & \bar{a}E_1 & 0 & 0 \\
aE_1 & 0 & 0 & 0
\end{pmatrix} \in \mathfrak{e}_{7,\iota}, \text{ we have } \alpha_1(a) = \exp \Phi_1(a), \text{ hence}$$

 $\alpha_1(a) \in E_{7,\iota}.$

Theorem 17. The center $z(E_{7,\iota})$ of the group $E_{7,\iota}$ is isomorphic to the cyclic group of order 2:

$$z(E_{7,\iota}) = \{1, -1\}.$$

Proof. Let $\alpha \in z(E_{7,\ell})$. From the commutativity with $\beta \in E_6 \subset E_{7,\ell}$, we have $\beta \alpha 1 = \alpha \beta 1 = \alpha 1$. If we denote $\alpha 1 = M + \dot{N} + \mu + \dot{\nu}$, then $\beta M + (\tau \beta \tau M) + \mu + \dot{\nu} = M + \dot{N} + \mu + \dot{\nu}$, hence we have

$$\beta M = M, \qquad au eta au au N = N \qquad ext{for all } eta \in E_{\mathfrak{6}}.$$

Therefore M = N = 0, so $\alpha 1 = \mu + \dot{\nu}$. Similarly $\dot{\alpha 1} = \lambda + \dot{\kappa}$. The conditions $\alpha 1$, $\alpha 1 \in \mathfrak{M}^{C}$, $\{\alpha 1, \alpha 1\} = 1$, $\langle \alpha 1, \alpha 1 \rangle_{\iota} = 1$ imply

$$\mu
u=0,\quad\lambda\kappa=0,\quad\mu\kappa-\lambda
u=1,\quad|\mu|^2-|
u|^2=1$$

respectively, hence

$$\alpha 1 = \mu, \quad \alpha 1 = (\mu^{-1})^{\cdot} \qquad \mu \in C, \ |\mu| = 1.$$

Choose $\theta \in C$ such that $\theta^3 = \mu$ and then put $\beta = \theta^{-1}\alpha$, where

$$\theta = \begin{pmatrix} \theta^{-1}1 & 0 & 0 & 0 \\ 0 & \theta 1 & 0 & 0 \\ 0 & 0 & \theta^3 & 0 \\ 0 & 0 & 0 & \theta^{-3} \end{pmatrix} \in U(1).$$

Then $\beta 1 = \theta^{-1} \alpha 1 = \theta^{-1} \mu = \theta^{-3} \theta^3 = 1$, similarly $\beta \dot{1} = \dot{1}$, hence $\beta \in E_6$. Moreover $\beta \in z(E_6)$ (which denotes the center of E_6), in fact, $\beta \beta' = \theta^{-1} \alpha \beta' = \theta^{-1} \beta' \alpha = \beta' \theta^{-1} \alpha = \beta' \beta$ for all $\beta' \in E_6$. Thus we have

$$\alpha = \theta \beta$$
 $\theta \in U(1), \ \beta \in z(E_6).$

Since $z(E_6) = \{1, \omega 1, \omega^2 1\}, \omega \in \mathbb{C}, \omega^3 = 1, \omega \neq 1 [7]$, we have

$$\alpha = \begin{pmatrix} \theta^{-1} \omega 1 & 0 & 0 & 0 \\ 0 & \theta \omega^{-1} 1 & 0 & 0 \\ 0 & 0 & \theta^3 & 0 \\ 0 & 0 & 0 & \theta^{-3} \end{pmatrix} \qquad \omega \in C, \ \omega^3 = 1.$$

Again from the commutativity with $\alpha_1(a)$ of Lemma $16: \alpha_1(1)\alpha = \alpha \alpha_1(1)$, we have

$$egin{aligned} &\omega^{-1} \mathrm{cosh} 1E_2 + heta^{-1} \omega(\mathrm{sinh} 1E_3) \cdot = lpha_1(1) (heta^{-1} \omega E_2) = lpha_1(1) lpha E_2 \ &= lpha lpha_1(1) E_2 = lpha(\mathrm{cosh} 1E_2 + (\mathrm{sinh} 1E_3)) \ &= heta^{-1} \omega \mathrm{cosh} 1E_2 + (heta \omega^{-1} \mathrm{sinh} 1E_3). \end{aligned}$$

where $E_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, hence $\theta^{-1}\omega = \theta\omega^{-1}$, i.e. $\theta^{-1}\omega = \pm 1$.

Therefore $\alpha = \pm 1$, i.e. $z(E_{7,\iota}) = \{1, -1\}$. Thus the proof of Theorem 17 is completed.

9. Isomorphism $E_{7,1} \cong E_{7,\ell}$.

θ

From Theorems 4, 7 and 15, we see that the groups $E_{7,1}$ and $E_{7,\ell}$ are both connected and their Lie algebras have the same type $E_{7(-25)}$. Therefore there exist central normal subgroups N_1, N_ℓ of the simply connected simple Lie group $\tilde{E}_{7(-25)}$ of type $E_{7(-25)}$ such that

$$E_{7,1}\cong \widetilde{E}_{7(-25)}/N_1, \qquad E_{7,\ell}\cong \widetilde{E}_{7(-25)}/N_\ell.$$

We shall show $N_1 = N_{\ell}$. From the general theory of Lie groups, we know that the center $z(\tilde{E}_{7(-25)})$ of $\tilde{E}_{7(-25)}$ is the infinite cyclic group Z [6]. Now assume that $N_1 \neq N_{\ell}$. Since the centers of $E_{7,1}$ and $E_{7,\ell}$ are both Z_2 (Theorems 8, 17), we may assume that $2Z = N_1 \subset N_{\ell} = Z$ without loss of generality. Consider the natural homomorphism

$$f: E_{7,1} \cong \widetilde{E}_{7(-25)}/N_1 \longrightarrow \widetilde{E}_{7(-25)}/N_i \cong E_{7,i}.$$

Then $f^{-1}(z(E_{7,\iota})) = f^{-1}(\mathbb{Z}_2)$ is a discrete (because $E_{7,1}$ is simple Lie group) normal subgroup, therefore $f^{-1}(z(E_{7,\iota}))$ is a central (because $E_{7,1}$ is connected) normal subgroup of $E_{7,1}: f^{-1}(z(E_{7,\iota})) \subset z(E_{7,1})$ and the order of $f^{-1}(z(E_{7,\iota}))$ is not less than 4. This contradicts to $z(E_{7,1}) = \mathbb{Z}_2$. Therefore $N_1 = N_{\iota}$ and we see that the groups $E_{7,1}$ and $E_{7,\iota}$ are isomorphic :

$$E_{7,1} \cong E_{7,\ell}$$

Thus from the preceding arguments we have the following main

Theorem 18. The group $E_{7,1} = \{ \alpha \in Iso_R(\mathfrak{P}, \mathfrak{P}) \mid \alpha \mathfrak{M} = \mathfrak{M}, \{ \alpha P, \alpha Q \} = \{ P, Q \} \}$ is a connected non-compact simple Lie group of type E_7 , its center $z(E_{7,1})$ is the cyclic group of order 2:

$$z(E_{7,1}) = \{1, -1\}$$

and the polar decompsition is given by

$$E_{7,1} \cong (U(1) \times E_6) / \mathbb{Z}_3 \times \mathbb{R}^{54}.$$

References

- [1] H. FREUDENTHAL, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. Rijksuniv. te Utrecht, (1951).
- [2] _____, Beziehungen der E_7 und E_8 zur Oktavenebene I, Nederl. Akad. Weten. Proc. Ser. A, 57, (1954), 218-230.
- [3] S. HELGASON, Differential geometry and symmetric spaces, Academic Press, New York, (1962).
- [4] T. IMAI and I. YOKOTA, Simply connected compact simple Lie group $E_{7(-133)}$ of type E_7 , Jour. Math., Kyoto Univ., to appear.
- [5] N. JACOBSON, Some groups of transformations defined by Jordan algebras III, Jour. Reine Angew. Math., 207, (1961), 1-85.
- [6] J. TITS, Tabellen zur den einfachen Lie Gruppen und ihren Darstellung, Springer-Verlag, Berlin, (1967).
- [7] I. YOKOTA, Simply connected compact simple Lie group $E_{6(-78)}$ of type E_6 and its involutive automorphisms, Jour. Math., Kyoto Univ., to appear.