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   J. A. Wolf and A. Gray [1] classified automorphisms 6 of order 3 and the fixed

subgroups G cr of connected compact simple Lie groups G of centerfree. In this paper,

we find these automorphisms cr and realize G6 for simply connected compact

exceptional Lie groups G=G, a and llh. (As for G and Ek, they will appear in the

next issue). Our result is the following second column. The first column is the chart of

involutive automorphisms and the fixed subgroups which are connected our cases.

G 7 (SP(1)xSb(1))/Zh

a y (spa)xsp(3))/a
    6 Sz)in(g)

Ele 7 (SZ)(1)xSU(6))/Zi

    if (u(!)xsz)inao))/zk

   Notations. (l) Let G be a group and 6 an automorphism of G.

G G 1 (rg=g}. If cr is an inner automorphism Ads induced by s

denoted by GS: GS=･{g G G 1 ag=gs}

of S in G is denoted by GS: GS=

 (2) When two groups G, G' are

groups : G= G'.

 (3) For an R-vector space I!1 its complexification {u+iv

by V C. The complex conjugation in

  (4) The definitions of classical

 o,g (U(1)xSle)(1))/a

 w SU(3)
 yk (U(1)XSb(3))/4
 op (ua)xsz)in(7))/a

 w (SU(3)xSU(3))/Z5
 1,k (U(1)xSU(6))/a
 )k' (SP(1)XS(U(1)xU(5)))/Zh

 op (U(1)xU(1)×5Z)in(8))/(ZZxZh)
 osr (ua)xSZ)in(10))/a

 w (SU(3)xSU(3)xSU(3))/4

                         G 6 denotes {g

                           Ads                              is briefly                     EG,G
 . Moreover, for a subset S of G, the centralizer

{g G G 1 sg=gs for all s G S}.

  isomorphic : G {!; G', we often identify these

                   I u, v (ii V} is denoted

 V C is denoted by r: T(u-Yiv) -- za-iv.

Lie groups U(n), SU(n) aiid S?)(n), n=1, 3



          i--o
with the multiplication such that eb=1 is the unit,

ei2= -1, 1 s. i -S 7, ei ej -- - ej ei,1$i :# 1' $7 and ei e2 =! e3 ,

e3 es = eg, e2 es :=: & etc. ....In G,the conjugation x, the e,

inner product (x, y) and tbe length lxl are naturally

defined. The Cayley algebra G contains the field of

real numbers R naturally, furthermore the fields of

                                           e3complex numbers C, a and quaternions H :

             C== {4+ ope4 1 4 ij E R}, Cl := {4+ opei l 4 op G R}

                   ff ={4÷ 4i ei + 4ii e2 + ca e3 I 4 4i E R}.

Hereafter e4 is briefly denoted by e.

   The automorphism group G2 of the Cayley algebra E ,

                 G={cr E IsoR(6, G)1 cr(`ay)==

is a simply connected compact simple Lie group of type G2 [8],

of G, we will give alternative definitions of the Cayley algeb

  1. In s =H e ffe, we define a multiplication, a conjugation
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appeared in this paper are usual ones : U(n) == {A E M(n, C) 1 A"A :rE}

{A E U(n) l detA=1} and SP(n)= {A Eii M(n, ff) 1 A"A =E}.

                          1. The group G2

           7
   Let G=:2Re, be the Cayley division algebra e,

e4

, SU(n)=

e7

'

es e6

                                          (ax)(ay)}

                                                To find some subgroups

                                                ra 6･
                                                  and an inner product

( , ) respectively by

                  (a+ be)(c+ de)= (ac - db)+(bc + da) e,

                         a+ be =a- be,

                  (a+be, c+de)==(a, c)+(b, d).

 2. In s =Ce C3, we define a multiplication etc. by

              (a+m)(b+n)=(ab-m*n)+(an+bm+m×n),
                     a+m=a-m,
               (a+m, b+n)=(a, b)+(m, n)

where m×n e C3 is the exterior product of m, n E C3 and (m, n) == -S-(m"n+n"m).

   1. 1. Automorphism 7,b of order 3 and subgroup (U(1)×iSlp(1))/a of G2

   We define an R-linear transformation 7 of 6 by

                 y(a+be)=a-be, a+be EHeffe=E.

Then we have 7 E! (lz and 72 =1.

   Known result 1.1 [2]. 7'7ze gromp (G)7 is isomo7Phic to the gromp (SP(1)×SZ}
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(1))/4 (orSO(4)) by an isomo7Phism induced from the homomomphism V: SZ)(1)x

SP(1)->(G)7,

           th (P, q) (a+ be) = qaq+ (Pbq) e, a+ be E ff e ffe = 6

with Kerth =Zi,={(1, 1), (-1, -1)}.

     Let th)i = --IF -D(/g- ei E Sb (1) c ff c s . Denote 1th (oi , 1) by )ls :

              )le (a+ be) == a+ (blib) e, a+ be Eii N O ffe :: E .

Of course ),b E G2 and 7,b3=1.

   Theorem 1. 2. 71Pze gromp (G)73 is isomozPhic to the gromp (U(1)×SP(1))/a (=tv.

U(2)) where a:=:{(1, 1), (-1, -1)}.

   Proof. Let U(1) =: {s E CII1s1==1} c SZ)(1) cff cas. We define a

homomorphism th : U(1) ×5Z)(1)-(G2)Ots by the restriction of th of Known result 1. 1.

Clearly ),b th(s, q) =: 1fin(s, q) yb for (s, q) E U(1) × SZ) (1), so th is well-defined. We shall

show that th is onto. Let ev e(G)73. Since ev commutes with ),ti, s o,,= {x E El 7,kx=

x}=ff is invariant under ev. So a also commutes with 7: a E (G2)7. Hence, from

Known result 1.1, there exist s, q E SZ)(1) such that ev=th(s, q). From the

commutativity o,kcr= ev7ls, that is, th(blis, q):= th(sbli, q), we have (blis, q)=±(swi, q),

so wis=scDi, therefore s E U(1). Hence th is onto. Obviously Kerth=4. Thus we have

the isomorphism ( U(1) × SZ) (1))/4 2-: ( G, ) 'k .

   Corollary 1.3. (G)'ts =(G)Swhere S=th(U(1), 1). in Particulaz the manit2)ld

G2/(G2)7ls h(zs a homogeneous complex structure.

                ism w of order 3 amd subgroup SU(3) of G2   1. 2. Autemorph
   Let bl=-t+ge E C c G. We define an R-linear transformation zv of Q by

                w(a+m) == a+ blm, a+m e Ce C3 -- 6.

Then we have w E (li and w3=1.

   Reinark. We have the following

   Propositiom 1. 4. For a E 6 szach that l a l=1, the condition that the mmpPing a. :

G- G, crax=axa belongs to the gromp G2 is a3=±1.

   Now, w is nothing but the mapping evch : wx=blxw, xE Q.

   Known result 1.5 [7], [8]. Tke groecP (G2),= {a E GI ae=e}is isomorphic to the

gromp SU(3) by the isomorphism th : SU(3)->(G2)e,

              th (A) (a+m) =a+Am, a+m E C G) C3= G.

   Theorem 1. 6. 71Pze grozip (G)W coincides with the gromp (G),, so it is isomorphic

to the gromp SU(3).

   Proof. We shall 'show (G)W=(G2),. Clearly (G),=lbn(SU(3)) c (G)W.

Conversely, let a E(G)W. Since cr commutes with w, Gto--{x E G1 wx=x}=C is

invariant under a. So a induces an automorphism of C, hence
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                         ae=e or ae:r=-e.

In the latter case, consider a mapping 7: Q- G, 7(a+m) ==a+rn. Then 7 E (li and

7e=-e. (This 7 is the same one as 7 of the preceding section 1. 1). Put fi := 7a. Since

fie=e, we have P e(G2), ( (Q)W. Therefore 7=6evui E(G2)W, However this is a

contradiction. In fact, blm=wm=w(7m) :7(blm)=blm=ua m for all m E C3 which

is false. Hence cre=e, so ev E(G2),. Thus we have (G)W c(( li)e.

                          2. Whe group L

   Let g=={X E M(3, S)iX"=X} be the exceptional Jordan algebra with the

Jordan multiplication

                        X o Y=t(XY+ YX).

In g, we define a positive definite inner product (XL Y) by tr(X o Y). Moreover, in

g , we define a multiplication X× Y called the Freudenthal multiplication, a trilinear

form (.X; X Z) and the determinant detX respectively by

      X×Y==-lil12.Xo,,Y.3t='IX.)Y.-.t}gY,)i,,'.(`=r[iKl,',,',r(.Y).un,IKY"E"

The algebra g with the multiplication X× Y and the inner product (X] Y) will be
called the Freudenthal algebra.

   The automorphism group ]Fl of the Jordan algebra g ,

          JFI={ev EIsoR($, g)1a(Xo Y)=evX eaY}

            =={ev EIsQR(g, S)l detcrX ::det.)L (evX] aY)= (XL Y)}

            =={ev EIsoR(g, s)l ev(X×Y)=crX×evY}

is a simply connected compact simple Lie group of type ,F2 [3], [8]. The group L

contajns G as a subgroup naturally, that is, any ev E G is regarded as a E iF} by

                   .[f-L `,tig X2,1..[EL Z'iig :`.Xii,1,

                    tr}] ii t5k) tax2 E]T. ehj

To find some subgroups of L, we will give alternative definitions of Freudenthal

algebra g. For K=:R, C, let SK=g(3, K)={X G M(3, K)1X"==X} be the

Freudenthal algebra with the multiplication X× Y and the inner' product (X] Y) as

analogous to ones in $.

  1. In g r: g(3, ff)e ff3 (where ff3={(ai, a2, ag) "row vector"l ai E ff}), we define

a multiplication and an inner product respectively by

         (X+ a) × (Y+ b) == (X × Y--}(a"b+b*a)) -S(aY+ bX),

            (X÷a, Y+b)=(X Y)+2(a, b)
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where (a, b)=-lr(ab"+ba*)=-} tr(a"b+b'a).

 2. In S == g (3, C)e M(3, C), we define a multiplication etc. by

    (X+M) × (Y+N) == (X × Y--il-(M*N +N*M))--3-(MY+ NX +M×N)

      (X+M; Y+N)=(K Y)+2(M N)

where, forM=(mi, m2, m3), N=(ni, n2, n3) ff M(3, C), M×N E .M(3, C) is defined

by

                M×N.,[M21iZ3 M3:ni mi+×n,1

                      Ln2×m3 n3xmi nixne2J
and (M] N)=S- tr(M"N+N"M).

  '2. 1. Automorphism 3ila of order 3 and subgroup (U(l)×Sp(3))/a of L
   We consider R-linear transformations 7, yla of S which are extensions of 7, )ls E

G2 to a respectively. Of course y, ole G a and y2 ==1, 3,ij3::1.

   Known result 2. 1 [5]. 71he gromp (Ei)Y is tsomorphic to the grozip (SZ)(1)xSip

(3))/a by an isomorphism indzaced from the homomomphism th: SZ)(1)xSZ)(3).

(a)Y,

       th (P, A) (X+a) == AXA*+paA", X+a E $ (3, ff)e H3 = $

witiz Kerth ==a::{(1, E), (-1, -E)}.

   Theorem 2.2. TVze gromp (L)'k is isomorphic to the gromp (U(1)xSZ)(3))/4

where Z>={(1, E), (-1, -E)}.

   Proof. Let U(1) == {s ei CIHsI :1}c SZ)(1) c ff cs. We define a

homomorphism th : U(1) × SZ)(3)-(.Fl)73 by the restriction of th of Known result 2, 1.

Then th induces an isomorphism (U(1) × SZ) (3))/Zi2!(L)iig whose proof is similar to

Theorem 1. 2,

   Corolllary 2.3. (L)73=(1:,)S where S=th(U(1), l). in Particular, the manij)ld

L/(F4)Y3 has a homogeneous comPlex structure.

   2. 2. Automorphism oh of order 3 aRd subgroup (U(1)×Spin(7))/a of I7}
   Let U(1)={a Ei C 1j a l=1}. For a E U(1), we define an R-linear transformation

D. of g by

                .Ei, g x.il..[f/ za -.`zx,h,1

                  lale Mi elaJ Laxzi crkra 4la)

Then we have D. E a. Denote LLi by tf. Of course cr e L and cr2=1.

   Hereafter we use the following notations in g [6].
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.,=

      [o
E(x)- lO

      Le

e

o

o

o

o

I

g,l)4==I2

Xl･4(x)-(2･

 [4], [8].

isomo

V9) where V9={X

e E U(1) c Cc G
           q,

o

1

o

9]･ G-[E g

o x-
o o1, Il, (x) :=: L :-u

1
)
･

x

o

o

   Known result 2. 4. 71V2e gromp (iFl)cr coincides with the groz4) ={a

ELi alll == El}, so it is rphic to the gromp SZ)in(9) which is the zaniversal covering

gromp of SO(9)=S9( GSl E,oX=O, tr(X)==O}.
   Let bl =-t-NLII- and denote D. by oh.of course oh ELand

(sb3=1. To investigate the group (L) we consider R-vector subspaces gq, ($.,)±

of S:

    S.,={X E S1 ohX=X}=={4E,+opE,+t}bEl,+E(t)l g, E R, t E c±},

    ( geg)±=the orthogonai complement of goj in g

          --{Ilt (s)+K(xle)+4(xig)I s E C, xi E･ G}

where C± is the orthogonal complement of C in g. Then g = goj(D( gop)l and goj,

(g.,)l are invariant under the group (a)op.

   Lemma 2.5. Fbr a E(a)oj, we have evEl=El. Hiznce (a)q is a subgromp of

(a)E,=Sbin(9).

   Proof is similar to [6, Lemma 9], however we need some modifications. To show

all> E g (2, G)={&E> +&Eb +Fl (x)1 4i a R, x Ei 6}, put evG = 4iEi +&E> + esEb +E

(t), 4i G R, t e C± and suppose 4i40. From evEli×aE>=O, we see that c}bmca=t=

O, that is, evEi = &Ei . Next use crlli × evE (1) = O, then we see that crE (1) = ,7Ei for some

Ot op Eff R which contradicts to crQ =aEi. Hence 4=O. Thus we have aEi E s (2, $).

Similarly cra G S (2, Q ), Therefore crEl EfE',℃ (2, G') moreover ev,El = ca by the same

argument of [6, Lemma 9]. Finally from the relation aEl o aEi=crEl, 4 must be l.

Thus we have aEi :Ei.

   From Lemma 2. 5, we see that R-vector subspaces

 {tiLiEz+i5LiEh+E(t)1 4i E R, t E C±}, {uF>(eqz)+E](Aig)1 xi as}, {Fi(s)1s E C}

of g are invariant under the group (L)op.

   We define a subgroup (a)E,,F,(,) of the group Iil by

        (L)E.E(s)={a Ei a1 crEi=Ei, aE(s)==E(s) for all s E c}

                 ={ev E SPin(9)l aFt(1)=jFl(1), aE(e)=za(e)}.

This group ()Fli)E,,F,(,) is isomorphic to the group SZ)in(7) which is the universal

covering group of SO(7)=SO(V') where V'={4(E>--a)+,Fl(t)l g G R, t er C±}.

Furthermore we use the following notation.

i
A
,
.
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        (a)U(i)={ev E LI D.a=a4 for all a E U(1)}.

  Lemma 2. 6. SPin(7) == (L)E, F,(,) is a subgromp of (a)U(i).

  Proof. Let P Ei SZ)in(7). Then for a, a E U(1) we have

     fiD.E (2)=6E (a-zaM) =6E (a-2s+ t) (2 ::: s+t s E C t G C±)

         =E (a2s) +fiE (t) = .l71 (a2s) + (&Eli + es Ei +E(t'))

(for some 4i E R, t' E Ci). On the other hand,

  4BITI (z) i= qfiFl (s + t) =4(E (s) + PI71 (t))

       = D.(Fl (s)+&Ei +&El] + Fl (t')) == JFI (a2s) +4Il}i ÷ ct Il}i +E(t')).

Thus we have P4E(z)== LlafiLFI(z), z E as. Next, for 2 es-Q,

  an F> (z) =fiF> (a2) == 4fi (E (1) × Il (z)) × Il (a)) =4(E (1) × a (2)) ×E (a)

       == 4(,Fl (1) × (F> ( t}] )+ ,Fli (xig)) × Fl (a) (for some xi E･ s)

       = F> (tzxh) +4( vaa) = D. (Ii> (ile) +4( va)) == 4fiF> (2).

Similarly P4R(z)=D.6Fl,(2). Clearly D.P=fi4 on Ei. Finally

    4i(illl> = Da (QIili + esEi + Fl (t)) = &Ei + 4Eli + I71 (t) = /(ilEi = P4Eli

(for some ei E R, t E C±). Similarly D.i(3Eli := ann. Thus we have qP= PD.,

is, P E (E,)U(1).
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  Theorern 2. 7. 71he gromp (a)oj is isomorpht'c to the gromp (U(1)xiSbin(7))/a

where 4={(1, 1), (-1, -1)}.

  Proof. We define a mapping th : U(1)xSPin(7)-(a)eg by

                V(a, p)=46.
Obviously th is well-defined : th(a, fi) E (a)cr3 (Lemma 2. 6). Since q(a E U(1)) and

P E SZ)in(7) commute (Lemma 2. 6), th is a homomorphism. We shall show that th is

onto. Let a Ei (F>)op. Put cr,Fl (1) == Fl(th), fe E C. Then we have

  crFl(bl)==evFl(bl1bl)=aD E(1)=D aE(1)=D E(th)=E(ldth), (1)
              w bl                        w  crE(bl)=aD D FI(1)=D D crE(1)==D D E(s,)=I71(blso). (2)
        (V (L) WW Q)                       o
Taking (1)-(2), we have a,Fl(e)=Fl(eth). Now, choose cfo E C such that a2 :om,

Then
  ajFl (l) == 1l(th)=: Fl (da2) = IZ,,Iil (1), al71 (e) =E(eth)= E(`la2e) =: %E (e).

Put 6= Lla-'cr, then fiFl (1)=Fl(1), fijFl (e) ==E(e) and ieEi = Ei (Lemma 2. 5), so B E

SZ)in(7). Thus we have

           a=% P, q, E U(1), 6 E SP in (7),

that is, V is onto. Obviously KerV=a. Thus we have the isomorphism (U(1)×SZ)in
(7))/armim--(a)cr3.
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   Corellary 2. 8. (a)cr3 == (a)S where S= th(U(1), 1). in Pawhcular, the manCfold

.F:i/(a)q has a homogeneozts comPlex stracture.

   2. 3. Automorphism w of order 3 and subgroup (SU(3)×SU(3))/a of K
   Let w= -eYLg- e E C c 6 and we define an R-linear transformation w of S by

        w(X+M) == X+ oM; X+M Eg (3, C)e M(3, C) = g.

This w is the same one as w E G> c I71i. Of course w3= 1.

   Theorem 2.9. 71Pze gromp (L)t" is isomo7Phic to the gromp (SU(3)xSU(3))/Zk

where Z5=:{(E E), (blE wE), (bl2El bl2E)}.

   Proof. We define a mapping th : SU(3)×SU(3)-(L)'" by

    th (R A) (X+M)=AXA*+PMA *, X+M e g (3, C)e M(3, C) = g .

th is well-defined: th(R A) E17;i[6] moreover E(a)W. Obviously th is a

homomorphism. We shall show that V is onto. Let ev E (Ei)W. Since the restriction ev'

of a to S.={XE g 1 wX= X}:: S(3, C) belongs to the group ]Fl,c={a E IsQR(gc,

Sc)1 a(X o Y) = aX o evY}, there exists A E SU(3) such that

            evX=AIYA" or crX =AXA ', X a S (3, C)

[7]. In the former case, put P=th(lll A)-'a, then fi1℃(3, C)=1. Hence 6 E G2,
moreover fi e((2i).=(G)W (Theorem 1. 1)::SU(3). Hence there exists P G SU(3)

such that

    P(X+M)=X+PM::th(R E)(X+M), X+ME SceM(3, C)=g.

Therefore we have a:= th(E] A)P==V(E; A)th(R E)=V(ll A). In the latter case,

consider the mapping 7: S'-> S, y(X+M) ==X+M] X+Me g and recall y E Q cr

a. Put B=a-'"(E, A)y, then rs Eii I7U and fi lgc=1. Hence rs E(G2)e=(G2)'" c

(Ei)W. Since B, a, th(E A) G(n)t", 7 also E(a)W, so 7 E(G)'" which is a

contradiction (Theorem 1. 6). Thus we see that th is onto. Kerth =4 is easily obtained.

Thus we have the isomorphism (SU(3) ×SU(3))/Zk 2! (L)W.

                     3. Tke group it

   Let gC={IYi +iX> 1 Xi 6 S}(called the complex exceptional Jordan algebra) be

the complexification of g . As in S , in g C also, we define multiplications X e X X ×

M the inner product (X; Y), the trilinear form (JC Z Z) and the determinant detX.

Finally, in gC, we define a positive definite Hermitian inner pruduct <X; Y> by (T:X;

Y).

   The group

   Eh = { cr Ei Iso c( gC, g C) l detaX =detX; < a.?C ev Y> == < JC Y> }

     ={ev GIsoc(5C, gC)I(crJC ev}7] evZ)=(X; ]V] Z), <evXL evY>=<X; Y>}
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     ={ev e Iso c(SC, SC)1 aX×evY=Tar(X×Y), <a)C aY> ==<XL Y>}

is a simply connected compact simple Lie group of type Illi [6]. For ev E ]Fli, its

complexification evC : $C- gC belongs to Eli, so we can regard ,Fl as a subgroup of llb

under the complexification.

   3. 1. Automorphisrn )la of order 3 and subgroup (U(l)xSU(6))/Zh of E]

   We consider C-linear transformations 7, 7ls of g C which are the complexifications

of 7, 3,h E G Ca, respectively. Of course 7, ),k E lll and 72=1, 7,h3= 1.

   Let C=RC ={ct+ies1 gi E R} and we define an R-linear mapping k: ff -> M(2,

C) by

        k((4b + gi ei)+ e2 (&+ ca ei))- [ 21 :l. 21' -Zt'l. 2, ] , 4, E R.

This fe is naturally extended to R-Iinear mappings

               k: M(3,ff)-M(6, C), le : H'3-M(2, 6, C),

Moreover these k are extended to C-linear isomorphisms le : M(3, H)C- M(6, C), k :

(ff3)C---> M(2, 6, C) respectively by

             fe(Xl+iX>) = k(X,)+ile(Xl,), X, Eii M(3, ff),

             k(ai+ia2)=k(ai)+ik(a2), aiEH3,

Finally, we define a C-vector space @(6, C) by

                   s(6, c)={s eM(6, c)lts :: -s}

and a C-linear isomorphism & .' ℃ (3, ff)C->s(6, C) by

              klr (Xl +iX> )=k(Xi )1 +ile (X> )Ji; Xi E S (3･ ff)

wheref:-

[1,' 20' e,,),J'-[9 -g]

   Knowm result 3. 1. [6]. T7ze gromp (Ei)7 is isomomphic to the gromp (SP(1)xSU

(6))/4 by an isomorphism induced from the homomorphdsm th : SP(1)xSU(6)-
(Eig)7,

   th(P, A)(X+a)=Lb-i(ALb(X)`A)+pk-'(le(a)A"), X+aG g.Ce(ff3)C=gC

with Ker1th=a ={(l, E), (-1, -E)},

   Theorem 3.2. T7ze gromp (Eg)73 is isomorphic to the grozip (U(1)xSU(6))/a

where a= {(1, E), (-1, -E)}.

   Proof. Let U(1)={s E Ctl1sl=1} c SZ)(1) c ff ( G. We define a

homomorphism V : U(1) ×SU(6)-(El])}' by the restriction of th of Known result 3. 1.

Then V induces an isomorphism (U(1) ×SU(6))/a-be-(Eh)73 whose proof is similar to

Theorems 1. 2, 2. 2.
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   Corollary 3.3. (Eh)73=(ll})S where S=3th(U(1), 1). in Particular, the manijlold

Eh/(Il")73 has a homogeneozes comPlex structure.

   3. 2, Autornorphism ),ti' of order 3 amd subgroup (t[lp(l) ×S(U(1) ×U(5)))/4 of
,El,

                              v5
   Let v=exp 2grri ECand put A.= V-1. ESU(6) cM(6, C).put

                                   ' V'1
7'=th(1, A.) where th is the mapping th: SP(1)xSU(6)--.(Ek)7 defined in Known

result 3. 1. 0f course 7' E E5 and 7'9=l. Since A.3 == v6E E 2(SU(6))(the center of SU

(6)) and tha, A.3)== bl1 (where bl =:--li-+?(-lll E c) Ei 2(Eh)(the center of "Eib), 7'

induces an automorphism o/h' of Ek of order 3,

                    ole'(cr)=7'a7'm', cr EE Eh.

                               '   In order to investigate the group (EL)7ts , we consider C-eigen vector subspaces

(gC).,, i=O, 1, ... , 8 of SC with respect to 7' :

     ($C). ={X+a G S HCO(H3)C1 7' (X+a) == v(X+a)}

         ={O+(ai(ei-i), a2, aa)i ai E H) cl2, (zb G! ff C},

     (gC).,={X+a e g HCe(ff3)Cty'(X+a)=v`(X+a)}

         -{[[l,ljl,ili/1{.lg) (ei',,i)ab "2(eg-')).(.,(,,.,),,,,) 21, E.i;},

     ($C)., ={X+aE 'fs HCe(H3)C1 y'(X+a) == v7(x+a)}

         ={[h,ti)?, (ei/1Ilili)ab a`i(eal,'i']+o 2,'SHEcF.,,.,,,,ff}'

     (SC).,={X+a E g HCG)(H3)C1 7'(X+a)=v'(X+a)}

         ={O}, i=O, 2, 3, 5, 6, 8.

                                   'These spaces are invariant un'der the group (lli)7S.

                         ,   Theorema 3.4. The gromp (2!h)7k is isomorphic to the gromp (Sb(1)xS(U(1)xU

(5)))/a where a={(1, (1, E)), (1, (-1, -E))}.
   Proof. First we shall show that (H3)C is invariant under the group (Eh) 73'. From

                                                          73the form of (SC).,, it is sufficient to show that we have eva E(ff3)C for cr E(El,) '

a=(a(ei+i), O, O)=E((a(ei+i))), a e ff. Now, in fact,

       evE ((a(ei +i))e) = -4a((E (1) × ]Fb ((ei -i) a)) × jF5 (e))

               = -4((a,Fl (1) × crA ((ei -i)a)) × TarfU (e)

               c -4(3 HC × g HC) x (ff3)Cc g HC × (ff3)C c (ff3) C.

'
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                                           tThus we see that (ff3)C is invariant under the group (Eh) 73 , hence S HC == ((H3)C) l =:

{X E gCl<X; Y>=O for all Y E (ff3)C} is also ipvariant under (E,)73'
.

Consequently, a E (Eh)Ols' commutes with 7: (EL))ts' c (JEIh)7. Now, we define a

                                      rhomomorphism th : SP(1)×S(U(1)×U(5))-(Eli)73 by the restriction of th of Known
                                                               'result 3. 1. Clearly lb is well-defined. We shall show that 1th is onto. Let a e (llh) }ts .

         'Since (4)73 c (,Eli)Y, from Known result 3. 1, there exist P E SZ)(l),A E SU(6) such

that a = th (P, A). From the commutativity o,h'a = ev3,h', that is, th (P, A. A) = V(P, AA.),

we have A.A =AA.. Hence A E S(U(1)×U(5))({l)! U(5)), Thus V is onto. Obvigusly
Kerth=a. Thus we have the isomorphism (SZ}(1)xS(U(1)xU(5)))/a!;(Eh)'ts .

                                              a5
   Corollary 3. 5. (Eli)73'=(EL)S where S=={V(1, A)lA= a. e SU(6),a E

                                                 "a

                                 rU(l)}. in ParticzalaL the manij?)ld Eh/(Ets)73 has a homogeneous comPlex structure,

   3. 3. Automorphism os of order 3 and subgroup (U(1)× U(1)×Spin(8))/(Zi ×

a) of E,

   Let U(1) =={e E C 11 e 1=1} and we define an imbedding di : U(1)e EL by

                    ({ij, Jtig ah) [0`-4ii etig t2kz,l

               di (e) l x-3 i xi l = L axla e-2& e-2x, 1.

                    Lxh x, esJ Lt2xle o'2x-, e-2a)

Now, we regard tf, oh e L as elements of Eh. Of course cr2=1, oj3=1.

   Known result3.6 [6]. (1) Tll2e gromp (Ets)E,=<ev Eii Elil aEi =Ei} is isomorphic to

the gromp SZ)in(10) which is the univexsal covering gromp of SO(10)=SO(V'O) where

viO={XE ℃C1 2E, XX=-T:X}. ' (2) T7ze grozip (Eh)6 ds isomo7Phic to the gromp (U(1)xSZ)in(10))/ZZ by an

isomo7cPhism induced .from the homomorphism th : U(l)xSZ)in(10)-(Ets)cr,

                          th(e, fi)= di (o)6

with Kerth==Z4={(1, di(1)), (-1, di(-1)), (i, di(i)), (-i, di(-i))}.

   Lernma 3. 7. thr a G (EL)"3, there etists 4 e U(1) such that evLE4 =4E4.

   Proof is similar to Lemma 2. 5 and see [6, Lemma 9].

   We define a subgroup (El])E,,F,(,) of the group Eb by

        (EL)E,,E(s)-ww{a E Elal aEi =Ei, crjFl(s)= Fl (s) for all s E C}

                ={a E SZ)in(10)I evE(1) =F{(1), evE(e)=E(e)}.

This group (Eh)E,,E(,) is isomorphic to the group SZ)in(8) which is the universal

covering group of SO(8)=SO(V8) where V8 ={t5E>-T4E5+R(t)1 4 E C, t E C±}.

Furthermore we use the following notation.

             (El,)U(i)={ev E EI}l D.cr=aa for all a EiE U(1)}.
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   Lemma 3. 8. SZ}in(8) == (Ela)E,,F,(,) is a suhgromp of (Eh)U(i).

   Proof is similar to Lemma 2. 6.

   Theorem 3.9. T7ie gromp (EL)op is isomorphic to the gromp (U(1)×U(l)xSZ)in

(8))/(Zlt xZL) where Zl,={(1, 1, 1), (i, e, di (i)D,), (-1, -1, 1), (-i, -e, di (i)D,)} and

Zl,={(1, l, l), (1, -1, tf)}.

   Proof. We define a mapping th : U(1)×U(1)×SZ)in(8)-(,Eh)63 by

                        th(0, a, fi)=di(0)Da6･

Obviously V is well-defined : V(0, a, 6) E (Eb)oj(Lemma 3. 7). Since di(0)(0 G U(1)),

D. (i U(1) and P E SZ)in(8), commute with one another (Lemma 3.8), th is a
homomorphism. We shall show that th is onto, Let ev E (Eig)6". From Lemma 3. 7, there

exists 0 E U(1) such that

                        aEi = e`Ei = di (0)Ei.

Put 6=di(0)-iev, then 13El == Ei, that is, P Gi ((Eb)q)E, ==<cr E(Eh)op1 crEl ==El}. From

Lemma 3. 7, we see that the vector space

   {Iil (s)1 s E C} :=: {X E((8C)                           )±1 E, ×X :: O, <El, X> == O, 2E, ×X=-TX}
                          63
is invariant under the group ((Iih)oj)E,. So we can put PE(1)=E(sb), so G C. Then

we have also 6Fl(e)= jFl(eso) (cf. Theorem 2. 7). Choose ab e C such that cfo2= th.

Then fiFl(1)=D,, Iil(1), PLFI(e)=D,, Fl(e). Put 6=:D,,-iP, then 6 E SZ)in(8). Hence

we have

            cr :: di(0)%A 0 E U(1), ab Eii U(1), 6 E 5Pin(8).

Thus th is onto. Finally we shall determine KerV. Let di(0)qa=1, e E U(1), a e U

(1), 6 e SZ)in(8). From di(0)4(iEi =Ei, we have 0` :1. Hence e== ±1, ±i. In the case

of e= 1, from 4(SE (1) :Fl (1), we have E(a2)=E(1), so a2= 1. Therefore a=1, 6=

1 or a= -1, 6=D.i=6. So (1, 1, 1), (1, -1, cr) E Kerth. In other cases of 0, we can

similarly determine elements of Kerth. Thus

     Kerth={(1, 1, 1), (i, e, di(i)D.), (-1, -1, 1), (-i, -e, di(i)D.),

           (1, -1, cr), (-i, -e, di(i)De), (-1, 1, 6), (-i, e, di(-i)De)}

         =<(i, e, ip(i)De)>X<(1, -1, cr)>=Z4×Zli･

Thus we have the isomorphism (U(1)× U(1)×Sbin(8))/(Zk ×a){li!(Et)oj.
   Corollary 3. 10. (Ets)oj=(Ek)S' where Si == th(1, U(l), 1)

                     =(Il})& where &== th(U(1), U(1), 1).

in particulaL the mandr2)ld Eh/(Eh)q has a homogeneozds comPlex structure.

   3. 4. Automorphism eg' of order 3 and subgroup (U(1) × Spin(10))/a of EB
   Let di : U(l)- Eh be the imbedding defined in Known result 3. 6. Now, let v:=exp
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Zi'Fii E C and denote di(v) by of'. Of course d E EL and d9= 1. Since cr'3=bll E z(Eb),

6' induces an automorphism (h' of Eli of order 3,

                      oj'(ty)=dev6'-i, ev EII E}i.

                              '   Theorem 3.11. 71Vze gromp (Eh)op coincides with the gromp (%)ff, so it is

isomo7Phic te the g7vzip (U(1)x5Z)in(10))/Zk.

   Proof. Since

                ,,,r[S-, ZL･ ill,1,.,[VII{,flil .y,rif, .y,le.,l,

                   L xzz `iii 4hJ t ttzla v-2x-i vm2t5hJ

C-vector subspaces {4Ei1 4 EiE C}, {l>(xlz)+,F>(xla)l xi E EC} and {ei>llh+tgkG+jFl (x)

                                                t14i E C, x e QC} of gC are invariant under the group (E")op.In particular, cr E

                                                              ,(llh)oj commutes with cr: (EL)oj c (li5)6. The converse inclusion (E])cr c(EL)q is

                                               'clear because (Eg)6=di(U(1))SZ}in(10). Thus we have (llh)q =(Eis)O=(U(1)×SZ)in

aO))/,Zk.

                    t   Corol]ary 3. 12. (El)oj =(Elj)S where S :th(U(1), 1). in ParticulaL the manijbld

       'Ili/(Ili)cr3 has a homogeneous comPlex structure.

   3. 5. Automorphisrn w of order 3 and subgroup (SU(3) × SU(3) × SU(3))IZk of

   Let aD :: --li--Ng e Ei c c g and we define a c-linear transformation ze of gC by

         w(X+M)=X+wM, X+M E ℃(3, c)CeM(3, c)C=3C.
This w is the same one as w E G ca c E]. Of course w3 :1.

   Theorem 3.5. T7ze gromp ("Eh)W is isomo7cPhic to the groz4) (SU(3)×SU(3)×SU
(3))/Zk where Z5={(1, .Il E), (bl1, blli fe)E), (bl21, w211 ld2E)}.

   Proof. We define a mapping IPp : SU(3)×SU(3)×SU(3)-->(]El,)W by

     th(R A. B)(X+M)=h(A. B)Xh(A, B)"+PMrh(A, B)",
                           X+ME g (3, c)C<{E) M(3, c)C=sC

where h: M(3, C)×M(3, C)-> M(3, C)C is the mapping defined by h(A, B) :=
AXB+i(And2B)e. th is well-defined: th(Il A, B) E .[ib [7] moreover G(Eh)to･

Obviously th is a homomorphism. The proof that V is onto is similar to Theorem 2, 9.

Thus we have the isomorphism (SU(3)×SU(3)×SU(3))/a=n-'(Eh)w.
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