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It is known that there exist three simple Lie groups of type FEg up to local
isomorphism, one of them is compact and the others are non-compact. We have
shown in [7] that the group

Ey={ asIsoc(t:C,eC) | al Ry, Ro]=[aR,, aR,], <<aR,, aR,>=<R,, R;>)}

(where ¢C is a simple Lie algebra over C of type E3 and <R,, R,> a positive
definite Hermitian inner product in ¢€) is a simply connected compact simple Lie
group of type Eg. In this paper, we consider one of the non-compact cases. Our
results are as follows. The group

Es,,:{ a & Isog(eC, esC) | al Ry, Rz]:[aRb aR,], <aR,, aR,>=<R, Ry >}

(where <R,, R,>. is another inner product in ¢€) is a connected non-compact
simple Lie group of type Ey and its center z(Es, ) is trivial:

Z(Es,!):{l}-

The group Eg . contains, as a subgroup, a special unitary group SU(2) and a simply
connected compact simple Lie group E; of type E; and the polar decomposition of
Eg, . is given by

Ey .= (SU@2)XE,)/Z;, x B2,

The group Es, . contains also, as a subgroup, a special linear group SL(2, R) and
a connected non-compact simple Lie group Iy ; of type Ey 4. In order to show
this, we construct another group

Ea,xz{ “EISOR(%,U e5,1) | aT=%, a[Ry, Rz]:[“Ru “sz}

2

(where ¢, is a simple Lie algebra of type FEg-z» and § a submanifold of ¢ ;)
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which is isomorphic to E; . and find subgroups SL(2, R) and E,; explicitly in this
group E,,

I. Group E; .

1. Preliminaries,
Throughout this paper, we use the same notations as in [7]. However we

arrange definitions and some properties of the exceptional Lie algebras ¢¢, ¢,¢ and

¢sC.

1.1. Jordan algebra € [17, [7]).

Let 6C denote the split Cayley algebra over the field of complex numbers C and
3C the Jordan algebra of all 3x 3 Hermitian matrices with entries in ¢ with respect
to the multiplication XoY:%(XYqLYX). In ¢, the inner product (X, Y), the
positive definite Hermitian inner product <X, Y>>, the crossed product XxXY and
the cubic form (X, Y, Z) are defined respectively by

(X, Y)=tr(XoY), <X, Y>=(X, Y),

Xx V= —21—(2XoY—tr(X) Y—tr(V)X + (tr(X)tr(Y) — (X, Y)E),
X, Y, Z)=(X, Yx2)

where X is the complex conjugate of X with respect to the field C and E the unit

matrix.

1. 2. Lie algebra ¢C 1], [7].
The exceptional Lie algebra ¢;€ over C of type Eg is defined by

eC={ ¢ € Hom¢ (3¢, JC) | (X, X, X)=0}.
For A, B JC, we define A\VB &< ¢C by

(A\/B)X:%(B, X)A+%(A, B)X —2Bx (AxX), Xeal,

then {A\/B | A, B JC} generates ¢,C additively. In ¢€¢, we define a positive definite
Hermitian inner product <l¢,, ¢, > by

<¢1, ¢2> :Z<¢1Bi, Ai>

where ¢2:ZAi\/B,-, A;, Bie 3. Finally, for ¢ € ¢C, we denote the skew-transposes
- ,

of ¢ by ¢', '¢ with respect to the inner products (X, Y), <X, Y>> in J¢ respec-
tively :
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#X, Y)+(X, ¢'Y) =0, <pX, Y>4+<X, '9Y>=0,

then ¢', '¢ & ¢gC.

1.3. Vector space B¢ [2], [7].
We define a 56 dimensional vector space 8¢ by

PC=JCHICDCDC.

In BC, we define a positive definite Hermitian inner product <P, @> and a skew-
symmetric inner product {P, @} respectively by

<P, @>=<X, Z>+Y, W>+ &+ yo,
(P, Q)=(X, W)—(Z, Y)+éo—0y

for P=(X, Y, & 7), Q=(Z, W, {, «)E$C. Finally, for P=(X, ¥, & 5) & %C,
we define P e RC by
P=(-Y, X, =, .

1.4. Lie algebra ¢,C [27, [4], [56], [7].
An exceptional Lie algebra ¢,€ over C of type E, is defined by

eC={ 0, A, B, p)eHomc(RC, BC) | s, A, Be Y, pel},

where @(p, A, B, p) is a linear transformation of $€ defined by

X gb——é—pl 2B 0 A\ X
i L

& 0 A o 0 &

7 B 0 0 —p i

¢X—%pX—I—2B>< Y+ pA

2A><X+¢’Y+—;—pY+EB

(A, Y)+ pé
B, X)—py

The Lie bracket in ¢,C is given by

I:d)(¢1) Al) Bl’ ,01)) ®(¢2> AZ) BZ> ‘02)]:@(¢y Ay B; ,D)y
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where

¢="[¢1, ¢o]+ 24,/ By —24,\/B,,
A= (it 2 o) A= (g F=pe1) Ay,

2
B= (' —p)Ba— (3~ o),
0= (Al’ Bz)_(Bl, Az).
For P=(X, Y, £ 1), Q=(Z, W, ¢, o) €%C, we define PxQ & e.C by
1 .
b=~ X\VW+2VY),

A:~%(2Y>< W—eZ—tX),
PxQ=0, A, B, p),

B==02XXZ W — oY),

p ==X, W)+(Z, ¥)— 3o+ y).

ool |

Then { PxQ | P, Q =PC } generates ¢;,C additively. In ¢,C, we define a positive
definite Hermitian inner product <®@,, @,> by

LDy B> =2y, P> AL A, A>+4<B,, B> +%@pz

where ®;=®(¢;, A;, Bi, p)eeC, i=1, 2. Finally, for ® =0($, A, B, p) € e,C, we
denote the skew—transpose of @ by '@ with respect to the inner product <P, @> in
B : KOP, Q>+<P, '0Q>=0, then

'D=0(¢, —B, —A, —p).
In particular, ’(I)E‘;sibc#?. And the Lie algebra

e, ={ el | O="0}
{
is a compact Lie algebra of type E,.

1.5. Lie algebra ¢ [2], [7].
An exceptional L@e algebra ¢C is defined as follows. In a 248 dimensional vector
space

tC=e,L PRCDRCDCDC DL,

we define a Lie bracket [R,, R,] by
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*[(@17 Pb Ql: rla S1» tl)) (@2, PZ) QZs ¥a, Sa t2):|:((p5 P) Q, ¥, S, t)

where i

? =19, @2]+P1XQ2—P2XQ1,‘[ !
P=0,P,— 0,P, + 1Py — 1Py + 5,0, —'5:Q,
Q=0.Q,— 2.Qi— 1@+ 1@, + LP, — P

1 1 5.ty st
y = —‘8‘{131, Q:} + "8“{P2, Q1) +54its fSZtl’g

S :%{Pl, Pg} ‘I’27152 -‘27’251,

1
t= _Z{Qb @2} — 211ty + 20t

Then ¢¢ becomes a simple Lie algebra over € of type Es. In ¢€, we use notations

2, (0, P, 0, 0, 0, 0)=P,
Q) (O) O’ 0’ 1) 0) O):l’
i, 0, 0, 0, 0, 0, 1)=L,

(Q) O’ O) O) 0) 0)
(O) O’ Q’ O’ O’ O)
0, 0, 0, 0, 1, 0)

f

Then the table of the Lie bracket among them is given as follows :

0, P, @ 1 1 1

o, | [0, 0, (@.P;)~ (©.Qy) _ 0 0 0
P, xQ,
P | ~@P)™ | (P PoT ~Lip, Qi ~P, | o0 o
—P,xQ, ) ‘ .

Q| @@ | 4 Lip, g | 4@ Q1| & | - | o
1 0 jzA ~Q. 0o | el ~21j ”
1 0 0 Q. —21 0 1
1 0 P, 0 21 | -1 0

For R=(?, P, @, », s, t) € g€, we denote the adjoint tranéformation adR of
eBC by @(@) P, Qa r: s) t):
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0, ad® —Q P 0 0 0 0,
P, —P 04rn s —P —-@ 0 P,
0, P, Q@ rs, | nl=| o0 ~—é~@ —eP 0 =t s ||~
1
S 0 ’Z‘P 0 — 25 2r 0 St
1
t 0 0 -;0 2 0 —2r)| &

=[@, P, Q, r, s, 1), (@), Pi, @, 71, sy, tl)]:ER, R ]=(adR)R,.

Since ¢€ 1is simple, the Lie algebra Der{(e;€) of all derivations of ¢€ consists of
adR, ReeC:

Der(esC)={ 6@, P, @, », s, 1) | P=e,C, P, QERC, », s, t=C }

and it is also isomorphic to the Lie algebra ¢C.
In ¢C, we define a positive definite Hermitian inner product <R,, R,> by

LRy, Ry>=<Dy, 0,>+<P;, P>+, Q2>‘|‘87j172‘|‘4~;132+4;1t2

where R;=(®;, P;, Q:, 7:, si, b)) € ¢C, i=1, 2, Finally, for =00, P, Q, 7, s,
t)eDer(esC), we denote the skew—transpose of ® by '@ with respect to the inner
product <R,, R,> : <OR,, R,>+<R;, 'OR,>=0, then

'O=0(0,—Q, P,—r, 1, —3).
2. Group Eg ..
In ¢¢, we define another inner product <R, R,>. by
<Ry, Ry =<0, O>—<P;, P:>—<Q:, Q>+ 8;'17’2 -+ 45152 ~|’421152

where R;=(®;, P;, @;, 7i, s;, t)€eC, i=1, 2.
The group FE . is defined to be the group of automorphisms of ¢;¢ leaving the
inner product <R,, R,>. invariant :

Es,c={ acIsoc(esC, &C) | a[ Ry, Ry]=[aR,, aR,], <aR,, aR,>.=<R,, R, >..
The Lie algebra ¢ . of the group Eg . is
eg,::{ @EDCI‘(%C) |<@R1, R2>£‘1‘<R1, @R2>z:0 }.

We define an involutive automorphism ¢ of ¢¢ by
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1

Then ¢ Ey .. And the two inner products <R, R,>, <R, R,>:. in ¢C are com-
bined with relations

<R1, R2>l:<lR1, R2>:<R1, 1R2>>
<R1, R2>:<!R1’ R2>t:<R1, !R2>!-

We can define an automorphism ¢ of Ey . by
o = o, ae By,
And for @=0(@, P, Q, 7, s, t)ee,. we have O =g, more explicitly
Oe=06(0,—P,—Q, r, s, 1.
Theorem 1. Any élement O of the Lie algebra ¢y . is represented by the form
@=00, P,—P, r, s, —3), D¢, PeEBC, 7, seC, r+r=0,

In particular, the type of the group Eg . is E.
Proof. Put ©=0@, P, @, r, s, Heel, Oc=e,C, P, QEPC, v, s, tC.
From the condition <®OR,, R,>.+<R,, OR;>.=0, that is,

<OR,, Ry>+<Ry, BeRy>=0, R, Ry,

we have (@ ='6, i.e.,

@(@’ _P: #Q) v, S, t):@(lﬁ’ _@> }/)\s _r_:. _Z) _S_);
hence ¢='0, Q:—~/}\3, r=—r, t=-—s. Therefore we see that the complexification
of e, is ¢, so the Lie algebra ¢, is also of type E,.
3. Subgroups E; and SU(2) of Eg ..
We have proved in [4], [6] that the group

Er-upn={ pelsoc(BC, BC) | P Q)™= pP x Q, <pP, pQ>=<P, @>}
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is a simply connected compact simple Lie group of type E;,. Now, we shall show
that the group Ey . contains compact subgroups of type E; and A..
Theorem 2. The group Es . contains a subgroup

E7:{ acFEg . | al=1, al=1, al:_l_k}

which is a simply connected compact simple Lie group of type L.
Proof. The mapping

Adp

E7(,133)5‘B—‘—>‘8: EE'; CEg}l,

(where Adp : ¢;€——e,C is defined by (AdR)P=pPS!) gives an isomorphism between
Ei-1smy and E,. The analogy of this proof is in [7] Theorem 25, so we omitt here,
(This Theorem follows also from the following Theorem 4).

Theorem 3. The group Es . contains a subgroup

1 0 0 0 0 0
0 a1 —b1 0 0 0
0 b1 al 0 0 0 a —b
SU@={ A= _ _|eSU@)
0 0 0 |a|®*—|b2 —ab —ab b a
0 0 0 2ab at —b
0 0 0 2ab —b2

which is isomorphic to the special unitary group SU2)={AesM(2, C)|A*A=FE,
detA=1}. v
Proof. It is easy to verify that SU(2) is a subgroup of Ej . (or see the following
Theorem 4). '
~In the followings, we identify these groups FEq-3y with £y, SU(2) with SU(2)
under the above correspondences,

4, Involutive automorphism ¢ and subgrqup (SU@2) x E})/Z, of E,..

Theorvem 4. The subgroup { a € Eg. | cac=a } of the group FEs . is isomorphic
to the group (SUQR)XE)/Z,, where Z,={(E, 1), (—E, 9}.

Proof. We define a mapping ¢ : SU@R)XE;—{ a € Ey;c | ee=a } by
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1 0 0 0 0 ON/AdB O 0 0 0 O
0 al —b1 0 0 0 0 8 0 0 0 O
0 bl al 0 0 0 0 0 B8 0 0 0
P(A, B)=Ap= _
0 0 0 |al2—1b|2 —ab —ab 0O 0 0 1 0 0
0 0 0 2ab P 0 0 0 0 1 0
0 0 0  2ab —b @ 0 0 0 0 0 1

Since A= SU(2) and g€ E; commute in Ey . : Af= pA, obviously ¢ is a homomor-
phism. We shall prove that ¢ is onto. If a € Ey . satisfies w=«, then a has the
form

Bt 0 0o ¥ v, U,
0 B Bas 0 0 0
0 Bse Bs 0 0 0

A 0 0 ¥y 72 V3

=

I, 0 0 Sy S S3

13 O 0 tl tz t3

where B, ¢.C—¢C, B, Ba, Pay, Baz: PCO—RC, [; 1 ¢ —C are linear mappings,
U,cef and v, s;, HieC, i=1, 2, 3. ‘
L [1, -i]:ﬂ implies [«l, aT]chﬁ, that is,

L, 0, 0, 7, 81, 1), (F,0, 0, 75, 52, £5)]
:([1[]'1, 211‘2], O, 0, Sltg_‘Sztl, 27132‘27281, _271t2+27'2t1)

:2(1*[}.29 05 01 7’25 SZ) tZ)-
Hence we have

(1) [wla quj: 21]/‘2’ (2) 31t2*‘”82t1: 2¥s,

(8) 71S3—7251= 53, () —ntetreti=t,.

Similarly, from [1, 1]=-21, 1, 1]=1, we have

(5) [wly w(%:l = —"2@‘3’ (6) Sltg _S3t1 = ”‘27’3,
(7)  #183—13S1= —S3, (8) —rits vt =—1s,
(9) [wz, w‘S:I = y]‘ly (10) 32t3“33t2:7’1,

(11) 27’233_27332: S1, (12) _27’2t3+27’3t2:t3.
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[, 1]=0 implies [«®, «1]=0, that is,

[(ﬂl@i 0) 01 ll(ps ZZ@v 130), (qfl, 09 0: rl, Si1y tl)]

:([,31@, ¥, 0, 0, —s,,04+4152, — 21,0+ 25,9, 27’113(1)“25111(1)):0-

Hence we have

(13) [ﬁx(p, 111'1]:0’
(15)  rily=s,14,

(14)  sils= tidy,

(16) 7113: tlll-

Similarly, from [@, T]:O, [, }_]:O, we have

17 [a2, ¥:]=0,
(19)  7oly=s2ls,
@) [p2, ¥s]=0,
23)  7ala=s3ls,

And o[ ®,, O,]=[a®,, ad,] implies

(25) 181 [(Dl» @2]:[.31@1, ﬂx@zj-

(18)  saly= tols,
(20) rls=taly,
(22)  s3ly= t3l,

(24) 7’3[3: tall.

We shall prove that ¥',=¥,=%;=0 and [;= L= [;=0.

i T2 7

Case (i) : |s; s: s3| is not zero. For example, assume #,# 0. First we show

by t I

that f, is non-degenerate, Suppose B, is degenerate, then there exists 0+ @,  ¢,¢

such that 8,9,=0. From <a®,, al>=<®,, 1>=0, we have

<19y, >+ 871-(7507’1 + 4@032 + @oh: 0.

. s t
Since l=—2-1,, I, =
7 %

1

[, from (15), (16), we have

117])0(8|7’1|2 + 4512+ 41417 = 0.

Therefore [,@,=0, and hence [,@,=[;9,=0. Therefore a®,=0 for @,+# 0. This con-

tradicts to the non-degeneracy of a.

Bie,C=¢,C. Hence (15) shows that ¥, is a central element of p,¢;C=¢,C,

Lie algebra ¢,C is simple, we have

Thus we see that B, is non-degenerate, so

¥=0, and hence T,=W,=0

Since the

from (1), (5). Again using <a®@, al>=<®, 1>=0, that is, LO(8|r|*+4|s,|2+4|¢,]?)
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=0, we have ;0 =0 for all @ ¢,C, Hence
=0, and hence lh=10—=0

from (15), (16).

case (ii). r;=s;=1;=0, i=1, 2, 3 (which doesn’t occur). In this case, ¥;+#0,
U0, ¥+ 0 from the non-degeneracy of a. 133 = dim ¢,0'= dim(f,¢,C + [,¢,C + L,¢;,C +
;¢,C) implies dim B;¢,¢ =130, and from <g,®@, ¥;>=0, i=1, 2, 3, <¥;, ¥;>=0,
i=j, we see that dim §,¢,C is just 130, so

60 = fieC B CY, DCY, DOV,

However (13), (17), (21), (25) show that 8,¢,C is ah ideal of ¢,C, So B,6,¢=¢,C from
the simplicity of the Lie algebra ¢,C. This contradicts to- dim ¢;C=dim g¢,€ =130
<133 = dim ¢,C,

Thus « has the form

N =
0 0 2 73

0 0 Sy Sy S3

o O o o O

0 0 1 s 13
II. [P, 1]J=—P implies [aP, all=—aP, that is,

[0, pP, BseP, 0, 0, 0), (0, 0, 0, 7, o )]
=(0, —nBeP—5:18sP, "PsP—t.5P, 0, 0, 0)
=—(0, BP, BwnP, 0, 0, 0).
Hence we have
(26) (1—7)f2 = $1P32, (27)  (1+7)Bsz= 1P
Similarly, from [P, 1]=0, [P, 1]=—P, we have

(28) 722 = — S22, (29)  72fBs2= 13,
(30) #7382 + S3B32= Bes, (31) 73.332 —’tsﬂ;z = Bs. ‘

And from [@Q, 1]=@, [@, 11=-0, [Q, 1]=0, we have
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(32) (1+7’1).323 = —5,0s, (33) (1"7’1).33 = —t1Ba3,
(34) Y2Be3 + 5285 = B2, (35) ¥oBs — tofes = ~ Bs2,
(86) 7323 = —S3Bs, (37) 7385 = 3.

We shall prove that there exist @, b, ¢, d<C and 8, r € Isoc(e:C, ¢;,¢) such that

ﬁZ = aAB! ﬂZS =y, lrz = —ab, V3 — Cd,
(38)

Bs2 = 08, Bs =dr, Sy =at, ly=d=

Case (i) : s,550, s,5£0 implies #3540. In fact, suppose #;=0. Then we have sy,
=25, ¥3t;=0 from (6), (8), hence »; =0. So s; %0 (because « is non-degenerate) and
hence #;,=0, Hence 7,=-—1 from (7). From <al, al>=<1, 1>>=28, that is, 8+
418,]2= 8, hence s,=0. And »,=0 from (2) and finally s,=0. This contradicts to the
hypothesis s, 0. Now, choose a, d = C such that

02232, dz:ts
and put
__n )
b—- a Py c d )
_1 _1
18_0182’ 7’~dﬂs

Then f3: = —Z—Zﬁz =bp from (28) and P :%‘63 = ¢y from (37). Obviously 8, 7€ Isoc

(e:€, ¢,0), because a is non-degenerate,

Case (ii) : 8,=0. s5,=0 implies #;=0 and 7,=r;=0, £+#0, s;5%40 from the same
arguments as Case (i), Hence $8; = f; =0 from (29), (36). Now, choose b, ¢ € C such
that

—bP=1,, —t=s;
and put
a=0, d=0,
1 1
B= ?ﬂazy = —c“ﬁza.

Then (38) is also valid in this case.

1. [P, @]:%{P, Q)1 implies [aP, a@]:%{P, Q}al, that is,
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[(0’ ‘BQP, ﬁ32P9 0) 07 O)) (O: ﬁZQ) ‘832Q7 0: 0) O)]

:(ﬁszﬁazQ_ﬁaszﬁzQa 0, 0, _% {ﬂszp, ,BzQ} _%{.sz, B®},
1 1
’4—{,82}), ,BzQ}_I{.@mP, ,BazQ})

=0, 0, 0, i—{P, Qe %{P, Q)se —{P, Q)ts)

|

Hence we have

(39)  BaP X B32Q = BsaP X @,
(40) {,BZP; ,BazQ}+{,Bazp, ﬂzQ}:—m’z{P, @},
(41) {‘82P> .BZQ}ZSZ{P> @}, (42) {ﬁszp, ‘BszQ}:_tz{P7 Q.

Similarly, from [P, @1=PxQ -+ (P, @, [P, @l=—-(P, @)L we have

(43) PP X Q)= oP X BsQ — BsoP X B2,

(44)  {BP, B:Q) 4 {Bal, PuQ}=n{P, Q},

(45) 2{BP, BusQ}=—s:{P, Q}, (46) 2{psP, B} =1:{P, @},
(A7) BaaP X Bs@ = PP X B2@,

48)  {BsP, @} +{BasP, BsQ)=2n{P, @},

(49) (PP, Bu@)}=—s:{P, @}, (50) {BsP, B:Q}=1,{P, Q}.

From either one of (41), (42) and either one of (49), (50}, we have
{6P, pRY={P, Q}, {rp, r@}={P, Q}, (51)

Since there exists A= C such that y =48 from (31), so £=1 from (51), If 2=-1,
then by considering —b instead of b, we may assume that

g=r. » (52)

Now, from (44), (45), (46), (49), we have

r1=ad + be, (7 =—ab ), (ry=cd ),
$,=—2ac, (s =a?, S5 =—¢C?,
t1:2bd, t2:—b2, (t;;:dz).

IV. [@, P]=(®P)" implies [a®, aP]=a(@P)™ , that is,
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L3P, 0, 0, 0, 0, 0), (0, BP, BszP, 0, 0, 0)]
:(0, (ﬁl@)(ﬁ2p)7 (.31@)([332}))7 0, 0, O)
:(O’ 482(®P)’ ‘832(QP)5 0’ Oy O)-

Hence we have
(53)  B10B: = B2, ' (54)  B1DBse = Ba?.
Similarly, from [@, @]=(9Q)_ , we have
(55)  BiPfas = B2s®, (56) BB = BsQ.
Now, from either one of (53), (54), we have B,@ = OB, in particular,
Bi(PxQ) = pPxQ)p. (57)
From (43) we have
Bi(P X Q) = (ad — bc)BP x pA. (68)
Since ab — bc #£0, choose p & C such that p*=ad — bc and rewrite again
»;;,B—»,B, pa—ra, pb—b, pc—>c, pd——d.

Then, with respect to these new B, a, b, ¢, d, the above statements (especially
(38)) are also valid and from (57), (58) we have

BIPX@)p1=pPx Q. (59)
Finally, we have
lalz+ |52 =1 from <eal, al>=<1, 1>,
lel® + Jd* =1 from <al, al>=<1, 1>,
ac+bd =0 from <a1-, a$>:<-1-, l>:0,
ad — bc = 1.

—b

So {: ;}:E H}ESU(Z). And from <aP, a@>=<F, §>, that is, <B,P, B.Q>
a

+ < PP, Bea@>=<P, >, i.e., (|al®+ 1b]?) <aP, aQ>=<P, >, hence we have

<BP, BR>=<P, Q>. (60)

So e E; from (569), (60) and B,= AdB from (567). Thus



Non-compact simple Lie group Eg._gy of type Ejy 67

Adg 0 0 0 0 0
0 ag —bg 0 0 0
a=1| 0 b8 af  la>—|bl2 —ab  ab
0 0 0 2ab at b
0 0 0 2ab  —b? a

a b
=¢({ _J BIEPSU2) X Ey).
b a

Hence ¢ is onto. It is easy to verify that kergp ={(E, 1) (—E, ¢)}. Thus the proof
of Theorem 4 is completed.

5. Polar decomposition of Eg ..

In order to give a polar decomposition of the group Ey ., we use the following

Lemma 5 ([3] p. 345). Let G be a pseudoalgebraic subgroup of the general
linear group GL(n, C) such that the condition AcG implies A*€G. Then G is
homeomorphic to the topological product of the group GOUm) and a Euclidean space
R%:

G~ (GNUm) X RE

wherve Un) is the unitary subgroup of GL(n, O),

Lemma 6. F;. is a pseudoalgebraic subgroup of the general linear group
GL(248, C)=1Isoc(esC, ¢C), and satisfies the condition a € Ey . implies a*SEg ., where
a* is the transpose of « with respect to the inner product <R,, R,>: <aR;, R;,>
=Ry, a*Ry>,

Proof. Since <a*R;, R, >=<R,, aR,>=<(R,, aR,>.=<a"uR,, R, >.=
<ew"YR,, R,> for «e E; ., we have

="l = Eg,z.

And it is obvious that E, . is pseudoalgebraic, because Ejg . is deﬁnéd by pseudoal-
gebraic relations af Ry, R,|=[aR;, aR;] and <aR,, aR,>.=<R,, R;>..
Let U@248)=U(esC)={ a € Isoc(esC, ¢C) |<aR,, aR,>=<R,, R,>} denote the
unitary subgroup of the general linear group GL(248, C)=Isoc(es¢, ¢,C), then we have
Eg,:nU(egc):{ CYEEg,t l e =« }
= (SUQ) X Ey)/Z, (Theorem 4)

Since FEg, . is a simple Lie group of type Es, the dimension of Eg . is 248, Hence
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the dimension d of the Euclidean part of Ej . is

d=dim Ey . —dim(SU(2) x E;) = 248—(3+4133) = 112.

Thus we get the following
Theorem 7. The group Es,. is homeomorphic to the topological product of the
group (SUQ)X E})/Z, and a 112 dimensional Euclidean space RM? .

Eq, = (SU2) X Ey)[Z, < R,

In particular, the group Es . is a connected non—compact simple Lie group of type

Es(-20).

6. Center z(E; ) of Eg ..
Theorem 8. The cenier z(Ey ) of the group Ee . is trivial : z2(Fg )= {1}.
Proof. Let a € z(F; ). From the commutativity with ¢=E; ., a has the form

a=Ap, AeSU®), pek:

from Theorem 4. Furthermore, from the commutativity with all A€SU(2), we see
Aez(SU@2))={E, —E}. Similarly we see € z(E;)={1, ¢} [4]. Hence a =1 or .
However ¢ & z(Ey, ) from Theorem 4. Thus z(Es, )= {1}.

II. Group E;,

In order to investigate the group FE, ¢ more detail, we shall construct one more

group FEy, which is isomorphic to Eg .

7. Preliminaries,

We consider the real restriction of the preceding chapter. The statements are
similar to the complex cases. In the real case, the inner products < , > will be
denoted by ( , ).

7.1. Jordan algebra & [1].

Let & denote the non-split Cayley algebra over the field of real numbers R and
I=3(3, @) the Jordan algebra consisting of all 3x3 Hermitian matrices with entries
in @ with respect to the multiplication XoY :%(XY—}— YX).

7.2. Lie algebra ¢;, [1].

The Lie algebra ¢, is defined by

¢,1={ ¢ € Homgr(J, J) | (X, X, X)=0 }.

Then ¢4, is a simple Lie algebra of type Egss5). This ¢, is the Lie algebra of a
Lie group
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Ey 1 ={ acIsor(y, J) | detaX=detX }

which is a simply connected non-compact simple Lie group of type Egc-z).
7.3. Lie algebra ¢, [2], [6], [6].
We define a vector space P by

P=JPDIDRERDK.
And the Lie algebra ¢, is defined by
e7,1:{ Q)EHOmR(EB, S’B) I q):¢(¢) Aa B: p)a ¢Eeﬁ,1) A) BEF\\S: PER}

as in I. 1. 2. Then ¢, is a simple Lie algebra of type Eyss). This ¢, is the Lie
algebra of a Lie group

Evon={ acIsor(®B, P) | aPxQla'=aPxaQ }
={ acIsor(®, B) | at=M, {aP, aQ}={P, Q}}

(where I ={ PePB | PxP=0,P=0 }) which is a connected non-compact simple Lie
group of type Eq(-zs).

8. Lie algebra ¢ ,.
We define a Lie algebra

68,1287,1@$@$®R@R€BR

as in I 2,

Proposition 9. ¢ ; is a simple Lie algebra of type Eg( s).

Preof. Since the complexification Lie algebra of eg, is ¢€, ¢, is a simple Lie
algebra of type Es. A maximal compact subalgebra of ¢ ; is

f={0c¢, | '0=0}

={ 0@, P, P, 0, s,—s)E¢, | Dy, 'D=0, PER, s€R }.
Hence the Cartan index of ¢, is
dim ¢g,,—2dim £= 248 —2(79-+-56 1) = ~24,

that is, the type of ¢ is Egc-os).

9. Manifold ¢ and group E; ,.
We define a subspace of ¢ ; by
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[}
p A0+ @xQ=0
0 £P—1Q + QX QR =0
(3:: 668,1
r St 7= (Q, (@%Q)Q)=0
S >0
¢

Now, the group E;; is defined to be the group of all automorphisms of the Lie
algebra ¢, leaving ¢ invariant :

Es \={ acslsorles, 1, ¢,1) | aT=F, a[R,, R.|=[aR,, aR,] }.

Proposition 10. T={ exp(@(0, Py, 0, 71, sy, 0)1 | P,&$, », s,=R }.
In particular, < is connected.

Proof is the same as [7] Proposition 27.

Theorem 11. Egy, is a Lie group of type Esc-zo.

Proof, The Lie algebra ¢5, of Eg; is the derivation Lie algebra Der (eg,) (its
proof is the same as {7] Proposition 28) which is isomorphic to ¢;,,. Hence the
type of the group Ey; is Egcz from Proposition 9,

10. Subgroups E,, and SL(2, R) of E; .

We shall show that the group FEs,; contains non-compact subgroups of type E;
and A,.

Theorem 12, The group Es,, contains a subgroup

E,={ acks,; | al=1, al=1, al=1}

which is a connected non—compact simple Lie group of type Eic_ss.
Proof. The mapping

Adp

Eie5y2— 8= €Ly, CEg,;

gives an isomorphism between FEy_.5 and E;,. Its proof is. analogous to [7]
Theorem 25 (in [7], in order to prove that a=F,; is a digonal form, we used the
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properties of the inner product <, >, but it follows only from the condition
a Ry, R]=[aR,, aR,]).
Proposition 13, The group L, contains a subgroup

1 0 0 0 0 0
0 al ¢l 0 0 0
' 0 b1 di 0 0 0 a ¢
SL2, R={(A= eSL(2, R)
0 0 0 1+4+2bc —ab cd b d
0 0 0 —2ac a® —c?
0 0 0 2bd  —b*  4*

which is isomorphic te the special linear group SL{2, R)={A=M(2, R) | detA=1}.
We identify these groups Eyz with Ey;, SL(2, R) with SL(2, R) under the
above correspondences.

11. Connectedness of Ej |

We shall prove that the group FEs,; is connected.

Proposition 14. The isotropy subgroup G,={ a €Es,1 | al=1 } of the group E,,
at 1€T is the semi~direct product of groups exp(Plexp(R) and E,; :

G, = (exp(B)exp(R)) Ex, 1, (exp(Plexp(R)) N Ey, 1= {1},
where

exp(Plexp(R)={ exp(@B(0, 0, @, 0, 0, 1)) | QB, te R }.

In particular, Gl_ is connected.

Proof. First, note that POR={ Q+1=(0, 0, @, 0, 0, ©) | QeP, tcR }
is a subalgebra of ¢,, and [§, #]=0, so exp(¥)exp(R) is a connected subgroup'of
L, and exp(Q)):exp(@(O, 0, @, 0, 0, 0), exp(_z‘):exp(@(o, 0, 0, 0, 0, £)) commute
to each other. Now, let G, and put

al=(@, P, Q, r, s, 1), “-i:((pl, Py, @, 1y, 51, 1),
Then, [1, 11=-21, [I, 1]=1 implies [al, 1]=-21, [al, 1]=al, that is,

(O> O) '“P, S, O; _27’):(0> O’ 0’ O> 0 _2))

(O’ Or '“Pla S1, O’ _271):(@> P’ Q: ¥, S, t)

respectively, Hence we have
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P=0, s=0, r=1,

@ZO, Pl:_Q: 31:1) 1’1:—%.

Furthermore [1, 1]=21 implies [el, al]=2al, that is,

[0, 0, @ 1, 0, 8, (@,—Q, Q. ~§, 1, t)]

—QxQ, —2Q, ~PQ— @ —21Q, 1, 2, — (@, Q)—r—21).

3

:2(@1) ’—Q: Qly m?) 1) t)-
Hence we have
1 t 1 £ o1
@ =—0I X N = —-‘—@ s T e — e , .
1 2Q Q & ZQ 3 @ 131 1 16{Q &1}
Thus we see that a has the form
1
* * * 0 -é-QxQ 0
* * * 0 —Q 0
¢ 1
* * * @ —EQME(QXQ)Q 0
o = ;
1 .
® * # 5 0
* # # 0 1 0
et =B 1o exee 1
4 96 "’
On the other hand, exp(é—)exp(@ﬁ
0 0 0 0 0 0 0 —Q 0 0 0 0l 0
0 0 0 0 0 0 0 0 0 0 —Q 01l 0
0 é— 0 0 0 0 —-Q 0 0 @ 0 01l O
=exp y exp 1
0 —— 0 —— 0 0 0
0 0 0 > 0 SQ 01l O
0 0 0 0 0 0 0 0 0 0 0 Ofl 1
0 0 0 t 0 0 0 0 —%Q 0 ot O
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1 0 0 0 0 o0 %QXQ
0 1 0 0 0 0 —Q
t 1
_ 0 ? 1 0 0 0 —E(QXQ)Q
t
0 0 0 1 —~? 0 0
0 0 0 0 1 0 1
o 0o o ¢ £ 1] Lo ©xQe
4 96’
;—QXQ
—Q
t 1
_EQ—E(QXQ)Q _
= =al,
_t
2
1
2Ll ©xQe)
4 96"’

and

exp(é—)exp (Q)lzexp(——)(o, 0, @ 1,0 0=0,0 @ 1, 0, )=al,

foo

Therefore exp(— Q)éxp

—

—%)ae E; 1, hence we have

G, = (exp (B) exp(R))Ey, 1.
Next, for B€E,;,;, we have

Blexp(@)p'=exp(pQ),  Blexp(t))f~'=exp(t)

In fact,
.B(GXD(Q)).B_IR: ﬁ(EXp(Q))ﬂ_l(@n Py, @i, r, s, 1)

= Blexp@)(B7'D:B, 7Py, piQ, 1, S1, 1)
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ﬂ"l@lﬁ_QXﬁ”Pl—{-%lexQ
B8Py —s,6
FQ—F0 R+ 1@+ @ FPIQ-H(Q FPIQ—=5(QXQ)Q
:‘B : .
Ti“g{Q, £7'Q1
S1
b-h(@ 5700+ 110, 570, 501 110, @ P+ L 0, (@2 010)
—BQX P+ s (5QX Q)
_slﬁQ
Q= PSQ+78Q +-(5Qx PSR~ -(8Q, Pi}AQ—5.(Q% 60) 5@
rl—%{ﬁQ, Q1)
St
b3 (BQ Qi) +8Q, 016Q) —(6Q, (BQXPISQ)+ 15,80, (O Q)SQ)
=exp(f@)R

an similarly Blexp(#))p~'=-exp(#). This shows that exp(Blexp(R) is a nomal sub-

group of G,. Thus we have a split exact sequence

1 — exp(Plexp(R) — G, — Eiy — 1.

Hence G, is the semi-direct product of exp(Plexp(R) and Eo,,.

Theorem 15. The group Es . acts on X traunsitively and the isotropy subgroup at
lex of Es, is the semi-direct product of subgroups exp(f)exp(R) and Ei..
Therefore we have the following homeomorphism

Es, /(exp(Blexp(R)) E-,, = L.

In particular, the group Eq  is connected.

Proof is the direct consequence of Propositions 10, 14.

From the above Theorem we have

Theorem 16. The group Eg . is the connected component containing the identity
of the automorphismgroup Aut(es,,)={ ac=Isor(es,1, ¢,1) | [aR:, Roy]=[aR,, aR;] }.

12. Center of g, ;.
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Theorem 17. The center z(Es ) of the group Esg, is trivial : z(Es ;)= {1}.
Proof. Let a« =z(Ey,,). From the commutativity with BeE; |,

afl=al, apl=al, afl=al.

From this we see that « has the form
a;t s BeM@3, R).

Next, from the commutativity with Ae€SL(2, R),

- 14+2bc —ab cd 1+2be —ab cd
B| —2ac a —cr | = —2ac & —ct | B
2bd  —b* d® 2bd - d*
fa ¢ r 0 0
where ’ , d} eSL(2, R), we see B = g 10 (; , ¥5%0. Furthermore, from

[ai, a}n]:crl, we have #»*=v, hence r=1, so B=F, Hence a&F,,;, moreover
acsz(E, ;) which is {1, [5]. And we see easily

exp(Q)+ exp(Q)e, for Qe P

(see Proposition 14). Therefore a=1. Thus we have z(E, )= {1}.

13. Isomorphism F; . == Eg ;.

From Theorems 7, 11, 15, we see that the groups Es . and E;; are both con-
nected and their Lie algebras have the same type FEgc-o). Therefore there exist
central normal subgroups N., N, of the simply connected simple Lie group FEgss
of type Egc-21) such that

Eg,z %Eg(_u)/Nl, EB,lgEB(—ZAi)/va

From Theorem 7, we know that the center of the group Egc-. is the cyclic group
of order 2: z2(Fyc2p)) =2, And the centers of Eg ., Eg 1, are both trivial (Theorems
8, 17). Hence it must be N.=N,=Z, Therefore the groups Es. and Es, are
isomorphic :

Eg’ ¢ =2 Egl 1.
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