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It is known that there exist four simple Lie groups of type E: up to local
isomorphism, one of them is compact and the others are non-compact. As for the
compact case, it is known that the following group

aMe=me, {al, al} =1 }

E: = { a € Iso¢(PBC, PC)
<aP, aQ> = <P, @>

is a simply connected compact simple Lie group of type Er [4]. As for one of non—
compact cases, H. Freudenthal showed in [2] that the Lie algebra of the group

Eini = {aclsor(B, B)lam =M, {aP, aQ} ={P, Q}}

is a simple Lie algebra of type Ev, where 9 is the Freudenthal’s manifold in $ =
SOIORAPR, 9RC, PC the complexification of IR, P respectively and {P, @},
<P, @> inner products in ¥ or BC. In this paper, we shall investigate the struc-
tures of this group En,: Our results are as follows. The group E+, is a connected
non-compact simple Lie group of type E7 and its center is the cyclic group of order
2
z2(Ewn1) = {1, —1}.

The polar decomposition of the group Ev,: is given by

Ev0 = (UQ) X Ee)/Z3x R*,
In order to give the above decomposition, we construct another group
aRC = MC, {al, al} :1}

En= {a & Isoc(B¢, BE)
<aP, a@>.=<P, @>.

(where <P, Q> is another inner product in B€¢) which is isomorphic to E7,: and
find the subgroup (U(1) X Es)/Zs explicitly in this group Eu,..
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1. Preliminaries.
Let @ denote the Cayley algebra over the field of real numbers R and & the
Jordan algebra consisting of all 3x3 Hermitian matrices in € with respect to the

multiplication XoV = %(X Y+YX). In &, the positive definite symmetric inner pro-
duct (X, Y), the crossed product XxY, the cubic form (X, Y, Z) and the deter-

minant detX are defined respectively by
(X, Y)=tr(XoY),
XxY = %(zXoY—tr(X)Y—tr(Y)X—I— {trXtr(Y)—(X, Y)E),
X, Y, Z)=(XxY, Z)=(X, YxZ),
detX= (X, X, X)

where E is the 3% 3 unit matrix.
Now we define a 56 dimensional vector space § by

P=JOIOROR.

of ¥ is often denoted by P=X + Y+E+77 briefly. We

X
Y
An element P =
&
7

define a bilinear mapping X : PXP — IO ID R by

X
2XXZ — W — oY
Y w
PxQ = X ‘ = 2V X W —&Z — X
3
. X, W)+(¥, Z)—3(Ew+nL)
w

and a space I by
WM ={LeP|LxL =0, L+#0)

M MxM=uN
N NX N=pM

=< L= eP .
2 (M, N)=3u
) L0

For example, the following elements of ¥
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X 1
) —(YxY) 0 0
7 XX X) Y ol . |o
1 > E 1 - > 1 =

where » 7% 0, £ 50, belong to 9. Finally in 8 we define the skew-symmetric inner
product { P, @} by

for P=X+YV+e+y Q=Z+WH+L+tocs$
2. Group Ev, and its Lie algebra es,.

The group Exr,: is defined to be the group of linear isomorphisms of  leaving
the space 9¢ and the skew-symmetric inner product { P, @} invariant :

B = {a € Isor(®, B)|a =M, {aP, aQ} = {P, Q}}.
We define a subgroup Es,i of Ev,1 by
Eg={a€Ey|lal=1, al =1}.

Proposition 1. The group Es, is a simply connected non—compact simple Lie
group of type Es(-20).
Proof. We define a group FEs(-2¢) by

Eosc-20) = { § € Tsor(S,
= { g € Isor(S,

) | detpX = detX }
)| BX x Y =B X x V) }

&2 LR

where ?8 is the transpose of 8 with respect to the inner product (X, V) :(8X, Y)
=(X, '8Y). Then FEs-26) is a simply connected simple Lie group of type Es [1]
and moreover of type Ee(-26), since its polar decomposition is given by

Eoc-26) 2 Fa X Rz

where F: is a simply connected compact simple Lie group of type Fi [1]. We
shall show that the group FEs, is isomorphic to the group Es(-26). It is easy to verify
that, for B & Ee(-26), the linear transformation a of ¥ defined by

B 0 0 0

0 gt 0 0
o =

0 0 1 0

0 0 0 1
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belongs to Er,.. Conversely suppose « € Er,1 satisfies al=1 and al=1. Then from
the conditions {aX, al} = {aX, al} =0 and {aX, al} = {aX, al} =0, we see
that « has the form

B e 0 0

d v 0 0
o —

0 0 1 ©

0 0 0 1

where B, 7, 6, ¢ are linear transformations of . Since

1

X BX —|—75 (XxX)
1 .
—(XxX) 1
a 7 — 0X —i“n—T(XXX) cm,
1
?detX lzdetX
Ui
U 7

we have
(BX +—717-5(X><X)) X (‘BX+—717—5 (XxX)) = n(ﬁX—F%r(XxX))

for all 0 4y €R. Hence we have 6X = 0 for all X € § as the coefficient of 7, there-
fore §=0, Similarly e=0. Thus

g 0 0 0

0O r 0 ©
o =

0 0 1 0

0 0 0 1

Again the condition a(X-4(XxX) - detX+1)=pX+ (X x X)) +detX+1€m implies

BX x BX = r{X x X),
(BX, r(Xx X)) = 3detX,

Hence detfX = %(ﬁX, BX X BX) — —é«(,@X, H(Xx X)) = detX, therefore B & Esc-a

and 7 = {87! € Es-26). Thus Proposition 1 is proved.
The group E., contains also a subgroup
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r10 0 O
0 71 0 O
R¥=1 v = 047 R
0 0 7~ 0
0 0 0 #8

(where 1 denotes the identity mapping of &) which is isomorphic to the group R*=
{r e R |r+#0}.

From now on, we identify these groups FEs-26) and Es,1, R¥ and R* under the
above correspondences.

We consider the Lie algebra ¢r,1 of the group Ev,

OLxL =0for Le

07,1 ={(I) e Hompg($, ‘13)‘ .
{OP, Q) +{P, 9Q}) =0 for P, QB

H. Freudenthal proved in [2] the following
Theorem 2. Any element @ of the Lie algebra ¢1,1 of the group Eura is rep-
resented by the form

¢—%pl 2B 0 A
24 ¢'+ipl B 0

?=0(4, A, B p)= s
0 A p 0

B 0 0 —p

where ¢ € ¢ = { ¢ € Homr(S, ) | (X, X, X) = 0} (which is the Lie algebra of the
group Es,), ¢' is the skew—transpose of ¢ with respect to the inner product (X, Y)
:(gX, Y+(X, ¢'Y)=0, A, BE S, p< R and the action of € on P is defined by

X | ($X—5pX+2BXY + 54
oY »2A><X+¢'Y+~é—pY+eB

¢ (A, ¥)+ pt

7 B, X)— oy

And the type of the Lie algebra ¢1,1 is En.

We shall determine the Cartan index of the group E+,. For this purpose we
use the following

Lemma 3 ([3] D.345). Let G be an algebraic subgroup of the general linear
group GL(n, R) such that the condition AEG implies *ASG. Then G is homeomor -
phic to the topological product of the group GNOm) (which is a maximal compact
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subgroup of G) and a Euclidean space R? :
G~ (GNOMm) x R4

where O(n) is the orthogonal subgroup of GL(n, R). In particular, the Cartan index
of G is dimG - 2dim(G N O(xn)).

Theorem 4. The group Er, is a simple Lie group of type Eur(-2s5).

Proof. We define in P a positive definite symmetric inner product (P, @) by

(P, @ =X, 2)+ (Y, W)+ E + yo
for P=X + Y+E+7}, Q=Z+ W+ ¢+ &< P and denote the transpose of @ with
respect to this inner product (P, @) by '@ : (DP, Q) = (P, ®Q). Then for
1
p—5el 2B 0 A
24 ¢'+pl B 0
0

— Ee7,1,
0 A 0
B 0 0 —p
we see easily that.
1 '
—¢ -—gpl 24A 0 B
1
2B —p+—pl A
i) — o+ 3 ol 0 ,
0 B o 0
A 0 0 —p

therefore ‘@ also belongs to ¢r,1. Since Er,: is an algebraic subgroup “of the general
linear group Isor(®B, B) = GL(56, R), from Lemma 3, the Lie algebra e,iNo(PB)
(where o() = 0(56) = {@ € Hompg(R, B)} @ + ‘@ =0}) of the group E+,:NOP) (where
O@F) = 0(56) = { a € Isor(P,B) | (@P, a@)=(P, Q) }) is a maximal compact Lie subal-
gebra of ¢7,. Now if @ & ¢1,1 satisfies @ + @ =0, then

§ =24 0 A
24 6 —A O
0 A 0 0
—-A 0 0 0
where § € fa = {0 € ¢, | 6' =46} (which is the Lie algebra of Fi). Therefore dim
(e7,0No(P)) = dimfs + dimG = 52 + 27 = 79. Hence

The Cartan index of ¢, = dimer,1 — 2dim(er,1 NO(P))
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=133 — 2Xx79 = —25,

Thus we see that the type of the Lie algebra es,; is Eu(-25).

8. Connectedness of Ev,.

We shall prove that the group Er,: is connected. We denote, for a while, the
connected component of Ev,1 containing the identity 1 by (E7,1)e.

Lemma 5, For A€ S, the linear transjformation expi(A) of B defined by

1 0 0 A
24 1 0 AxA
expi(4)=
AxA A 1 detd
0 0 0 1

(the action of expi(A) on B is as similar to that of Theorem 2) belongs to (Eia)o.
Similarly for B € 3 we can define

1 2B BxB 0
0 1 B 0
esz(B) = E(E7,1)o.
0 0 1 0
B BxB detB 1
Proof.
0O 0 0 A
2A 0 0 O
For @,(A)= & ¢r,1. we have expi(A4) = exp®:(A), hence
0 A 0 O
0O 0 0 O

expi(A) €(Era)e. Similarly expa(B) €(Era)o.
Proposition 6. The subgroup Gi={«a & E1,1 | al=1} is the semi—direct product of
the group expi(QJ)={expi(4) | A € 3} (which is an abelian group) and the group Es, :

Gi= expi1(Q)Es,1,  expi(QJ) N Ees, = {1},
Therefore Gi is homeomorphic to
G122 Eeq X R¥" >~ Fu X B%,

In particular, the group Gi is simply comnected.
Proof. Let @ = Gand put al = M + N+ 2+ 0. Then the conditions {«al, al}=1
and al € M imply v=1 and N = MXxM, p = detM respectively. Therefore we have

expi(M)1 = M+ (Mx M)" + detM + 1 = al, expi(M)1 =1 = al.
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so (expi(M))'a € Es,1, i e

a € exp1(J) Es,,

and conversely. Since the Lie subalgebra { ©1(4)= @(0, A, 0, 0)€ ¢r,1] AeJ} of er,1 is
abelian, the group exp:(3) is also abelian, Moreover exp:(J) is a normal subgroup
of Gi, because it holds that

Bexpi(A)B'= expi(BA4) for e Es1,AE .
Therefore we have the following split exact sequence
1 — expi(J) — Gi1 — Esy —> 1

Thus we see that Gi is the semi-direct product of expi(J) and Fe,i.

Theorem 7. The group Er,1 acts transitively on the manifold IR (which is con-
nected) and the isotropy subgroup Gi of Euni at 1 € M is exp1(J)Es, (Proposition 6).
Therefore the homogeneous space Er,/expi(S)Es,1 is homeomorphic to I :

Er,1/exp1(J) Eepr == .

In particular, the group Ew, is connected.
Proof. Obviously the group Ev,: acts on 9%. We shall prove that the group

(E7,1)e acts transitively on 9. Since
expi(—E)expE)1 = 1, expi(E)expa(—E)l=—1, expz(—E)expi(E))exps(—E)1=—1,

it is sufficient to show that any element L&} can be transformed in either of 1,
—1,1, 1. Let L=M+ N+ ¢+ o = 9. First assume x>0, Then M = —!1—[ (NxN),
v = %detN. Choose 0< # €R such that #*=p, then for
r*L 0 0 O
0 »1 0 O
¥ = e (E7,1)0
0 0o » 0
0 0 0 78

we have »1=p, and hence
LAV CL AP L AT CUAY Ny
expz(ﬁ)“ "“‘(u % #) i ”<#) t +""<det#>
1 . 1
= Z(NXN) +N+p+ l—lz-(detN)‘: )
If p<{0. L can be transformed in —1. Similarly in the case » =0 the statement is
also valid. Next we consider the case L=M+ Ne g, N+£0. Then MxM =N
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%X N =0, detM=0, (N, N)# 0 and so
expi(N)L=* + % + (N, N) -+ =

So we can reduce to the first case p # 0. In the case of M+ 0, the statement is
also valid. Thus the transitivity of (Evi1)e on 9 is proved. Therefore we have Ji=
(E7,1)0l, hence 9 is connected. Since the group Ev, acts transitively on 9% and the
isotropy subgroup of Er,: is expi{Q)Ks,1, we have the following homeomorphism

Er,1/7expi(3) Es 2 9N,

Since exp:(J)Es,1 is connected, E%,: is also connected. Thus the proof of Theorem
7 is completed,

4. Center z(E7,1) of K.
Theorem 8. The center z(E:,1) of the group Er is isomorphic to the cyclic
group Z» of order 2 :
2(Era)={1, —1}=Z..

Proof. Let a & z(E+;). From the commutativity with § & Esu,CEv1. we have
pal = aBl = al. If we denote al = M+ N+ p+ 0, then M + ({B'N)* + -+ =
M+ N+ g+ b, hence

gM =M, B'N=N for all g € Ee,.

Therefore M =N =0, so al=p+ 9, where g =0 (since al € 9r). Suppose that
#£=0, i.e. al =v # 0, then from the commutativity with
r11 0 0 0
0 71 0 O
v = e R*CEq,,
0 0 8 0
0 0 0 73

we have
(r3) =wrd=ral = arl = ar® = (¥*)° for all r&R*,

This is contradiction. Hence al = p. Similarly al = 2. The condition {al, al }=1
implies ¢4 =1, hence

Next note that
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¢ —1 0 O
) 1 0 0 0O
o 0 0 0 —1
0O 0 1 0

belongs to Ev,. Then the commutativity condition /a=a:' implies
p=dp=/ral =a'l =al = (u),
hence g = p™!, i.e. g =41, In the case of pu=1, a € Es, $0 a € 2(Es,)= {1} [5]

i,e. a=1 In the case of p=—1, —a < z(Es,)= (1}, i.e. « =—1. Thus we see that
2(En)={1, —1}.

B. Group E+, and its Lie algebra ev,..

We construct another simple Lie group of type Ew-25). Let C denote the field
of complex numbers and J¢ the complexification of §. In J€ also, the inner pro-
duct (X, V), crossed product XxY, the cubic form (X, Y, Z) and the determi-
nant detX are defined as similar in $. Let B¢ be also the complexification of

B
PC =JIC D ICDC DC.

We define a mapping X : BC X RC—IC D IC P C as similar as the case P and a
space INC by

MC={LeBC | LxL =0, L#0}.

Finally in €, $C¢, positive definite Hermitian inner products <X, Y>, <P, Q>
and the inner product <P, Q>., the skew-symmetric inner product {P, Q} are
defined respectively by

<X, Y>=(X V)=(X, Y),
<P, Q> =<X, Z>+ <Y, W> + & -+ 7o,
<P, Q> =<X, Z> <Y, W> + & — o,
{P, Q} =X, W)—(Z, Y)+ & — 0y,
where ¢ : IC—QC is the complex conjugate (¢X is also denoted by X) and P =
X+Y+é+9 Q=Z+W+{+aoec PO,
Now the group Ev, is defined to be the group of linear isomorphisms of B¢

leaving the space INC, some skew-symmetric inner product {P, Q} and the inner
product <P, Q> invariant :

AR =M, {al, al}=1

Eiy.= { a e [soc(BC, BO) .
<aP, aQ>.=<P, Q>.for P, Q € RC
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We define a subgroup Es of Ev, by
Ei={acE |al=1, al=1).

Proposition 9. The group Es is a simply connected compact simple Lie group of
type Es and isomorphic to the group

Esc-m={ g € Isoc(JC, J0) | detpX=detX, <BX, Y >=<X, Y >}
={B € Isoc(IC, JC) | XX Y =cpr(X X Y), <pX, pY>=<X, Y>)

(see [7]) by the correspondence

g 0 0 O
0 =z« 0 O
Est-1 € p— i eEq,.
0 0 1 0
0O 0 0 1

Proof. It is seen by the analogous proof of Proposition 1 (or see [4] Proposi-
tion 2).
The group Ew, contains also a subgroup
71 0 O 0
0 61 0 0
UQl)={ 0= oeC, |6|=1
0 0 & 0
0 0o 0 @3
which is isomorphic to the unitary group Ul)={6=C ||8|=1}.
From now on, we identify these group Esc-w) and Es, U(l) and U{(1) under the
above correspondences.
We consider the Lie algebra ¢r,. of the group Ev,. :

OLXL =0 for L € M€
¢r,e =1 @ & Home (PO, P$C) (@1, 1}+{1, 01} =0
<OP, Q>+ P, PQ>.=0for P, Q € ¢
Theorem 10. Any element @ of the Lie algebra e, is represented by the form

¢—%p1 24 0 4

— 1
o — 2A eprtopl A0
0 A p 0

A 0 0 —p
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where ¢ € ¢ = {¢ € Home(JC, I0) | (X, X, X)=0,<¢X, Y>+<X, ¢Y> =0}
(which is the Lie algebra of the group Es), A& JC, pe C such that p+ p =0 and
the action of @ on RC is defined by

¢X——%pX+2A>< Y474

]
<A, Y>pt

X
Y |_ | 2AXX4egeY 44 oY 64
¢

U (4, X)—py

In particular, the type of the Lie group Er, is Er [2].
Proof. It is obtained by the analogous argument as Theorem 3 of [4].

6. Involutive automorphism ¢ and subgroup (U(1) X Kes)/Zs.
We define an involutive linear isomorphism ¢ of ¢ by

1 0 0 0
0 -1 0 O
T 0 0 1 0
0 0 0 -1

Then two inner products <P, Q>, <P, Q>. in BC are combined with relations
<P, Q>=<P, Q>=<P, Q>, <P, Q>=<cP, Q>=<P,Q>..

The following Lemma is easily verified,
Lemma 11. For a € Ev,:, we have wie & Ex,..
Therefore we can define an automorphism ¢ : Evw,,—> E7,. by

o =cou ac Er,..

Proposition 12. The subgroup {«a € Ev,. | wae = &} of the group Ei,. is isomor-
Phic to the group (U)X Es)/Zs :

{ac Evy | eae =} = (U)X E)/Zs

where Z:={(1, 1), (@, ol), (@, o)}, 0=, o*=1, 0#l, and

'l 0 0 0 wl O 0 0
0 wl 0 O 0 w1t 0 O
® = elU(l), ol= e Fs,
0 0 1 0 0 0 1 0
0 0O 0 1 0 0 0 1



Non-compact simple Lie group Ey.s, of type E; 13

Proof. We define a mapping ¢ : U(1) X Esc-y— {a € Ev,. | e =a} by

%1 0 0 O0\/pB 0 ©

0, p)=08 =

0
0 61 0 0|l 0 6 0 0
= po.

0

0O o ¢ ojl0 0 1
0 o6 0 ¢2/\0 0 0 1

Then obviously ¢ is a homomorphism. We shall prove that ¢ is onto. If acEy,.
satisfies cac=ea, then « has the form

B 0 M 0

0O v 0 N
o =

a 0 p O

0O & 0 v

where B, v are linear transformations of 3¢, @, b linear functionals of ¢, M, Ne
]C¢ and g, v € €. The conditions al, a1l € 9NC imply

M =0, vN =0

respectively. We shall show that M = N =0, Assume M # 0, then =0, so a is
not identically 0. And then from {al, «l}=1, we have

(M, N)=1, (i)

hence N # 0, so v = 0. Furthermore the condition

X BX + #(detX)M
1 1
a = e e
Ldetx a(X)
7
1
. SHX X X)

implies
(T X X)-42N) X (XX X)-HgN) = alX ) X+ (det X)),
(‘BX—{—#(detX)M, %r(XxXH—nN): Ba(X);l?—b(XXX)

for all 0+ » € C. Hence we have
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21X x X )x N = a(X)pX, (i1)

PX X X)X 7 XX X) = a(X){detX )M, (ii1)

(BX, r(Xx X))+ detX = 3a(X)b(X x X). (iv)
Therefore

a(X) detX =a(X)(detX)(M, N) = (X X)x7(XxX), N)

= (XX X), 7XXX)XN) = 2alX)(XxX), §X)

= 5 0X)(BalX)BX x X) ~detX),

Hence
a(X)detX= (a(X )X x X).
Thus we have
detX= a(X (X x X)

(since @ : ¢—C is a linear functional and detX— a(X)b(Xx X) is continuous with
respect to X, even if for X such that a(X)= 0). This contradicts to the irreducibility
of the determinant detX with respect to the variables of its components. Thus we
have M = 0. Similarly N=0. So

al=p, Lvi:(#”l)' rel, lpl=1

Choose 8 € € such that ¢ = p and put 8= 0~'a, then fl=1 and Bi=1, therefore
B € Es. Thus we have

a =08 0 e U(l), B E..

So ¢ is onto. Kerg = {(1, 1), (0, ol), (¢*) 01)}, o, &*=1, 0+l, is easily
obtained. Thus the proof of Proposition 12 is completed.

7. Polar decomposition of Ev,.

In order to give a polar decomposition of the group Ev., we use the following

Lemma 13 ([3] p.345). Let G be a pseudoalgebraic subgroup of the gemeral
linear group GL(n, C) such that the condition AcG implies A*&G. Then G is
homeomor phic to the topological product of the group GNUm) (which is a maximal
compact subgroup of G) and a Euclidean space R? :

G = (GNUm) xR?

where Un) is the unitary subgroup of GL#n, C).
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Lemma 14. Eu,: is a pseudoalgebraic subgroup of the general linear group GL
(56, C)=Isoc(BC, BC) and satisfies the condition e € Er, implies a*< Er,. where a* is
the transpose of o with respect to the inmer product <P, Q> : <aP, Q>=<P,
a*Q>,

Proof. Since <a*P, Q>=<P, aQ>=<(P, aQ>.=<a WP, Q> =<ea 1P,Q>

for a< E+,:, we have
a*=w 't € Er,, (Lemma 11).

And it is obvious that E+, is pseudoalgebraic, because Ev, is defined by pseudoal-
gebraic relations aft€= MC, {al, al} =1 and <aP, aQ>.=<P, Q>..

Let U(6)=U(BC)= {a & Isoc(RC, BC) | <aP, aQ> = <P, Q>} denote the uni
tary subgroup of the general linear group GL(56, C)= Iso¢(RC, RC), then we have

En NUBC) = {as Er,. | tar=a}
= (U)X Es)/Zs (Proposition 12).

Since Ev,. is a simple Lie group of type E+, the dimension of E%, is 133. Hence the
dimension d of the Euclidean part of Ev, and the Cartan index 7 are calculated as
follows :

d = dimEr,.— dim(U(1) x Es)= 133 — (1 + 78)= 54,
i = dimEr,.— 2dim(U(1) X Es) = 133 — 2(1 + 78) =—25.

Thus we get the following
Theorem 15. The group Ex,. is homeomorphic to the topological product of the
group (U)X Es)/Zs and a 54 dimensional Euclidean space R :

E7, = (UQ) X Es)/Zsx R™,
In parvticular, the group Enr,. is a commected non—compact simple Lie group of type

Eq(-25).

8. Center z(E-+,)ef Ei,..
Lemma 16. For a € C, the transformation of BC defined by

1+ (cosh|a| —1)p1 ZathLa—l—El 0 as1nh|a| 7
lal la|
25%& 1+ (cosh|a| —1)p: %;]IMEI 0
ai{a)= . |
0 gSinhlal cosh|al o
lal
i £ 0 0 cosh|a|

la|
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1 0 0
(if a =0, then a%llat means 0) belongs to Er,., where E:=| 0 0 0 ]€gC,
0 0

the mapping p: 1 JC—> € is defined by
1 X3 Fa & 0 O
Pl X & x|=[ 0 & x
X2 X1 &3 0 % &

and the action of aila) on BC is defined as similay to that of Theorem 10.
Proof.

0 2aE: 0 ak
24E: 0 ak 0
For O1{a) = & ¢r,,, we have ai{a) = exp®i(a), hence
0 ak, 0 0
akl 0 0 0
ai(a) € Eq,.
Theorem 17. The center z(Er,) of the group Ex, is isomorphic to the cyclic
group of order 2:

2En)=(1, —1}.

Proof. Let a € z(E+:). From the commutativity with 8 & EsCEr,., we have
fal = apl = al. If we denote al=M + N + p+ 5, then BM + (cpeM)+ p+v=M
+N -+ ¢ -+ v, hence we have

BM =M, feN=N for all & K.
Therefore M = N =0, so al = p -+ p, Similarly al= 1+ # The conditions al, al
e M, {al, ai} =1, <al, al>.=1 imply
w=0 =0, m—A=1 |p*—|v|?=1

respectively, hence

al = p, al= (gt peC,lpl=1
Choose 6 € C such that 0= p and then put 8 = 6~'«, where
61 0 0 0
0 @ 0 0
0= eU().
0 0 & 0

0 0 0 673
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Then fl = 6'al = 7'y = 073¢° = 1, similarly gl =1, hence B & Es. Moreover p &
z(Ee) (which denotes the center of Es), in fact, 88 =6"'af =6"'fa=p0"a=p48
for all §' € Es. Thus we have
a=0p 0= U(1), psz(Es).
Since z(Ee)={1, wl, 0®l}, 0 €C, 0* =1, w#1[7], we have
0wl 0 0 0
0 G~ 1 0 0
@ = wcl, o*=1,
0 0 o3 0
0 0 0 -3
Again from the commutativity with ai{e) of Lemma 16 : a:(1)a = aa:(1), we have
fOw'coshlE: 4+ 0 'w(sinhlEs)" = ai(1)(0"'wE:) = ai(l)aF:
= aa1(1) E2 = a(coshlE: + (sinh1E3)’)
=0"'wcoshlEz + (fw~!sinh1Es)

0 0 0 0 0 0
where E2=|0 1 0, Es={ 0 0 0], hence 07w =00, i.e, 07w = £1.
0 0 © 0O 0 1

Therefore a = 41, i.e. 2(E7.)={1, —1}. Thus the proof of Theorem 17 is completed.

9. Isemorphism FEi,1 22 Er,..

From Theorems 4, 7 and 15, we see that the groups Ev: and Es,. are both
connected and their Lie algebras have the same type Ei-25). Therefore there exist
central normal subgroups Ni, N. of the simply connected simple Lie group Erc-o5)
of type Ewc-25 such that

By = E'I(—ZB)/NI, Eq, = E7(—25)/Nz.

We shall show Ni= N.. From the general theory of Lie groups, we know that the
center z(Erc-25)) of Erc-25) is the infinite cyclic group Z [6]. Now assume that N
# N.. Since the centers of E7,1 and E7, are both Z: (Theorems 8, 17), we may
assume that 2Z = N:CN.= Z without loss of generality. Consider the natural homo-
morphism

fiEqm= E‘v(—25)/N1——+E7(—25)/N: = e,

Then f-Yz(En,:))=f"YZ:) is a discrete (because Ev, is simple Lie group) normal sub-
group, therefore f~'(z(Ev+,.)) is a central (because Ev, is connected) normal subgroup
of Eu1: f~Yz(Er))CTz(Er,1) and the order of f~'(z(E%,)) is not less than 4, This con-
tradicts to z(E%1)=2Zs Therefore Ni=N. and we see that the groups Er: and E,
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are isomorphic :
Eq 22 By,

Thus from the preceding arguments we have the following main

Theorem 18. The group Ev,1 = {a<Isor(P, P) | a=M, {«P, aQ} = {P, Q}}
is a connected non—compact simple Lie group of iype En, its center z{Era) is the
cyclic group of order 2 :

z2(Eri) = {1, —1}
and the polav decompsition is given by

Eqj 2= (U)X Es)/ Zs x R,
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