Non-compact simple Lie group $\mathbb{E}_{7(-25)}$ of type \mathbb{E}_{7}

by Takao Imai and Ichiro Yokota
Department of Mathematics, Faculty of Science, Shinshu University
(Received Feb. 28,1980)

It is known that there exist four simple Lie groups of type E_{7} up to local isomorphism, one of them is compact and the others are non-compact. As for the compact case, it is known that the following group

$$
E_{7}=\left\{\begin{array}{l|l}
\alpha \in \operatorname{Isoc}\left(\Re^{C},, \mathscr{P} C\right) & \begin{array}{c}
\alpha \mathfrak{M} C=M^{C},\{\alpha 1, \alpha \mathrm{i}\}=1 \\
<\alpha P, \alpha Q>=<P, Q>
\end{array}
\end{array}\right\}
$$

is a simply connected compact simple Lie group of type E_{7} [4]. As for one of noncompact cases, H. Freudenthal showed in [2] that the Lie algebra of the group

$$
E_{7,1}=\{\alpha \in \operatorname{Ison}(\mathfrak{F}, \mathfrak{P}) \mid \alpha \mathfrak{M}=\mathfrak{M}, \quad\{\alpha P, \alpha Q\}=\{P, Q\}\}
$$

is a simple Lie algebra of type E_{7}, where \mathfrak{M} is the Freudenthal's manifold in $\mathfrak{B}=$ $\mathfrak{F} \oplus \Im \oplus \boldsymbol{R} \oplus \boldsymbol{R}, \mathfrak{M}^{C}$, \Re^{C} the complexification of $\mathfrak{M}, \mathfrak{P}$ respectively and $\{P, Q\}$, $<P, Q\rangle$ inner products in \mathfrak{P} or $\mathfrak{P} C$. In this paper, we shall investigate the structures of this group $E_{7,1}$. Our results are as follows. The group $E_{7,1}$ is a connected non-compact simple Lie group of type E_{7} and its center is the cyclic group of order 2 :

$$
z\left(E_{7,1}\right)=\{1,-1\}
$$

The polar decomposition of the group $E_{7,1}$ is given by

$$
E_{7,1} \simeq\left(U(1) \times E_{6}\right) / Z_{3} \times \boldsymbol{R}^{54}
$$

In order to give the above decomposition, we construct another group

$$
E_{7, t}=\left\{\begin{array}{l|l}
\alpha \in \operatorname{Isoc}\left(\Re^{c}, \mathfrak{F} C\right) & \begin{array}{c}
\alpha \mathfrak{M}^{C}=\mathfrak{M}^{c}, \quad\{\alpha 1, \alpha \mathrm{i}\}=1 \\
<\alpha P, \alpha Q>,=<P, Q>
\end{array}
\end{array}\right\}
$$

(where $\langle P, Q\rangle$, is another inner product in $\Im^{9} C$) which is isomorphic to $E_{7,1}$ and find the subgroup $\left(U(1) \times E_{6}\right) / Z_{3}$ explicitly in this group $E_{7, \ell}$.

1. Preliminaries.

Let \mathbb{C}_{5} denote the Cayley algebra over the field of real numbers R and \mathfrak{F} the Jordan algebra consisting of all 3×3 Hermitian matrices in © with respect to the multiplication $X \circ Y=\frac{1}{2}(X Y+Y X)$. In \Im, the positive definite symmetric inner product (X, Y), the crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant $\operatorname{det} X$ are defined respectively by

$$
\begin{aligned}
& (X, Y)=\operatorname{tr}(X \circ Y) \\
& X \times Y=\frac{1}{2}(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-(X, Y)) E) \\
& (X, Y, Z)=(X \times Y, Z)=(X, Y \times Z) \\
& \operatorname{det} X=\frac{1}{3}(X, X, X)
\end{aligned}
$$

where E is the 3×3 unit matrix.
Now we define a 56 dimensional vector space \Re By

$$
\mathfrak{F}=\mathfrak{\Im} \oplus \Im \oplus \boldsymbol{R} \oplus \boldsymbol{R} .
$$

An element $P=\left(\begin{array}{l}X \\ Y \\ \xi \\ \eta\end{array}\right)$ of $\mathfrak{\beta}$ is often denoted by $P=X+\dot{Y}+\xi+\dot{\eta}$ briefly. We define a bilinear mapping $\times: \mathfrak{F} \times \mathfrak{\beta} \longrightarrow \Im \oplus \Im \oplus \boldsymbol{R}$ by

$$
P \times Q=\left(\begin{array}{c}
X \\
Y \\
\xi \\
\eta
\end{array}\right) \times\left(\begin{array}{c}
Z \\
W \\
\zeta \\
\omega
\end{array}\right)=\left(\begin{array}{c}
2 X \times Z-\eta W-\omega Y \\
2 Y \times W-\xi Z-\zeta X \\
(X, W)+(Y, Z)-3(\xi \omega+\eta \zeta)
\end{array}\right)
$$

and a space \mathfrak{M} by

$$
\begin{aligned}
\mathfrak{M} & =\{L \in \mathfrak{P} \mid L \times L=0, L \neq 0\} \\
& =\left\{L=\left(\begin{array}{l}
M \\
N \\
\mu \\
\nu
\end{array}\right) \in \mathscr{B} \left\lvert\, \begin{array}{l}
M \times M=\nu N \\
N \times N=\mu M \\
(M, N)=3 \mu \nu \\
L \neq 0
\end{array}\right.\right\} .
\end{aligned}
$$

For example, the following elements of \Re

$$
\left(\begin{array}{c}
X \\
\frac{1}{\eta}(X \times X) \\
\frac{1}{\eta^{2}} \operatorname{det} X \\
\eta
\end{array}\right),\left(\begin{array}{c}
\frac{1}{\xi}(Y \times Y) \\
Y \\
\xi \\
\frac{1}{\xi^{2}} \operatorname{det} Y
\end{array}\right), \quad 1=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad \dot{i}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

where $\eta \neq 0, \xi \neq 0$, belong to \mathfrak{M}. Finally in \mathfrak{F} we define the skew-symmetric inner product $\{P, Q\}$ by

$$
\{P, Q\}=(X, W)-(Z, Y)+\xi \omega-\zeta \eta
$$

for $P=X+\dot{Y}+\xi+\dot{\eta}, Q=Z+\dot{W}+\zeta+\dot{\omega} \in \mathscr{\beta}$.

2. Group $E_{7,1}$ and its Lie algebra $e_{7,1}$.

The group $E_{7,1}$ is defined to be the group of linear isomorphisms of Φ leaving the space $\mathfrak{M z}$ and the skew-symmetric inner product $\{P, Q\}$ invariant :

$$
E_{7,1}=\{\alpha \in \operatorname{IsoR}(\mathfrak{\beta}, \mathfrak{\beta}) \mid \alpha \mathfrak{M}=\mathfrak{M},\{\alpha P, \alpha Q\}=\{P, Q\}\} .
$$

We define a subgroup $E_{6,1}$ of $E_{7,1}$ by

$$
E_{6,1}=\left\{\alpha \in E_{7,1} \mid \alpha 1=1, \alpha \mathrm{i}=\dot{1}\right\} .
$$

Proposition 1. The group $E_{6,1}$ is a simply connected non-compact simple Lie group of type $E_{6(-26)}$.

Proof. We define a group $E_{6(-26)}$ by

$$
\begin{aligned}
E_{6(-26)} & =\left\{\beta \in \operatorname{Isor}_{\boldsymbol{R}}(\Im, \Im) \mid \operatorname{det} \beta X=\operatorname{det} X\right\} \\
& =\left\{\beta \in \operatorname{Ison}(\Im, \Im) \mid \beta X \times \beta Y={ }^{t} \beta^{-1}(X \times Y)\right\}
\end{aligned}
$$

where ${ }^{t} \beta$ is the transpose of β with respect to the inner product $(X, Y):(\beta X, Y)$ $=\left(X,{ }^{t} \beta Y\right)$. Then $E_{6(-26)}$ is a simply connected simple Lie group of type $E_{0}[1]$ and moreover of type $E_{6(-26)}$, since its polar decomposition is given by

$$
E_{6(-26)} \simeq F_{4} \times R^{26}
$$

where F_{4} is a simply connected compact simple Lie group of type F_{4} [1]. We shall show that the group $E_{6,1}$ is isomorphic to the group $E_{6(-26)}$. It is easy to verify that, for $\beta \in E_{6(-26)}$, the linear transformation α of \Re_{β} defined by

$$
\alpha=\left(\begin{array}{cccc}
\beta & 0 & 0 & 0 \\
0 & t_{\beta^{-1}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

belongs to $E_{7,1}$. Conversely suppose $\alpha \in E_{7,1}$ satisfies $\alpha 1=1$ and $\alpha \dot{1}=1$. Then from the conditions $\{\alpha X, \alpha 1\}=\{\alpha X, \alpha \dot{1}\}=0$ and $\{\alpha \dot{X}, \alpha 1\}=\{\alpha \dot{X}, \alpha \dot{1}\}=0$, we see that α has the form

$$
\alpha=\left(\begin{array}{llll}
\beta & \varepsilon & 0 & 0 \\
\delta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $\beta, \gamma, \delta, \varepsilon$ are linear transformations of $\mathfrak{\Im}$. Since

$$
\alpha\left(\begin{array}{c}
X \\
\frac{1}{\eta}(X \times X) \\
\frac{1}{\eta^{2}} \operatorname{det} X \\
\eta
\end{array}\right)=\left(\begin{array}{c}
\beta X+\frac{1}{\eta} \varepsilon(X \times X) \\
\delta X+\frac{1}{\eta} \gamma(X \times X) \\
\frac{1}{\eta^{2}} \operatorname{det} X \\
\eta
\end{array}\right) \in \mathfrak{M},
$$

we have

$$
\left(\beta X+\frac{1}{\eta} \varepsilon(X \times X)\right) \times\left(\beta X+\frac{1}{\eta} \varepsilon(X \times X)\right)=\eta\left(\delta X+\frac{1}{\eta} \gamma(X \times X)\right)
$$

for all $0 \neq \eta \in \boldsymbol{R}$. Hence we have $\delta X=0$ for all $X \in \mathfrak{F}$ as the coefficient of η, therefore $\delta=0$. Similarly $\varepsilon=0$. Thus

$$
\alpha=\left(\begin{array}{cccc}
\beta & 0 & 0 & 0 \\
0 & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Again the condition $\alpha(X+(X \times X) \cdot+\operatorname{det} X+\mathrm{i})=\beta X+(\gamma(X \times X)) \cdot+\operatorname{det} X+\dot{1} \in \mathfrak{M}$ implies

$$
\left\{\begin{array}{l}
\beta X \times \beta X=\gamma(X \times X), \\
(\beta X, \gamma(X \times X))=3 \operatorname{det} X .
\end{array}\right.
$$

Hence $\operatorname{det} \beta X=\frac{1}{3}(\beta X, \quad \beta X \times \beta X)=\frac{1}{3}(\beta X, \quad \gamma(X \times X))=\operatorname{det} X, \quad$ therefore $\beta \in E_{6(-26)}$ and $\gamma={ }^{t} \beta^{-1} \in E_{6(-26)}$. Thus Proposition 1 is proved.

The group $E_{7,1}$ contains also a subgroup

$$
\boldsymbol{R}^{*}=\left\{\left.r=\left(\begin{array}{cccc}
r^{-1} 1 & 0 & 0 & 0 \\
0 & r 1 & 0 & 0 \\
0 & 0 & r^{3} & 0 \\
0 & 0 & 0 & r^{-3}
\end{array}\right) \right\rvert\, 0 \neq r \in \mathbb{R}\right\}
$$

(where 1 denotes the identity mapping of \mathfrak{J}) which is isomorphic to the group $\mathbb{R}^{*}=$ $\{r \in R \mid r \neq 0\}$.

From now on, we identify these groups $E_{6(-26)}$ and $E_{6,1}, \mathbb{R}^{*}$ and \boldsymbol{R}^{*} under the above correspondences.

We consider the Lie algebra $\varepsilon_{7,1}$ of the group $E_{7,1}$

$$
e_{7,1}=\left\{\Phi \in \operatorname{Hom}_{\boldsymbol{R}}(\mathfrak{F}, \mathfrak{B}) \left\lvert\, \begin{array}{c}
\Phi L \times L=0 \text { for } L \in \mathfrak{M} \\
\{\Phi P, Q\}+\{P, \Phi Q\}=0 \text { for } P, Q \in \mathfrak{F}
\end{array}\right.\right\} .
$$

H. Freudenthal proved in [2] the following

Theorem 2. Any element Φ of the Lie algebra $\mathrm{e}_{7,1}$ of the group $E_{7,1}$ is represented by the form

$$
\Phi=\Phi(\phi, A, B \rho)=\left(\begin{array}{cccc}
\phi-\frac{1}{3} \rho 1 & 2 B & 0 & A \\
2 A & \phi^{\prime}+\frac{1}{3} \rho 1 & B & 0 \\
0 & A & \rho & 0 \\
B & 0 & 0 & -\rho
\end{array}\right)
$$

where $\phi \in \mathfrak{e}_{6,1}=\left\{\phi \in \operatorname{Hom}_{\boldsymbol{R}}(\mathfrak{\Im}, \mathfrak{\Im}) \mid(\phi X, X, X)=0\right\}$ (which is the Lie algebra of the group $\left.E_{6,1}\right), \phi^{\prime}$ is the skew-transpose of ϕ with respect to the inner product (X, Y) $:(\phi X, Y)+\left(X, \phi^{\prime} Y\right)=0, A, B \in \Im, \rho \in R$ and the action of Φ on \mathfrak{F} is defined by

$$
\Phi\left(\begin{array}{c}
X \\
Y \\
\xi \\
\eta
\end{array}\right)=\left(\begin{array}{c}
\phi X-\frac{1}{3} \rho X+2 B \times Y+\eta A \\
2 A \times X+\phi^{\prime} Y+\frac{1}{3} \rho Y+\xi B \\
(A, Y)+\rho \xi \\
(B, X)-\rho \eta
\end{array}\right)
$$

And the type of the Lie algebra ${ }^{{ }_{7}, 1}$ is E_{7}.
We shall determine the Cartan index of the group $E_{7,1}$. For this purpose we use the following

Lemma 3 ([3] p. 345). Let G be an algebraic subgroup of the general linear group $G L(n, R)$ such that the condition $A \in G$ implies ${ }^{t} A \in G$. Then G is homeomor . phic to the topological product of the group $G \cap O(n)$ (which is a maximal compact
subgroup of G) and a Euclidean space \mathbb{R}^{d} :

$$
G \simeq(G \cap O(n)) \times \boldsymbol{R}^{d}
$$

where $O(n)$ is the orthogonal subgroup of $G L(n, R)$. In particular, the Cartan index of G is $\operatorname{dim} G-2 \operatorname{dim}(G \cap O(n))$.

Theorem 4. The group $E_{7,1}$ is a simple Lie group of type $E_{7(-25)}$.
Proof. We define in \Re a positive definite symmetric inner product (P, Q) by

$$
(P, Q)=(X, Z)+(Y, W)+\xi \zeta+\eta \omega
$$

for $P=X+\dot{Y}+\xi+\dot{\eta}, Q=Z+\dot{W}+\zeta+\dot{\omega} \in \mathfrak{F}$ and denote the transpose of Φ with respect to this inner product (P, Q) by ${ }^{t} \Phi:(\Phi P, Q)=\left(P,{ }^{t} \Phi \mathrm{Q}\right)$. Then for

$$
\Phi=\left(\begin{array}{cccc}
\phi-\frac{1}{3} \rho 1 & 2 B & 0 & A \\
2 A & \phi^{\prime}+\frac{1}{3} \rho 1 & B & 0 \\
0 & A & \rho & 0 \\
B & 0 & 0 & -\rho
\end{array}\right) \in_{\mathbb{R}_{7,1}}
$$

we see easily that

$$
t^{\prime} \Phi\left(\begin{array}{cccc}
-\phi^{\prime}-\frac{1}{3} \rho 1 & 2 A & 0 & B \\
2 B & -\phi+\frac{1}{3} \rho 1 & A & 0 \\
0 & B & \rho & 0 \\
A & 0 & 0 & -\rho
\end{array}\right)
$$

therefore ${ }^{t} \Phi$ also belongs to ${ }^{7}, 1$. Since $E_{7,1}$ is an algebraic subgroup of the general linear group $\operatorname{Iso} \boldsymbol{R}(\mathfrak{F}, \mathfrak{F})=G L(56, \boldsymbol{R})$, from Lemma 3, the Lie algebra $\varepsilon_{7,1} \cap 0(\mathfrak{F})$ (where $\mathrm{v}(\mathfrak{F})=\mathrm{o}(56)=\left\{\Phi \in \operatorname{Hom}_{\boldsymbol{R}}(\mathfrak{F}, \mathfrak{F}) \mid \Phi+{ }^{t} \Phi=0\right\}$) of the group $E_{7,1} \cap O(\mathfrak{F})$ (where $\left.O(\mathfrak{F})=O(56)=\left\{\alpha \in \operatorname{Ison}_{\boldsymbol{R}}(\mathfrak{F}, \mathfrak{F}) \mid(\alpha P, \alpha Q)=(P, \mathbb{Q})\right\}\right)$ is a maximal compact Lie subalgebra of $e_{7,1}$. Now if $\Phi \in e_{7,1}$ satisfies $\Phi+{ }^{t} \Phi=0$, then

$$
\Phi=\left(\begin{array}{cccc}
\delta & -2 A & 0 & A \\
2 A & \delta & -A & 0 \\
0 & A & 0 & 0 \\
-A & 0 & 0 & 0
\end{array}\right)
$$

where $\delta \in f_{4}=\left\{\delta \in \mathcal{e}_{6,1} \mid \delta^{\prime}=\delta\right\}$ (which is the Lie algebra of F_{4}). Therefore dim $\left(e_{7,1} \cap \cap(\mathfrak{ß})\right)=\operatorname{dim}_{1}+\operatorname{dim} \mathfrak{F}=52+27=79$. Hence

The Cartan index of $\mathfrak{e}_{7,1}=\operatorname{dime}_{7,1}-2 \operatorname{dim}\left(e_{7,1} \cap o\left(\mathfrak{F}_{\mathfrak{F}}\right)\right)$

$$
=133-2 \times 79=-25
$$

Thus we see that the type of the Lie algebra $\mathfrak{c}_{7,1}$ is $E_{7(-25)}$.
3. Connectedness of $E_{7,1}$.

We shall prove that the group $E_{\eta, 1}$ is connected. We denote, for a while, the connected component of $E_{7,1}$ containing the identity 1 by $\left(E_{7,1}\right)_{0}$.

Lemma $5, \quad$ For $A \in \Im$, the linear transformation $\exp _{1}(A)$ of \mathfrak{F} defined by

$$
\exp _{1}(A)=\left(\begin{array}{cccc}
1 & 0 & 0 & A \\
2 A & 1 & 0 & A \times A \\
A \times A & A & 1 & \operatorname{det} A \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(the action of $\exp _{1}(A)$ on \mathfrak{S} is as similar to that of Theorem 2) belongs to $\left(E_{7,1}\right)_{0}$. Similarly for $B \in \Im$ we can define

$$
\exp _{2}(B)=\left(\begin{array}{cccc}
1 & 2 B & B \times B & 0 \\
0 & 1 & B & 0 \\
0 & 0 & 1 & 0 \\
B & B \times B & \operatorname{det} B & 1
\end{array}\right) \in\left(E_{7,1}\right)_{0}
$$

Proof.

$$
\text { For } \Phi_{1}(A)=\left(\begin{array}{cccc}
0 & 0 & 0 & A \\
2 A & 0 & 0 & 0 \\
0 & A & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \in \mathfrak{e}_{7,1} . \text { we have } \exp { }_{1}(A)=\exp \Phi_{1}(A) \text {, hence }
$$

$\exp _{1}(A) \in\left(E_{7,1}\right)_{0}$. Similarly $\exp _{2}(B) \in\left(E_{7,1}\right)_{0}$.
Proposition 6. The subgroup $G_{1}=\left\{\alpha \in E_{7,1} \mid \alpha 1=1\right\}$ is the semi-direct product of the group $\exp _{1}(\Im)=\left\{\exp _{1}(A) \mid A \in \mathfrak{F}\right\}$ (which is an abelian group) and the group $E_{0,1}$:

$$
G_{1}=\exp _{1}(\mathfrak{\Im}) E_{6,1}, \quad \exp _{1}(\mathfrak{J}) \cap E_{6,1}=\{1\}
$$

Therefore G_{1} is homeomorphic to

$$
G_{1} \simeq E_{6,1} \times \mathbb{R}^{27} \simeq F_{4} \times \mathbb{R}^{53}
$$

In particular, the group G_{1} is simply connected.
Proof. Let $\alpha \in G$ and put $\alpha \dot{1}=M+\dot{N}+\mu+\dot{u}$. Then the conditions $\{\alpha 1, \alpha \dot{1}\}=1$ and $\alpha \dot{1} \in \mathfrak{M}$ imply $\nu=1$ and $N=M \times M, \mu=\operatorname{det} M$ respectively. Therefore we have

$$
\exp _{1}(M) \dot{1}=M+(M \times M) \cdot+\operatorname{det} M+\dot{1}=\alpha \dot{1}, \exp _{1}(M) 1=1=\alpha 1
$$

so $\left(\exp _{1}(M)\right)^{-1} \alpha \in E_{6,1}$, i. e.

$$
\alpha \in \exp _{1}(\Im) E_{6,1},
$$

and conversely. Since the Lie subalgebra $\left\{\Phi_{1}(A)=\Phi(0, A, 0,0) \in \mathfrak{e}_{7,1} \mid A \in \mathfrak{F}\right\}$ of $e_{7,1}$ is abelian, the group $\exp (\mathfrak{F})$ is also abelian. Moreover $\exp _{1}(\mathfrak{F})$ is a normal subgroup of G_{1}, because it holds that

$$
\beta \exp _{1}(A) \beta^{-1}=\exp _{1}(\beta A) \quad \text { for } \beta \in E_{6,1}, A \in \mathfrak{F} .
$$

Therefore we have the following split exact sequence

$$
1 \longrightarrow \exp _{1}(\mathfrak{\xi}) \longrightarrow G_{1} \longrightarrow E_{6,1} \longrightarrow 1
$$

Thus we see that G_{1} is the semi-direct product of $\exp 1(\Im)$ and $E_{6,1}$.
Theorem 7. The group $E_{7,1}$ acts transitively on the manifold \mathfrak{M} (which is connected) and the isotropy subgroup G_{1} of $E_{7,1}$ at $1 \in \mathfrak{M}$ is $\exp _{1}(\Im) E_{6,1}$ (Proposition 6). Therefore the homogeneous space $E_{7,1} / \exp _{1}(\xi) E_{6,1}$ is homeomorphic to \mathfrak{M} :

$$
E_{7,1} / \exp _{1}(\mathfrak{\Im}) E_{6,1} \simeq \mathfrak{M}
$$

In particular, the group $E_{7,1}$ is connected.
Proof. Obviously the group $E_{7,1}$ acts on \mathfrak{M}. We shall prove that the group ($\left.E_{7,1}\right)_{0}$ acts transitively on \mathfrak{M}. Since

$$
\exp _{1}(-E) \exp _{2}(E)_{1}=\mathrm{i}, \exp _{1}(E) \exp _{2}(-E) 1=-\mathbf{1}, \exp _{2}(-E)\left(\exp _{1}(E)\right)^{2} \exp _{2}(-E) 1=-1
$$

it is sufficient to show that any element $L \in \mathfrak{M}$ can be transformed in either of 1 , $-1, \dot{1},-\dot{1}$. Let $L=M+\dot{N}+\mu+\dot{v} \in \mathfrak{M}$. First assume $\mu>0$. Then $M=\frac{1}{\mu}(N \times N)$, $\nu=\frac{1}{\mu^{2}} \operatorname{det} N$. Choose $0<r \in R$ such that $r^{3}=\mu$, then for

$$
r=\left(\begin{array}{cccc}
r^{-1} 1 & 0 & 0 & 0 \\
0 & r 1 & 0 & 0 \\
0 & 0 & r^{3} & 0 \\
0 & 0 & 0 & r^{-3}
\end{array}\right) \in\left(E_{\gamma, 1}\right)_{0}
$$

we have $r 1=\mu$, and hence

$$
\begin{aligned}
\exp _{2}\left(\frac{N}{\mu}\right) r 1 & =\mu\left(\frac{N}{\mu} \times \frac{N}{\mu}\right)+\mu\left(\frac{N}{\mu}\right)^{\cdot}+\mu+\mu\left(\operatorname{det} \frac{N}{\mu}\right)^{\cdot} \\
& =\frac{1}{\mu}(N \times N)+\dot{N}+\mu+\frac{1}{\mu^{2}}(\operatorname{det} N) \cdot=L .
\end{aligned}
$$

If $\mu<0 . L$ can be transformed in -1 . Similarly in the case $\nu \neq 0$ the statement is also valid. Next we consider the case $L=M+\dot{N} \in \mathfrak{M}, N \neq 0$. Then $M \times M=N$
$\times N=0, \operatorname{det} M=0,(N, N) \neq 0$ and so

$$
\exp _{1}(N) L=*+\dot{*}+(N, N)+\dot{*}
$$

So we can reduce to the first case $\mu \neq 0$. In the case of $M \neq 0$, the statement is also valid. Thus the transitivity of $\left(E_{7,1}\right)_{0}$ on \mathfrak{M} is proved. Therefore we have $\mathfrak{M}=$ $\left(E_{7,1}\right)_{0} 1$, hence \mathfrak{M} is connected. Since the group $E_{7,1}$ acts transitively on \mathfrak{M} and the isotropy subgroup of $E_{7,1}$ is $\exp _{1}(\mathfrak{\Im}) E_{6,1}$, we have the following homeomorphism

$$
E_{7,1 / \exp }(\mathfrak{F}) E_{6,1} \simeq \mathfrak{M}
$$

Since $\exp _{1}(\Im) E_{6,1}$ is connected, $E_{7,1}$ is also connected. Thus the proof of Theorem 7 is completed.

4. Center $z\left(\boldsymbol{E}_{7,1}\right)$ of $\boldsymbol{E}_{7,1}$.

Theorem 8. The center $z\left(E_{7,1}\right)$ of the group $E_{7,1}$ is isomorphic to the cyclic group \mathbb{Z}_{2} of order 2:

$$
z\left(E_{7,1}\right)=\{1,-1\} \cong \mathbb{Z}_{2} .
$$

Proof. Let $\alpha \in z\left(E_{7,1}\right)$. From the commutativity with $\beta \in E_{6,1} \subset E_{7,1}$. we have $\beta \alpha 1=\alpha \beta 1=\alpha 1$. If we denote $\alpha 1=M+\dot{N}+\mu+\dot{v}$, then $\beta M+\left({ }^{t} \beta^{-1} N\right) \cdot+\mu+\dot{v}=$ $M+\dot{N}+\mu+\dot{v}$, hence

$$
\beta M=M, \quad{ }^{t} \beta^{-1} N=N \quad \text { for all } \beta \in E_{6,1}
$$

Therefore $M=N=0$, so $\alpha 1=\mu+\dot{\nu}$, where $\mu \nu=0$ (since $\alpha 1 \in \mathfrak{M}$). Suppose that $\mu=0$, i. e. $\alpha 1=\dot{\nu} \neq 0$, then from the commutativity with

$$
r=\left(\begin{array}{cccc}
r^{-1} 1 & 0 & 0 & 0 \\
0 & r 1 & 0 & 0 \\
0 & 0 & r^{3} & 0 \\
0 & 0 & 0 & r^{-8}
\end{array}\right) \in \boldsymbol{R}^{*} \subset E_{7,1}
$$

we have

$$
\left(r^{-3} \nu\right)=r \dot{\nu}=r \alpha 1=\alpha r 1=\alpha r^{3}=\left(r^{3} \nu\right)^{\cdot} \quad \text { for all } r \in \boldsymbol{R}^{*}
$$

This is contradiction. Hence $\alpha 1=\mu$. Similarly $\alpha \dot{1}=\dot{\lambda}$. The condition $\{\alpha 1, \alpha \dot{1}\}=1$ implies $\mu \lambda=1$, hence

$$
\alpha 1=\mu, \quad \alpha \dot{1}=\left(\mu^{-1}\right) .
$$

Next note that

$$
\iota^{\prime}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

belongs to $E_{7,1}$. Then the commutativity condition $\iota^{\prime} \alpha=\alpha c^{\prime}$ implies

$$
\dot{\mu}=\iota^{\prime} \mu=\iota^{\prime} \alpha 1=\alpha \iota^{\prime} 1=\alpha \dot{1}=\left(\mu^{-1}\right)^{\circ}
$$

hence $\mu=\mu^{-1}$, i. e. $\mu= \pm 1$. In the case of $\mu=1, \alpha \in E_{0,1}$ so $\alpha \in z\left(E_{0,1}\right)=\{1\}$ [5] i. e. $\alpha=1$. In the case of $\mu=-1,-\alpha \in z\left(E_{6,1}\right)=\{1\}$, i. e. $\alpha=-1$. Thus we see that $z\left(E_{7,1}\right)=\{1,-1\}$.

5. Group $E_{7, c}$ and its Lie algebra $e_{7, c}$.

We construct another simple Lie group of type $E_{7(-25)}$. Let \mathbb{C} denote the field of complex numbers and \mathfrak{F}^{C} the complexification of \Im. In \mathfrak{S}^{C} also, the inner product (X, Y), crossed product $X \times Y$, the cubic form (X, Y, Z) and the determinant $\operatorname{det} X$ are defined as similar in \wp. Let $\mathfrak{\beta} C$ be also the complexification of $\mathfrak{F}:$

$$
\Im^{C}=\Im^{C} \oplus \Im^{C} \oplus C \oplus C
$$

We define a mapping $\times: \mathfrak{F}^{C} \times \mathfrak{S}^{C} \longrightarrow \longrightarrow \Im^{C} \oplus \Im^{C} \oplus \mathbb{C}$ as similar as the case \mathfrak{S}_{β} and a space $M^{C} \boldsymbol{C}$ by

$$
\mathfrak{M}^{C}=\{L \in \mathfrak{B C} \mid L \times L=0, L \neq 0\} .
$$

Finally in \Im^{C}, \Re^{C}, positive definite Hermitian inner products $\left.\left.<X, Y\right\rangle,<P, \mathrm{Q}\right\rangle$ and the inner product $<P, \mathrm{Q}>$, the skew-symmetric inner product $\{P, \mathrm{Q}\}$ are defined respectively by

$$
\begin{aligned}
& <X, Y>=(\tau X, Y)=(\bar{X}, Y) \\
& <P, \mathrm{Q}>=<X, Z>+<Y, W>+\bar{\xi} \zeta+\bar{\eta} \omega \\
& <P, \mathrm{Q}>_{\imath}=<X, Z>-<Y, W>+\bar{\xi} \zeta-\bar{\eta} \omega \\
& \{P, \mathrm{Q}\}=(X, W)-(Z, Y)+\xi \omega-\zeta \eta
\end{aligned}
$$

where $\tau: \Im^{C} \longrightarrow \mathcal{F}^{C}$ is the complex conjugate $(\tau X$ is also denoted by $\bar{X})$ and $P=$ $X+\dot{Y}+\xi+\dot{\eta}, \mathrm{Q}=Z+\dot{W}+\zeta+\dot{\omega} \in \mathfrak{\beta} C$.

Now the group $\mathrm{E}_{7, \mathrm{c}}$ is defined to be the group of linear isomorphisms of $\mathfrak{s}_{\beta} C$ leaving the space \mathbb{M}^{C}, some skew-symmetric inner product $\{P, \mathrm{Q}\}$ and the inner product $<P, Q>$, invariant :

$$
E_{7, \iota}=\left\{\alpha \in \operatorname{IsoC}\left(\mathfrak{F} C, \mathfrak{S}^{C} C\right) \left\lvert\, \begin{array}{c}
\alpha M^{C}=M_{M}^{C}, \quad\{\alpha 1, \alpha \mathrm{i}\}=1 \\
<\alpha P, \alpha \mathrm{Q}>九=<P, \mathrm{Q}>, \text { for } P, \mathrm{Q} \in \mathfrak{P C}
\end{array}\right.\right\}
$$

We define a subgroup E_{6} of $E_{7, t}$ by

$$
E_{8}=\left\{\alpha \in E_{7, c} \mid \alpha 1=1, \alpha \mathrm{i}=\mathrm{i}\right\} .
$$

Proposition 9. The group E_{6} is a simply connected compact simple Lie group of type E_{6} and isomorphic to the group

$$
\begin{aligned}
E_{b(-78)} & =\left\{\beta \in \operatorname{Isoc}\left(\mathfrak{S}^{C}, \mathfrak{\Im}^{C}\right) \mid \operatorname{det} \beta X=\operatorname{det} X,<\beta X, \quad \beta Y>=<X, Y>\right\} \\
& =\left\{\beta \in \operatorname{Isoc}\left(\Im^{C}, \mathfrak{S}^{C}\right) \mid \beta X \times \beta Y=\tau \beta r(X \times Y),<\beta X, \beta Y>=<X, Y>\right\}
\end{aligned}
$$

(see [7]) by the correspondence

$$
E_{6(-78)} \in \beta \longrightarrow\left(\begin{array}{cccc}
\beta & 0 & 0 & 0 \\
0 & \tau \beta \tau & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in E_{7, \ell}
$$

Proof. It is seen by the analogous proof of Proposition 1 (or see [4] Proposition 2).

The group $E_{7, \ell}$ contains also a subgroup

$$
U(1)=\left\{\theta=\left(\begin{array}{cccc}
\theta^{-1} 1 & 0 & 0 & 0 \\
0 & \theta 1 & 0 & 0 \\
0 & 0 & \theta^{3} & 0 \\
0 & 0 & 0 & \theta^{-3}
\end{array}\right)|\theta \in \mathbb{C},|\theta|=1\}\right.
$$

which is isomorphic to the unitary group $\mathrm{U}(1)=\{\theta \in \mathbb{C} \| \theta \mid=1\}$.
From now on, we identify these group $E_{6(-78)}$ and $E_{6}, \mathrm{U}(1)$ and $U(1)$ under the above correspondences.

We consider the Lie algebra $e_{7, t}$ of the group $E_{7, \ell}$:

Theorem 10. Any element Φ of the Lie algebra $e_{7, \text {, }}$ is represented by the form

$$
\Phi=\left(\begin{array}{cccc}
\phi-\frac{1}{3} \rho 1 & 2 A & 0 & \bar{A} \\
2 \bar{A} & \tau \phi \tau+\frac{1}{3} \rho 1 & A & 0 \\
0 & \bar{A} & \rho & 0 \\
A & 0 & 0 & -\Omega
\end{array}\right)
$$

where $\phi \in \mathfrak{e}_{6}=\left\{\phi \in \operatorname{Hom} C\left(\Im^{C}, \Im^{C}\right) \mid(\phi X, X, X)=0,\langle\phi X, Y\rangle+\langle X, \phi Y\rangle=0\right\}$ (which is the Lie algebra of the group E_{t}), $A \in \Im^{C}, \rho \in C$ such that $\rho+\bar{\rho}=0$ and the action of Φ on $\mathfrak{F} C$ is defined by

$$
\Phi\left(\begin{array}{c}
X \\
Y \\
\xi \\
\eta
\end{array}\right)=\left(\begin{array}{c}
\phi X-\frac{1}{3} \rho X+2 A \times Y+\eta \bar{A} \\
2 \bar{A} \times X+\tau \phi \tau Y+\frac{1}{3} \rho Y+\xi A \\
<A, Y>+\rho \xi \\
(A, X)-\rho \eta
\end{array}\right)
$$

In particular, the type of the Lie group $E_{7, c}$ is E_{7} [2].
Proof. It is obtained by the analogous argument as Theorem 3 of [4].
6. Involutive automorphism ϵ and subgroup $\left(U(1) \times E_{6}\right) / Z_{3}$.

We define an involutive linear isomorphism \subset of $\Re^{C} C$ by

$$
\iota=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Then two inner products $\langle P, \mathrm{Q}\rangle,\langle P, \mathrm{Q}\rangle$, in \mathfrak{F}^{C} are combined with relations

$$
\langle P, \mathrm{Q}\rangle_{\iota}=\langle\iota P, \mathrm{Q}\rangle=\langle P, \iota \mathrm{Q}\rangle, \quad\langle P, \mathrm{Q}\rangle=\langle\iota P, \mathrm{Q}\rangle_{\iota}=\langle P, \iota \mathrm{Q}\rangle_{\iota}
$$

The following Lemma is easily verified.
Lemma 11. For $\alpha \in E_{7,!}$, we have $\iota_{c} \in E_{7,<}$.
Therefore we can define an automorphism $\iota: E_{7, \iota} \longrightarrow E_{7, \iota}$ by

$$
\iota \alpha=\iota \alpha \iota \quad \alpha \in E_{\gamma, \iota} .
$$

Proposition 12. The subgroup $\left\{\alpha \in E_{7, c} \mid c \alpha \iota=\alpha\right\}$ of the group $E_{7, c}$ is isomorphic to the group $\left(U(1) \times E_{6}\right) / Z_{3}$:

$$
\left\{\alpha \in E_{7, c} \mid \kappa \alpha \iota=\alpha\right\} \cong\left(U(1) \times E_{6}\right) / \mathbb{Z}_{3}
$$

where $\mathbb{Z}_{3}=\left\{(1,1),(\omega, \omega 1),\left(\omega^{2}, \omega^{2} 1\right)\right\}, \omega \in C, \omega^{3}=1, \omega \neq 1$, and

$$
\omega=\left(\begin{array}{cccc}
\omega^{-1} 1 & 0 & 0 & 0 \\
0 & \omega 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in U(1), \quad \omega 1=\left(\begin{array}{cccc}
\omega 1 & 0 & 0 & 0 \\
0 & \omega^{-1} 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in E_{6} .
$$

Proof. We define a mapping $\phi: U(1) \times E_{\beta(-78)} \longrightarrow\left\{\alpha \in E_{7, \iota} \mid \iota \alpha \iota=\alpha\right\}$ by

$$
\phi(\theta, \beta)=\theta \beta=\left(\begin{array}{cccc}
\theta^{-1} 1 & 0 & 0 & 0 \\
0 & \theta 1 & 0 & 0 \\
0 & 0 & \theta^{3} & 0 \\
0 & 0 & 0 & \theta^{-3}
\end{array}\right)\left(\begin{array}{cccc}
\beta & 0 & 0 & 0 \\
0 & \tau \beta \tau & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\beta \theta
$$

Then obviously ψ is a homomorphism. We shall prove that ψ is onto. If $\alpha \in E_{7,2}$ satisfies $\alpha_{c}=\alpha$, then α has the form

$$
\alpha=\left(\begin{array}{cccc}
\beta & 0 & M & 0 \\
0 & \gamma & 0 & N \\
a & 0 & \mu & 0 \\
0 & b & 0 & \nu
\end{array}\right)
$$

where β, γ are linear transformations of \mathfrak{J}^{C}, a, b linear functionals of $\mathfrak{F}^{C}, M, N \in$ \Im^{C} and $\mu, \nu \in \mathbb{C}$. The conditions $\alpha \dot{1}, \alpha 1 \in \mathfrak{M}^{C}$ imply

$$
\mu M=0, \quad \nu N=0
$$

respectively. We shall show that $M=N=0$. Assume $M \neq 0$, then $\mu=0$, so a is not identically 0 . And then from $\{\alpha 1, \alpha \dot{1}\}=1$, we have

$$
\begin{equation*}
(M, \quad N)=1 \tag{i}
\end{equation*}
$$

hence $N \neq 0$, so $\nu=0$. Furthermore the condition

$$
\alpha\left(\begin{array}{c}
X \\
\frac{1}{\eta}(X \times X) \\
\frac{1}{\eta^{2}} \operatorname{det} X \\
\eta
\end{array}\right)=\left(\begin{array}{c}
\beta X+\frac{1}{\eta^{2}}(\operatorname{det} X) M \\
\frac{1}{\eta} r(X \times X)+\eta N \\
a(X) \\
\frac{1}{\eta} b(X \times X)
\end{array}\right) \in \mathfrak{M Q}^{C}
$$

implies

$$
\left\{\begin{array}{l}
\left(\frac{1}{\eta} \gamma(X \times X)+\eta N\right) \times\left(\frac{1}{\eta} \gamma(X \times X)+\eta N\right)=a(X)\left(\beta X+\frac{1}{\eta^{2}}(\operatorname{det} X) M\right) \\
\left(\beta X+\frac{1}{\eta^{2}}(\operatorname{det} X) M, \frac{1}{\eta} \gamma(X \times X)+\eta N\right)=3 a(X) \frac{1}{\eta} b(X \times X)
\end{array}\right.
$$

for all $0 \neq \eta \in \boldsymbol{C}$. Hence we have

$$
\left\{\begin{array}{l}
2 \gamma(X \times X) \times N=a(X) \beta X \tag{ii}\\
\gamma(X \times X) \times \gamma(X \times X)=a(X)(\operatorname{det} X) M \\
(\beta X, \gamma(X \times X))+\operatorname{det} X=3 a(X) b(X \times X)
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
a(X) \operatorname{det} X & =a(X)(\operatorname{det} X)(M, N) \\
& =(\gamma(X \times X), \quad \gamma(X \times X) \times N) \underset{\text { (iii) }}{=}(\gamma \times X) \times \gamma(X \times X), \quad N) \\
& =\frac{1}{2} a(X)(\gamma(X \times X), \quad \beta X) \\
& =\frac{1}{\text { (iv) }} 2 \\
2 & (X)(3 a(X) b(X \times X)-\operatorname{det} X)
\end{aligned}
$$

Hence

$$
a(X) \operatorname{det} X=(a(X))^{2} b(X \times X)
$$

Thus we have

$$
\operatorname{det} X=a(X) b(X \times X)
$$

(since $a: \mathfrak{F}^{C} \longrightarrow C$ is a linear functional and $\operatorname{det} X-a(X) b(X \times X)$ is continuous with respect to X, even if for X such that $a(X)=0$). This contradicts to the irreducibility of the determinant $\operatorname{det} X$ with respect to the variables of its components. Thus we have $M=0$. Similarly $N=0$. So

$$
\alpha 1=\mu, \quad \alpha \dot{1}=\left(\mu^{-1}\right) \cdot \quad \quad \mu \in \mathbb{C},|\mu|=1
$$

Choose $\theta \in \mathbb{C}$ such that $\theta^{3}=\mu$ and put $\beta=\theta^{-1} \alpha$, then $\beta 1=1$ and $\beta \dot{i}=\dot{1}$, therefore $\beta \in E_{6}$. Thus we have

$$
\alpha=\theta \beta \quad \theta \in U(\mathbf{1}), \beta \in E_{6}
$$

So ψ is onto. $\operatorname{Ker} \phi=\left\{(1,1),(\omega, \omega 1),\left(\omega^{2} ; \omega^{2} 1\right)\right\}, \omega \in \mathbb{C}, \omega^{3}=1, \omega \neq 1$, is easily obtained. Thus the proof of Proposition 12 is completed.
7. Polar decomposition of $\mathbb{E}_{7, \ell}$.

In order to give a polar decomposition of the group $E_{7, \iota}$, we use the following
Lemma 13 ([3] p. 345). Let G be a pseudoalgebraic subgroup of the general linear group $G L(n, \mathbb{C})$ such that the condition $A \in G$ implies $A^{*} \in G$. Then G is homeomorphic to the topological product of the group $G \cap U(n)$ (which is a maximal compact subgroup of G) and a Euclidean space \mathbb{R}^{d} :

$$
G \simeq(G \cap U(n)) \times \mathbb{R}^{d}
$$

where $U(n)$ is the unitary subgroup of $G L(n, \mathbb{C})$.

Lemma 14. $E_{7, \text {, }}$ is a pseudoalgebraic subgroup of the general linear group $G L$ $(56, C)=\operatorname{Isoc}\left(\beta^{C}, \Re_{\beta}\right)$ and satisfies the condition $\alpha \in E_{7,<}$ implies $\alpha^{*} \in E_{7,6}$ where α^{*} is the transpose of α with respect to the inner product $<P, \mathrm{Q}\rangle:\langle\alpha P, \mathrm{Q}\rangle=\langle P$, $\alpha^{*} \mathrm{Q}>$.
 for $\alpha \in E_{7, \ell}$, we have

$$
\alpha^{*}=\iota \alpha^{-1} \iota \in E_{7, \iota} \quad \text { (Lemma 11). }
$$

And it is obvious that $E_{7, c}$ is pseudoalgebraic, because $E_{7, c}$ is defined by pseudoalgebraic relations $\alpha \mathfrak{M}^{C}=\mathfrak{M}^{C},\{\alpha 1, \alpha \mathrm{i}\}=1$ and $\langle\alpha P, \alpha \mathrm{Q}\rangle_{\iota}=\langle P, Q\rangle_{\text {。 }}$.

Let $U(56)=U(\mathfrak{\beta} C)=\left\{\alpha \in \operatorname{Isoc}\left(\Re^{C}, \Re^{C}\right) \mid\langle\alpha P, \alpha \mathrm{Q}\rangle=\langle P, Q\rangle\right\}$ denote the uni tary subgroup of the general linear group $G L(56, C)=\operatorname{Isoc}\left(\not{ }_{\beta} C, \Re_{C} C\right.$, then we have

$$
\begin{aligned}
E_{7, \ell} \cap U(\mathfrak{F} C) & =\left\{\alpha \in E_{7, c} \mid<\alpha \iota=\alpha\right\} \\
& \cong\left(U(1) \times E_{6}\right) / \mathscr{Z}_{3} \quad \text { (Proposition 12). }
\end{aligned}
$$

Since $E_{7, t}$ is a simple Lie group of type E_{7}, the dimension of $E_{7, c}$ is 133 . Hence the dimension d of the Euclidean part of $E_{7, c}$ and the Cartan index i are calculated as follows:

$$
\begin{aligned}
d & =\operatorname{dim} E_{7, c}-\operatorname{dim}\left(U(1) \times E_{6}\right)=133-(1+78)=54, \\
i & =\operatorname{dim} E_{7, c}-2 \operatorname{dim}\left(U(1) \times E_{6}\right)=133-2(1+78)=-25 .
\end{aligned}
$$

Thus we get the following
Theorem 15. The group $E_{7, \text {, }}$ is homeomorphic to the topological product of the group $\left(U(1) \times E_{6}\right) / \mathbb{Z}_{3}$ and a 54 dimensional Euclidean space R^{54} :

$$
E_{7, t} \simeq\left(U(1) \times E_{6}\right) / \mathbb{Z}_{3} \times \boldsymbol{R}^{54} .
$$

In particular, the group $E_{7, \text {, }}$ is a connected non-compact simple Lie group of type $E_{7(-25)}$.
8. Center $z\left(\boldsymbol{E}_{7, c}\right)$ of \boldsymbol{E}_{7}, .

Lemma 16. For $a \in C$, the transformation of $\mathfrak{\beta}^{C} C$ defined by

$$
\alpha_{1}(a)=\left(\begin{array}{cccc}
1+(\cosh |a|-1) p_{1} & 2 a \frac{\sinh |a|}{|a|} E_{1} & 0 & \bar{a} \frac{\sinh |a|}{|a|} E_{1} \\
2 \bar{a} \frac{\sinh |a|}{|a|} E_{1} & 1+(\cosh |a|-1) p_{1} & a \frac{\sinh |a|}{|a|} E_{1} & 0 \\
0 & \bar{a} \frac{\sinh |a|}{|a|} E_{1} & \cosh |a| & 0 \\
a \frac{\sinh |a|}{|a|} E_{1} & 0 & 0 & \cosh |a|
\end{array}\right)
$$

(if $a=0$, then $a \frac{\sinh |a|}{|a|}$ means 0) belongs to $E_{7, \text {, }}$, where $E_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \in \mathfrak{F}^{C}$,
the mapping $p_{1}: \mathfrak{S}^{C} \longrightarrow \mathfrak{S}^{C}$ is defined by

$$
p_{1}\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & 0 & 0 \\
0 & \xi_{2} & x_{1} \\
0 & \bar{x}_{1} & \xi_{3}
\end{array}\right)
$$

and the action of $\alpha_{1}(a)$ on \mathfrak{P}^{C} is defined as similar to that of Theorem 10.
Proof.
For $\Phi_{1}(a)=\left(\begin{array}{cccc}0 & 2 a E_{1} & 0 & \bar{a} E_{1} \\ 2 \bar{a} E_{1} & 0 & a E_{1} & 0 \\ 0 & \bar{a} E_{1} & 0 & 0 \\ a E_{1} & 0 & 0 & 0\end{array}\right) \in \mathfrak{c}_{7, c}$, we have $\alpha_{1}(a)=\exp \Phi_{1}(a)$, hence $\alpha_{1}(a) \in E_{7, i}$.

Theorem 17. The center $z\left(E_{7, c}\right)$ of the group $E_{7,<}$ is isomorphic to the cyclic group of order 2:

$$
z\left(E_{7, c}\right)=\{1,-1\} .
$$

Proof. Let $\alpha \in z\left(E_{7, c}\right)$. From the commutativity with $\beta \in E_{6} \subset E_{7, \ell}$, we have $\beta \alpha 1=\alpha \beta 1=\alpha 1$. If we denote $\alpha 1=M+\dot{N}+\mu+\dot{\nu}$, then $\beta M+(\tau \beta \tau M)+\mu+\dot{\nu}=M$ $+\dot{N}+\mu+\dot{\nu}$, hence we have

$$
\beta M=M, \quad \tau \beta \tau N=N \quad \text { for all } \beta \in E_{6} .
$$

Therefore $M=N=0$, so $\alpha 1=\mu+\dot{\nu}$. Similarly $\alpha \dot{1}=\lambda+\dot{k}$. The conditions $\alpha \dot{1}, \alpha 1$ $\in \mathbb{M}^{C}, \quad\{\alpha 1, \alpha \dot{1}\}=1,\langle\alpha 1, \alpha 1\rangle_{\iota}=1$ imply

$$
\mu \nu=0, \quad \lambda \kappa=0, \quad \mu \kappa-\lambda \nu=1, \quad|\mu|^{2}-|\nu|^{2}=1
$$

respectively, hence

$$
\alpha 1=\mu, \quad \alpha \dot{1}=\left(\mu^{-1}\right)^{\cdot} \quad \mu \in C,|\mu|=1 .
$$

Choose $\theta \in \boldsymbol{C}$ such that $\theta^{3}=\mu$ and then put $\beta=\theta^{-1} \alpha$, where

$$
\theta=\left(\begin{array}{cccc}
\theta^{-1} 1 & 0 & 0 & 0 \\
0 & \theta 1 & 0 & 0 \\
0 & 0 & \theta^{3} & 0 \\
0 & 0 & 0 & \theta^{-3}
\end{array}\right) \in U(1)
$$

Then $\beta 1=\theta^{-1} \alpha 1=\theta^{-1} \mu=\theta^{-3} \theta^{3}=1$, similarly $\beta \dot{1}=\dot{1}$, hence $\beta \in E_{8}$. Moreover $\beta \in$ $z\left(E_{6}\right)$ (which denotes the center of E_{6}), in fact, $\beta \beta^{\prime}=\theta^{-1} \alpha \beta^{\prime}=\theta^{-1} \beta^{\prime} \alpha=\beta^{\prime} \theta^{-1} \alpha=\beta^{\prime} \beta$ for all $\beta^{\prime} \in E_{6}$. Thus we have

$$
\alpha=\theta \beta \quad \theta \in U(1), \quad \beta \in z\left(E_{6}\right) .
$$

Since $z\left(E_{6}\right)=\left\{1, \omega 1, \omega^{2} 1\right\}, \omega \in C, \omega^{3}=1, \omega \neq 1[7]$, we have

$$
\alpha=\left(\begin{array}{cccc}
\theta^{-1} \omega 1 & 0 & 0 & 0 \\
0 & \theta \omega^{-1} 1 & 0 & 0 \\
0 & 0 & \theta^{3} & 0 \\
0 & 0 & 0 & \theta^{-3}
\end{array}\right) \quad \omega \in \boldsymbol{C}, \omega^{3}=1
$$

Again from the commutativity with $\alpha_{1}(a)$ of Lemma $16: \alpha_{1}(1) \alpha=\alpha \alpha_{1}(1)$, we have

$$
\begin{gathered}
\theta \omega^{-1} \cosh 1 E_{2}+\theta^{-1} \omega\left(\sinh 1 E_{3}\right)^{\cdot}=\alpha_{1}(1)\left(\theta^{-1} \omega E_{2}\right)=\alpha_{1}(1) \alpha E_{2} \\
=\alpha \alpha \alpha_{1}(1) E_{2}
\end{gathered}=\alpha\left(\cosh 1 E_{2}+\left(\sinh 1 E_{3}\right)\right) .
$$

where $E_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), E_{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$, hence $\theta^{-1} \omega=\theta \omega^{-1}$, i. e. $\theta^{-1} \omega= \pm 1$. Therefore $\alpha= \pm 1$, i. e. $z\left(E_{7, c}\right)=\{1,-1\}$. Thus the proof of Theorem 17 is completed.
9. Isomorphism $\boldsymbol{E}_{7,1} \cong \boldsymbol{E}_{7, t}$.

From Theorems 4, 7 and 15, we see that the groups $E_{7,1}$ and $E_{7, t}$ are both connected and their Lie algebras have the same type $E_{7(-25)}$. Therefore there exist central normal subgroups $N_{1}, N_{\text {c }}$ of the simply connected simple Lie group $\widetilde{E}_{7(-25)}$ of type $E_{7(-25)}$ such that

$$
E_{7,1} \cong \widetilde{E}_{7(-25)} / N_{1}, \quad E_{7, \iota} \cong \widetilde{E}_{7(-25)} / N_{\iota} .
$$

We shall show $N_{1}=N_{c}$. From the general theory of Lie groups, we know that the center $z\left(\widetilde{E}_{7(-25)}\right)$ of $\widetilde{E}_{7(-25)}$ is the infinite cyclic group \mathbb{Z} [6]. Now assume that N_{1} $\neq N_{\iota}$. Since the centers of $E_{7,1}$ and $E_{7, \iota}$ are both \mathbb{Z}_{2} (Theorems 8, 17), we may assume that $2 \mathbb{Z}=N_{1} \subset N_{\iota}=\mathbb{Z}$ without loss of generality. Consider the natural homomorphism

$$
f: E_{7,1} \cong \widetilde{E}_{7(-25)} / N_{1} \longrightarrow \widetilde{E}_{7(-25)} / N_{c} \cong E_{7,!}
$$

Then $f^{-1}\left(z\left(E_{7, f}\right)\right)=f^{-1}\left(Z_{2}\right)$ is a discrete (because $E_{7,1}$ is simple Lie group) normal subgroup, therefore $f^{-1}\left(z\left(E_{7, \ell}\right)\right)$ is a central (because $E_{7,1}$ is connected) normal subgroup of $E_{7,1}: f^{-1}\left(z\left(E_{7, \ell}\right)\right) \subset z\left(E_{7,1}\right)$ and the order of $f^{-1}\left(z\left(E_{7, \ell}\right)\right)$ is not less than 4. This contradicts to $z\left(E_{7,1}\right)=\mathbb{Z}_{2}$. Therefore $N_{1}=N_{\iota}$ and we see that the groups $E_{7,1}$ and $E_{7,6}$
are isomorphic:

$$
E_{7,1} \cong E_{7, c .} .
$$

Thus from the preceding arguments we have the following main
Theorem 18. The group $E_{7,1}=\{\alpha \in \operatorname{Ison}(\mathfrak{F}, \mathfrak{F}) \mid \alpha \mathfrak{M}=\mathfrak{M},\{\alpha P, \alpha \mathrm{Q}\}=\{P, \mathrm{Q}\}\}$ is a connected non-compact simple Lie group of type E_{7}, its center $z\left(E_{7,1}\right)$ is the cyclic group of order 2:

$$
z\left(E_{7,1}\right)=\{1,-1\}
$$

and the polar decompsition is given by

$$
E_{7,1} \cong\left(U(1) \times E_{6}\right) / \mathbb{Z}_{3} \times R^{54}
$$

References

[1] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. Rijksuniv. te Utrecht, (1951).
$[2]$, Beziehungen der E_{7} und E_{8} zur Oktavenebene I, Nederl. Akad. Weten. Proc. Ser. A, 57, (1954), 218-230.
[3] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, (1962).
[4] T. Imai and I. Yokota, Simply connected compact simple Lie group $E_{7(-183)}$ of type E_{7}, Jour. Math., Kyoto Univ., to appear.
[5] N. Jacobson, Some groups of transformations defined by Jordan algebras III, Jour. Reine Angew. Math., 207, (1961), 1-85.
[6] J. Tits, Tabellen zur den einfachen Lie Gruppen und ihren Darstellung, Springer-Verlag, Berlin, (1967).
[7] I. Yokota, Simply connected compact simple Lie group $E_{0(-78)}$ of type E_{6} and its involutive automorphisms, Jour. Math., Kyoto Univ., to appear.

