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1. Introduction

Using the standard embedding of the quaternionic Stiefel manifold X, , in the

complex Stiefel manifold W, .., we write

X/n, r= VVZn, 2k Xn, w) (R=1,2,).
There is the natural projection

PiX e X'n
induced by the natural projection

b Wan2w —> Wan .

Note that the inclusion

i (VVzn—l,l; e) — X'n
induces an isomorphism
i*: 2 (Wan-1,1, €) — m(X',1)
for all values of r.

We say that a relative cross-section of X', , is an element o< 7,5 (X'5, ») such
that p*, (a) generates my, (X 'n, 1) = Z

Then we shall prove the following theorem :

Theorem. The relative Stiefel manifold X', , admils a relative cross-section if and
only if k=1, or

k=2 and n = 2 mod 24.

For the pair of spaces W', » = (Vau, 200 Wha, ), James [1], [2] proved that the
relative Stiefel manifold W', , admits a relative cross-section if and only if either £ =
1, or

=2 and » = 0 mod 2, or
k=3o0r4and n =4 mod 24,

2. Preliminary

Consider the factor space X, = U@2n)/Sp(n) (n =1, 2,---), with the obvious
embeddings X,c X, c Xz -, The triad homotopy groups
(U (2n) ; Sp(n), U(2n-2k))
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can be identified with the relative homotopy group
2 (Xn, Xnor)
on the one hand, or with
7 ( VVzn, 2ks Xn, )
on the other. Thus we can identify
(2.1 7 (X 0 ) = (X, Xuon).
The homotopy exact sequence of the triple (X,, X,_,, X,_.) can be written in the
form

’ ’

2.2) v — (X ) 2t (X ) Doy m (X0 )
iy

s e (X ot pt) ——> e ,
where j° denotes the inclusion X', 0.1 — X'n,. and 9 the boundary
homomorphism.

The image of the generator (tim-s) of Zp—3(Wsp-1,1) = Z by i, will be denoted by
[tan-s] & mns(X 4, ). Equivalently, by a relative cross-section of X’,, . we mean an
element of m,,-5 (X", ) (or the representative of such an element) which projects into
[t4n-s] under

1)*/ D s (X n ) — Zunma (X01).

Thus we have
(2.3) X', . admits a relative cross-section if and only if the homomorphism 2’ :
Aan-s (X 0 1) — Banes (X uey, por) 18 trivial.

For example, take # = & Then the relative Stiefel manifold X', , = (U (2#n), Sp
(n)) admits a relative cross-section if and only if the fibration X, — 5**3 admits a
cross-section in the ordinary sense, i.e., if and only if » = 2 ([3]).

Clearly
(2.4) X', , admits a relative cross-section for all values of n.

Also
(2.5)  X'n, r: admits a relative cross-section if X', , does.

3. Proof of Theorem

Let (a,b) be the g. ¢. d. of ¢ and &.
Lemma 3.1. Tan-a (X' n.2) = Zinez, 20,
proof. From (2.1) and the homotopy exact sequence of the pair (X, X,-.), we
have the exact sequence
Tan-a (Xn) — Zanc (X 5 2) — uns (Xnoz) — mns(X5).
This sequence is as follows ([4]) ;
0 — mna (X' 2) — Zinsz, e — 0 for » even,
00— s (X'n2) — Zinz.oa D2y —> Zy —> 0 for » odd.

Thus we have Lemma.
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Lemma 3.2. The relative Stiefel manifold X', , admits a relative cross-section if
and only if n= 2 mod 24.
Proof. Consider the exact sequence

’

Tgn-3 (X/n,z) > Myn-3 (X,n, 1) 'Q" Tyn—4 (X,n~1,1)
> Wyn-4 (X/n,Z) — 7[471—4(X,n‘1) =90
of (2.2). Let [vn_7] be the generator of mp s (X a1, 1) = Zy
for n=3. From the exactness of above sequence and Lemma 3.1, we have
3 ([tans]) = (n-2, 24) [vins].

Thus, from (2.3), we have Lemma.

Lemma 3.3. The relative Stiefel manifold X', ; does not admit a velative
cross-section for all n= 3.

Proof. Suppose that X', ; admits a relative cross-section.
Then, from (2.5) and Lemma 3.2, n =2 mod 24 and 9" mns(X'n1) — Zun-s
(X' -1, 2) is trivial by (2.3).

Consider the commutative diagram

Tins (X' n, 1) —2

Tlan—4 (X/n—l, 2)

T T

7[4n~3(VV2n,2) 71’471—4“/1/271—2,4)
N o .
4,
Tans Wan , )

112

Tyn—a (Xn—l,z)

The right hand column of sequence is the homotopy exact sequence of the pair
(Wans,4, Xn-1,2) and & is the boundary homomorphism associated the fibration
Woner,s —> Wany, 1 = 78,

Then, from commutativity of the diagram,

3 ((tan-3)) & Image ofj .

Let b1, s denote the order of 85 ((L4n-3)) N myn-s (Won s, 4).
Then b, 1,5 is 2 at most, since m,_ (X 1,2) = Z ([6]).

By Walker [7],

2n—06)!
(2n—2)!

where M (n—1, n—-3) = (n—3) (n—2) 2n—>5) (10n*—57n%>+951n—48) / 23325,

Qn—6)1 .  (n=3) (10%° —57n? + 950 —48)
Gn—pr M(n—1, n=3) = 25375 (n—1) (21n—3)

If n =2 mod 24, then
1072 —57n% 4957 —48 = 0 mod 4,
1072 —57%2 4957 — 48 = 0 mod 2.
This shows that b,,_,, s is a multiple of 2*. Thus, we have a contradiction.

Mn—1, n—3 by, s 72
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From (2.5), Lemmas 3.2 and 3.3, the proof of Theorem is complete.
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