# Realization of automorphisms $\sigma$ of order 3 and $G^{\sigma}$ of compact exceptional Lie groups G, I, $\boldsymbol{G}=\boldsymbol{G}_{2}, \boldsymbol{F}_{4}, \boldsymbol{E}_{6}$ 

Dedicated to Professor Nagayoshi Iwahori on his 60th birthday
By Ichiro Yokota
Department of Mathematics, Faculty of Science
Shinshu University
(Received Sept. 15, 1985)
J. A. Wolf and A. Gray [1] classified automorphisms $\sigma$ of order 3 and the fixed subgroups $G^{\sigma}$ of connected compact simple Lie groups $G$ of centerfree. In this paper, we find these automorphisms $\sigma$ and realize $G^{\sigma}$ for simply connected compact exceptional Lie groups $G=G_{2}, F_{4}$ and $E_{6}$. (As for $E_{7}$ and $E_{8}$, they will appear in the next issue). Our result is the following second column. The first column is the chart of involutive automorphisms and the fixed subgroups which are connected our cases.


Notations. (1) Let $G$ be a group and $\sigma$ an automorphism of $G . G^{\sigma}$ denotes $\{g$ $\in G \mid \sigma g=g\}$. If $\sigma$ is an inner automorphism Ads induced by $s \in G, G^{\text {Ads }}$ is briefly denoted by $G^{s}: G^{s}=\{g \in G \mid s g=g s\}$. Moreover, for a subset $S$ of $G$, the centralizer of $S$ in $G$ is denoted by $G^{S}: G^{S}=\{g \in G \mid s g=g s$ for all $s \in S\}$.
(2) When two groups $G, G^{\prime}$ are isomorphic: $G \cong G^{\prime}$, we often identify these groups: $G=G^{\prime}$.
(3) For an $R$-vector space $V$, its complexification $\{u+\mathrm{i} v \mid u, v \in V\}$ is denoted by $V^{\mathrm{C}}$. The complex conjugation in $V^{\mathrm{C}}$ is denoted by $\tau: \tau(u+\mathrm{i} v)=u-\mathrm{i} v$.
(4) The definitions of classical Lie groups $U(n), S U(n)$ and $S p(n), n=1,3$
appeared in this paper are usual ones: $U(n)=\left\{A \in M(n, \mathbf{C}) \mid A^{*} A=E\right\}, S U(n)=$ $\{A \in U(n) \mid \operatorname{det} A=1\}$ and $\operatorname{Sp}(n)=\left\{A \in M(n, \boldsymbol{H}) \mid A^{*} A=E\right\}$.

## 1. The group $G_{2}$

Let $\mathbb{E}=\sum_{i=0}^{7} \boldsymbol{R} e_{i}$ be the Cayley division algebra with the multiplication such that $e_{0}=1$ is the unit, $e_{i}{ }^{2}=-1,1 \leqq i \leqq 7, e_{i} e_{j}=-e_{j} e_{i}, 1 \leqq i \neq j \leqq 7$ and $e_{1} e_{2}=e_{3}$, $e_{3} e_{5}=e_{6}, e_{2} e_{5}=e_{7}$ etc. $\ldots$. In ( 5 , the conjugation $\bar{x}$, the inner product ( $x, y$ ) and the length $|x|$ are naturally defined. The Cayley algebra © contains the field of real numbers $\boldsymbol{R}$ naturally, furthermore the fields of complex numbers $C, C_{1}$ and quaternions $H$ :


$$
\begin{gathered}
\boldsymbol{C}=\left\{\boldsymbol{\xi}+\eta e_{4} \mid \xi, \eta \in \boldsymbol{R}\right\}, \quad \boldsymbol{C}_{1}=\left\{\boldsymbol{\xi}+\eta e_{1} \mid \xi, \eta \in \boldsymbol{R}\right\}, \\
\boldsymbol{H}=\left\{\boldsymbol{\xi}+\xi_{1} e_{1}+\xi_{2} e_{2}+\xi_{3} e_{3} \mid \xi, \xi_{i} \in \boldsymbol{R}\right\} .
\end{gathered}
$$

Hereafter $e_{4}$ is briefly denoted by $e$.
The automorphism group $G_{2}$ of the Cayley algebra © ,

$$
G_{2}=\left\{\alpha \in \operatorname{Iso}_{R}(\text { 厄, (ङ) } \mid \alpha(x y)=(\alpha x)(\alpha y)\}\right.
$$

is a simply connected compact simple Lie group of type $G_{2}$ [8]. To find some subgroups of $G_{2}$, we will give alternative definitions of the Cayley algebra © $\mathbb{c}$.

1. In $\mathfrak{C}=\boldsymbol{H} \oplus \boldsymbol{H} e$, we define a multiplication, a conjugation ${ }^{-}$and an inner product ( , ) respectively by

$$
\begin{aligned}
(a+b e)(c+d e) & =(a c-\bar{d} b)+(b \bar{c}+d a) e, \\
\overline{a+b e} & =\bar{a}-b e \\
(a+b e, c+d e) & =(a, c)+(b, d) .
\end{aligned}
$$

2. In $\Subset=\boldsymbol{C} \oplus \boldsymbol{C}^{3}$, we define a multiplication etc. by

$$
\begin{aligned}
(a+\boldsymbol{m})(b+\boldsymbol{n}) & =\left(a b-\overline{\boldsymbol{m}^{*}} \boldsymbol{n}\right)+(a \boldsymbol{n}+\bar{b} \boldsymbol{m}+\overline{\boldsymbol{m} \times \boldsymbol{n}}), \\
\overline{a+\boldsymbol{m}} & =\bar{a}-\boldsymbol{m}, \\
(a+\boldsymbol{m}, b+\boldsymbol{n}) & =(a, b)+(\boldsymbol{m}, \boldsymbol{n})
\end{aligned}
$$

where $\boldsymbol{m} \times \boldsymbol{n} \in \boldsymbol{C}^{3}$ is the exterior product of $\boldsymbol{m}, \boldsymbol{n} \in \boldsymbol{C}^{\boldsymbol{3}}$ and ( $\left.\boldsymbol{m}, \boldsymbol{n}\right)=\frac{1}{2}\left(\boldsymbol{m}^{*} \boldsymbol{n}+\boldsymbol{n}^{*} \boldsymbol{m}\right)$.

1. 2. Automorphism $\gamma_{3}$ of order 3 and subgroup $(U(1) \times S p(1)) / Z_{2}$ of $G_{2}$

We define an $\boldsymbol{R}$-linear transformation $\gamma$ of $\mathbb{E}$ by

$$
\gamma(a+b e)=a-b e, \quad a+b e \in \boldsymbol{H} \oplus \boldsymbol{H e}=\Subset
$$

Then we have $\gamma \in G_{2}$ and $\gamma^{2}=1$.
Known result 1.1 [2]. The group $\left(G_{2}\right)^{\gamma}$ is isomorphic to the group $(S p(1) \times S p$
(1)) $/ \mathbb{Z}_{2}(\cong S O$ (4)) by an isomorphism induced from the homomorphism $\psi: S p(1) \times$ $S p(1) \rightarrow\left(G_{2}\right)^{\gamma}$,

$$
\psi(p, q)(a+b e)=q a \bar{q}+(p b \bar{q}) e, \quad a+b e \in \boldsymbol{H} \oplus \boldsymbol{H e}=\mathbb{c}
$$

with $\operatorname{Ker} \psi=\mathbb{Z}_{2}=\{(1,1),(-1,-1)\}$.

$$
\begin{gathered}
\text { Let } \omega_{1}=-\frac{1}{2}+\frac{\sqrt{3}}{2} e_{1} \in S p(1) \subset \boldsymbol{H} \subset \mathfrak{c} . \text { Denote } \psi\left(\omega_{1}, 1\right) \text { by } \gamma_{3}: \\
\gamma_{3}(a+b e)=a+\left(\omega_{1} b\right) e, \quad a+b e \in \boldsymbol{H} \oplus \boldsymbol{H} e=\mathfrak{c} .
\end{gathered}
$$

Of course $\gamma_{3} \in G_{2}$ and $\gamma_{3}{ }^{3}=1$.
Theorem 1.2. The group $\left(G_{2}\right)^{\gamma_{3}}$ is isomorphic to the group $(U(1) \times S p(1)) / \mathbb{Z}_{2}(\cong$ $U(2))$ where $\mathbb{Z}_{2}=\{(1,1),(-1,-1)\}$.

Proof. Let $U(1)=\left\{s \in C_{1}| | s \mid=1\right\} \subset S p(1) \subset H \subset(5$. We define a homomorphism $\psi: U(1) \times S p(1) \rightarrow\left(G_{2}\right)^{\gamma_{3}}$ by the restriction of $\psi$ of Known result 1.1. Clearly $\gamma_{3} \psi(s, q)=\psi(s, q) \gamma_{3}$ for $(s, q) \in U(1) \times S p(1)$, so $\psi$ is well-defined. We shall show that $\psi$ is onto. Let $\alpha \in\left(G_{2}\right)^{\gamma_{3}}$. Since $\alpha$ commutes with $\gamma_{3}$, © $\gamma_{3}=\left\{x \in \mathbb{E} \mid \gamma_{3} x=\right.$ $x\}=\boldsymbol{H}$ is invariant under $\alpha$. So $\alpha$ also commutes with $\gamma: \alpha \in\left(G_{2}\right)^{\gamma}$. Hence, from Known result 1.1, there exist $s, q \in S p(1)$ such that $\alpha=\psi(s, q)$. From the commutativity $\gamma_{3} \alpha=\alpha \gamma_{3}$, that is, $\psi\left(\omega_{1} s, q\right)=\psi\left(s \omega_{1}, q\right)$, we have $\left(\omega_{1} s, q\right)= \pm\left(s \omega_{1}, q\right)$, so $\omega_{1} s=s \omega_{1}$, therefore $s \in U(1)$. Hence $\psi$ is onto. Obviously $\operatorname{Ker} \psi=\boldsymbol{Z}_{2}$. Thus we have the isomorphism $(U(1) \times S p(1)) / Z_{2} \cong\left(G_{2}\right)^{\gamma_{3}}$.

Corollary 1. 3. $\left(G_{2}\right)^{\gamma_{3}}=\left(G_{2}\right)^{S}$ where $S=\psi(U(1), 1)$. In particular, the manifold $G_{2} /\left(G_{2}\right)^{\gamma_{3}}$ has a homogeneous complex structure.

1. 2. Automorphism $w$ of order 3 and subgroup $\operatorname{SU}(3)$ of $G_{2}$

Let $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} e \in \boldsymbol{C} \subset \mathfrak{C}$. We define an $\boldsymbol{R}$-linear transformation $w$ of $\mathbb{C}$ by

$$
w(a+\boldsymbol{m})=a+\omega \boldsymbol{m}, \quad a+\boldsymbol{m} \in \boldsymbol{C} \oplus \boldsymbol{C}^{3}=\mathbb{C} .
$$

Then we have $w \in G_{2}$ and $w^{3}=1$.
Remark. We have the following
Proposition 1.4. For $a \in \mathbb{C}$ such that $|a|=1$, the condition that the mapping $\alpha_{a}$ : $\mathfrak{E} \rightarrow \mathbb{(}, \alpha_{a} x=a x \bar{a}$ belongs to the group $G_{2}$ is $a^{3}= \pm 1$.

Now, $w$ is nothing but the mapping $\alpha_{\bar{\omega}}: w x=\bar{\omega} x(\omega), x \in \mathbb{C}$.
Known result 1.5 [7], [8]. The group $\left(G_{2}\right)_{e}=\left\{\alpha \in G_{2} \mid \alpha e=e\right\}$ is isomorphic to the group $S U(3)$ by the isomorphism $\psi: S U(3) \rightarrow\left(G_{2}\right)_{e}$,

$$
\psi(A)(a+\boldsymbol{m})=a+A \boldsymbol{m}, \quad a+\boldsymbol{m} \in \boldsymbol{C} \oplus \boldsymbol{C}^{3}=\hookleftarrow .
$$

Theorem 1.6. The group $\left(G_{2}\right)^{w}$ coincides with the group $\left(G_{2}\right)_{e}$, so it is isomorphic to the group $\operatorname{SU}(3)$.

Proof. We shall show $\left(G_{2}\right)^{w}=\left(G_{2}\right)_{e}$. Clearly $\left(G_{2}\right)_{e}=\psi(\operatorname{SU}(3)) \subset\left(G_{2}\right)^{w}$. Conversely, let $\alpha \in\left(G_{2}\right)^{w}$. Since $\alpha$ commutes with $w, \mathbb{E}_{w}=\{x \in \Subset \mid w x=x\}=\boldsymbol{C}$ is invariant under $\alpha$. So $\alpha$ induces an automorphism of $C$, hence

$$
\alpha e=e \quad \text { or } \quad \alpha e=-e
$$

In the latter case, consider a mapping $\gamma:\left(\mathfrak{c} \rightarrow\right.$ © , $\gamma(a+\boldsymbol{m})=\overline{\mathrm{a}}+\bar{m}$. Then $\gamma \in G_{2}$ and $\gamma e=-e$. (This $\gamma$ is the same one as $\gamma$ of the preceding section 1.1). Put $\beta=\gamma \alpha$. Since $\beta e=e$, we have $\beta \in\left(G_{2}\right)_{e} \subset\left(G_{2}\right)^{w}$. Therefore $\gamma=\beta \alpha^{-1} \in\left(G_{2}\right)^{w}$. However this is a contradiction. In fact, $\bar{\omega}=\omega \bar{m}=w(\gamma m)=\gamma(\omega m)=\overline{\omega m}=\bar{\omega} \bar{m}$ for all $m \in C^{3}$ which is false. Hence $\alpha e=e$, so $\alpha \in\left(G_{2}\right)_{e}$. Thus we have $\left(G_{2}\right)^{w} \subset\left(G_{2}\right)_{e}$.

## 2. The group $\mathbb{F}_{4}$

Let $\mathfrak{F}=\left\{X \in M(3, \Subset) \mid X^{*}=X\right\}$ be the exceptional Jordan algebra with the Jordan multiplication

$$
X \circ Y=\frac{1}{2}(X Y+Y X)
$$

In $\mathfrak{F}$, we define a positive definite inner product $(X, Y)$ by $\operatorname{tr}(X \circ Y)$. Moreover, in $\mathfrak{F}$, we define a multiplication $X \times Y$ called the Freudenthal multiplication, a trilinear form $(X, Y, Z)$ and the determinant $\operatorname{det} X$ respectively by

$$
\begin{gathered}
X \times Y=\frac{1}{2}(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-(X, Y)) E), \\
(X, Y, Z)=(X, Y \times Z), \quad \operatorname{det} X=\frac{1}{3}(X, X, X) .
\end{gathered}
$$

The algebra $\Im$ with the multiplication $X \times Y$ and the inner product ( $X, Y$ ) will be called the Freudenthal algebra.

The automorphism group $F_{4}$ of the Jordan algebra $\mathfrak{F}$,

$$
\begin{aligned}
F_{4} & =\left\{\alpha \in \operatorname{Iso}_{R}(\Im, \Im) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{R}(\Im, \Im) \mid \operatorname{det} \alpha X=\operatorname{det} X,(\alpha X, \alpha Y)=(X, Y)\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{R}(\varsubsetneqq, \varsubsetneqq) \mid \alpha(X \times Y)=\alpha X \times \alpha Y\right\}
\end{aligned}
$$

is a simply connected compact simple Lie group of type $F_{4}$ [3], [8]. The group $F_{4}$ contains $G_{2}$ as a subgroup naturally, that is, any $\alpha \in G_{2}$ is regarded as $\alpha \in F_{4}$ by

$$
\alpha\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\overline{x_{3}} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \bar{\xi}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & \alpha x_{3} & \overline{\alpha x_{2}} \\
\overline{\alpha x_{3}} & \xi_{2} & \alpha \mathrm{x}_{1} \\
\alpha \mathrm{x}_{2} & \overline{\alpha x_{1}} & \xi_{3}
\end{array}\right)
$$

To find some subgroups of $F_{4}$, we will give alternative definitions of Freudenthal algebra $\mathfrak{F}$. For $K=\boldsymbol{R}, \boldsymbol{C}$, let $\mathfrak{\Im}_{K}=\mathfrak{F}(3, K)=\left\{X \in M(3, K) \mid X^{*}=X\right\}$ be the Freudenthal algebra with the multiplication $X \times Y$ and the inner product $(X, Y)$ as analogous to ones in $\mathfrak{j}$.
 a multiplication and an inner product respectively by

$$
\begin{aligned}
(X+\boldsymbol{a}) \times(Y+\boldsymbol{b}) & =\left(X \times Y-\frac{1}{2}\left(\boldsymbol{a}^{*} \boldsymbol{b}+\boldsymbol{b}^{*} \boldsymbol{a}\right)\right)-\frac{1}{2}(\boldsymbol{a} Y+\boldsymbol{b} X), \\
(X+\boldsymbol{a}, Y+\boldsymbol{b}) & =(X, Y)+2(\boldsymbol{a}, \boldsymbol{b})
\end{aligned}
$$

where $(\boldsymbol{a}, \boldsymbol{b})=\frac{1}{2}\left(\boldsymbol{a} \boldsymbol{b}^{*}+\boldsymbol{b} \boldsymbol{a}^{*}\right)=\frac{1}{2} \operatorname{tr}\left(\boldsymbol{a}^{*} \boldsymbol{b}+\boldsymbol{b}^{*} \boldsymbol{a}\right)$.
2. In $\mathfrak{\Im}=\mathfrak{F}(3, \boldsymbol{C}) \oplus M(3, \boldsymbol{C})$, we define a multiplication etc. by

$$
\begin{aligned}
(X+M) \times(Y+N) & =\left(X \times Y-\frac{1}{2}\left(M^{*} N+N^{*} M\right)\right)-\frac{1}{2}(M Y+N X+\overline{M \times N}) \\
(X+M, Y+N) & =(X, Y)+2(M, N)
\end{aligned}
$$

where, for $M=\left(\boldsymbol{m}_{1}, \boldsymbol{m}_{2}, \boldsymbol{m}_{3}\right), N=\left(\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \boldsymbol{n}_{3}\right) \in M(3, \boldsymbol{C}), M \times N \in M(3, \boldsymbol{C})$ is defined by

$$
M \times N=\left(\begin{array}{ccc}
\boldsymbol{m}_{2} \times \boldsymbol{n}_{3} & \boldsymbol{m}_{3} \times \boldsymbol{n}_{1} & \boldsymbol{m}_{1} \times \boldsymbol{n}_{\boldsymbol{2}} \\
+ & + & + \\
\boldsymbol{n}_{2} \times \boldsymbol{m}_{3} & \boldsymbol{n}_{3} \times \boldsymbol{m}_{1} & \boldsymbol{n}_{1} \times \boldsymbol{m}_{2}
\end{array}\right)
$$

and $(M, N)=\frac{1}{2} \operatorname{tr}\left(M^{*} N+N^{*} M\right)$.
2.1. Automorphism $\gamma_{3}$ of order 3 and subgroup $(U(1) \times S p(3)) / Z_{2}$ of $F_{4}$

We consider $\boldsymbol{R}$-linear transformations $\gamma, \gamma_{3}$ of $\Im$ which are extensions of $\gamma, \gamma_{3} \in$ $G_{2}$ to $F_{4}$ respectively. Of course $\gamma, \gamma_{3} \in F_{4}$ and $\gamma^{2}=1, \gamma_{3}{ }^{3}=1$.

Known result 2.1 [5]. The group $\left(F_{4}\right)^{\gamma}$ is isomorphic to the group ( $S p(1) \times S p$ (3))/ $\boldsymbol{Z}_{2}$ by an isomorphism induced from the homomorphism $\psi: S p(1) \times S p(3) \rightarrow$ $\left(F_{4}\right)^{\gamma}$,

$$
\psi(p, A)(X+\boldsymbol{a})=A X A^{*}+p \boldsymbol{a} A^{*}, \quad X+\boldsymbol{a} \in \Im(3, \boldsymbol{H}) \oplus \boldsymbol{H}^{3}=\mathfrak{\Im}
$$

with $\operatorname{Ker} \psi=\mathcal{Z}_{2}=\{(1, E),(-1,-E)\}$.
Theorem 2.2. The group $\left(F_{4}\right)^{\gamma_{3}}$ is isomorphic to the group $(U(1) \times S p(3)) / Z_{2}$ where $\mathbb{Z}_{2}=\{(1, E),(-1,-E)\}$.

Proof. Let $U(1)=\left\{s \in \boldsymbol{C}_{1}| | s \mid=1\right\} \subset S p(1) \subset \boldsymbol{H} \subset \mathbb{E}$. We define a homomorphism $\psi: U(1) \times S p(3) \rightarrow\left(F_{4}\right)^{\gamma_{3}}$ by the restriction of $\psi$ of Known result 2.1. Then $\psi$ induces an isomorphism $(U(1) \times S p(3)) / \mathbb{Z}_{2} \cong\left(F_{4}\right)^{\gamma_{3}}$ whose proof is similar to Theorem 1.2.

Corollary 2.3. $\left(F_{4}\right)^{\gamma_{3}}=\left(F_{4}\right)^{S}$ where $S=\psi(U(1), 1)$. In particular, the manifold $F_{4} /\left(F_{4}\right)^{\gamma_{3}}$ has a homogeneous complex structure.
2. 2. Automorphism $\sigma_{3}$ of order 3 and subgroup $(\boldsymbol{U}(\mathbf{1}) \times \operatorname{Spin}(7)) / Z_{2}$ of $F_{4}$

Let $U(1)=\{a \in C| | a \mid=1\}$. For $a \in U(1)$, we define an $\boldsymbol{R}$-linear transformation $D_{a}$ of $\mathfrak{F}$ by

$$
D_{a}\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & x_{3} a & \overline{a x_{2}} \\
\overline{x_{3} a} & \xi_{2} & \overline{a x_{1} a} \\
a x_{2} & a \bar{x}_{1} a & \bar{\xi}_{3}
\end{array}\right)
$$

Then we have $D_{a} \in F_{4}$. Denote $D_{-1}$ by $\sigma$. Of course $\sigma \in F_{4}$ and $\sigma^{2}=1$.
Hereafter we use the following notations in $\mathfrak{F}$ [6].

$$
\begin{array}{cc}
E_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad E_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
F_{1}(x)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & x \\
0 & \bar{x} & 0
\end{array}\right), \quad F_{2}(x)=\left(\begin{array}{lll}
0 & 0 & \bar{x} \\
0 & 0 & 0 \\
x & 0 & 0
\end{array}\right), \quad F_{3}(x)=\left(\begin{array}{lll}
0 & x & 0 \\
\bar{x} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{array}
$$

Known result 2.4. [4], [8]. The group $\left(F_{4}\right)^{\sigma}$ coincides with the group $\left(F_{4}\right)_{E_{1}}=\{\alpha$ $\left.\in F_{4} \mid \alpha E_{1}=E_{1}\right\}$, so it is isomorphic to the group Spin(9) which is the universal covering group of $S O(9)=S O\left(V^{9}\right)$ where $V^{9}=\left\{X \in \Im \mid E_{1} \circ X=0, \operatorname{tr}(X)=0\right\}$.

Let $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} e \in U(1) \subset C \subset \mathbb{C}$ and denote $D_{\omega}$ by $\sigma_{3}$. Of course $\sigma_{3} \in F_{4}$ and $\sigma_{3}{ }^{3}=1$. To investigate the group $\left(F_{4}\right)^{\sigma_{3}}$, we consider $\boldsymbol{R}$-vector subspaces $\Im_{\sigma_{3}}\left(\mathfrak{J}_{\sigma_{3}}\right) \perp$ of $\mathfrak{J}$ :

$$
\begin{aligned}
& \Im_{\sigma_{3}}=\left\{X \in \Im \mid \sigma_{3} X=X\right\}=\left\{\xi_{1} E_{1}+\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}(t) \mid \xi_{i} \in \boldsymbol{R}, t \in C^{\perp}\right\}, \\
& \left(\Im_{\sigma_{3}}\right) \perp \\
& =\text { the orthogonal complement of } \Im_{\sigma_{3}} \text { in } \Im \\
& \\
& =\left\{F_{1}(s)+F_{2}\left(x_{2}\right)+F_{3}\left(x_{3}\right) \mid s \in \boldsymbol{C}, x_{i} \in \mathfrak{C}\right\}
\end{aligned}
$$

where $\boldsymbol{C} \perp$ is the orthogonal complement of $\boldsymbol{C}$ in $\mathfrak{\Im}$. Then $\mathfrak{\Im}=\mathfrak{\Im}_{\sigma_{3}} \oplus\left(\mathfrak{F}_{\sigma_{3}}\right) \perp$ and $\mathfrak{F}_{\sigma_{3}}$, $\left(\mathfrak{F}_{\sigma_{3}}\right) \perp$ are invariant under the group $\left(F_{4}\right)^{\sigma_{3}}$.

Lemma 2.5. For $\alpha \in\left(F_{4}\right)^{\sigma_{3}}$, we have $\alpha E_{1}=E_{1}$. Hence $\left(F_{4}\right)^{\sigma_{3}}$ is a subgroup of $\left(F_{4}\right)_{E_{1}}=\operatorname{Spin}(9)$.

Proof is similar to [6, Lemma 9], however we need some modifications. To show $\alpha E_{2} \in \mathfrak{J}(2, \mathfrak{5})=\left\{\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}(x) \mid \xi_{i} \in \boldsymbol{R}, x \in \mathfrak{c}\right\}$, put $\alpha E_{2}=\xi_{1} E_{1}+\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}$ $(t), \xi_{i} \in R, t \in C \perp$ and suppose $\xi_{1} \neq 0$. From $\alpha E_{2} \times \alpha E_{2}=0$, we see that $\xi_{2}=\xi_{3}=t=$ 0 , that is, $\alpha E_{2}=\xi_{1} E_{1}$. Next use $\alpha E_{2} \times \alpha F_{1}(1)=0$, then we see that $\alpha F_{1}(1)=\eta E_{1}$ for some $0 \neq \eta \in \boldsymbol{R}$ which contradicts to $\alpha E_{2}=\xi_{1} E_{1}$. Hence $\xi_{1}=0$. Thus we have $\alpha E_{2} \in \mathbb{( c}(2, \mathfrak{F})$. Similarly $\alpha E_{\mathbf{3}} \in \mathfrak{F}$ (2, (f). Therefore $\alpha E_{1} \neq \Im\left(2\right.$, © ) moreover $\alpha E_{1}=\xi E_{1}$ by the same argument of [6, Lemma 9]. Finally from the relation $\alpha E_{1} \circ \alpha E_{1}=\alpha E_{1}, \xi$ must be 1 . Thus we have $\alpha E_{1}=E_{1}$.

From Lemma 2.5, we see that $R$-vector subspaces

$$
\left\{\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}(t) \mid \xi_{i} \in \boldsymbol{R}, t \in \boldsymbol{C}^{\perp}\right\},\left\{F_{2}\left(x_{2}\right)+F_{3}\left(x_{3}\right) \mid x_{i} \in \mathfrak{C}\right\}, \quad\left\{F_{1}(s) \mid s \in \boldsymbol{C}\right\}
$$

of $\mathfrak{J}$ are invariant under the group $\left(F_{4}\right)^{\sigma_{3}}$.
We define a subgroup $\left(F_{4}\right)_{E_{1}, F_{1}(s)}$ of the group $F_{4}$ by

$$
\begin{aligned}
\left(F_{4}\right)_{E_{1}, F_{1}(s)} & =\left\{\alpha \in F_{4} \mid \alpha E_{1}=E_{1}, \alpha F_{1}(s)=F_{1}(s) \text { for all } s \in C\right\} \\
& =\left\{\alpha \in \operatorname{Spin}(9) \mid \alpha F_{1}(1)=F_{1}(1), \alpha F_{1}(e)=F_{1}(e)\right\} .
\end{aligned}
$$

This group $\left(F_{4}\right)_{E_{1}, F_{1}(s)}$ is isomorphic to the group $\operatorname{Spin}(7)$ which is the universal covering group of $S O(7)=S O\left(V^{\gamma}\right)$ where $V^{\gamma}=\left\{\xi\left(E_{2}-E_{3}\right)+F_{1}(t) \mid \xi \in \boldsymbol{R}, t \in C^{\perp}\right\}$. Furthermore we use the following notation.

$$
\left(F_{4}\right)^{U(1)}=\left\{\alpha \in F_{4} \mid D_{a} \alpha=\alpha D_{a} \text { for all } a \in U(1)\right\}
$$

Lemma 2.6. Spin $(7)=\left(F_{4}\right)_{F_{1}, F_{1}(s)}$ is a subgroup of $\left(F_{4}\right)^{U(1)}$.
Proof. Let $\beta \in \operatorname{Spin}(7)$. Then for $D_{a}, a \in U(1)$ we have

$$
\begin{aligned}
\beta D_{a} F_{1}(z) & =\beta F_{1}(\bar{a} z \bar{a})=\beta F_{1}\left(\bar{a}^{2} s+t\right) \quad(z=s+t, s \in C, t \in C \perp) \\
& =F_{1}\left(\bar{a}^{2} s\right)+\beta F_{1}(t)=F_{1}\left(\bar{a}^{2} s\right)+\left(\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}\left(t^{\prime}\right)\right)
\end{aligned}
$$

(for some $\boldsymbol{\xi}_{i} \in \boldsymbol{R}, t^{\prime} \in \boldsymbol{C}^{\perp}$ ). On the other hand,

$$
\begin{aligned}
D_{a} \beta F_{1}(z) & =D_{a} \beta F_{1}(s+t)=D_{a}\left(F_{1}(s)+\beta F_{1}(t)\right) \\
& \left.=D_{a}\left(F_{1}(s)+\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}\left(t^{\prime}\right)\right)=F_{1}\left(\bar{a}^{2} s\right)+\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}\left(t^{\prime}\right)\right) .
\end{aligned}
$$

Thus we have $\beta D_{a} F_{1}(z)=D_{a} \beta F_{1}(z), z \in \mathbb{C}$. Next, for $z \in \mathbb{C}$,

$$
\begin{aligned}
\beta D_{a} F_{2}(z) & \left.=\beta F_{2}(a z)=4 \beta\left(F_{1}(1) \times F_{2}(z)\right) \times F_{1}(\bar{a})\right)=4\left(F_{1}(1) \times F_{2}(z)\right) \times F_{1}(\bar{a}) \\
& =4\left(F_{1}(1) \times\left(F_{2}\left(x_{2}\right)+F_{3}\left(x_{3}\right)\right) \times F_{1}(\bar{a}) \quad \text { (for some } x_{i} \in \mathfrak{b}\right) \\
& =F_{2}\left(a x_{2}\right)+F_{3}\left(x_{3} a\right)=D_{a}\left(F_{2}\left(x_{2}\right)+F_{3}\left(x_{3}\right)\right)=D_{a} \beta F_{2}(z) .
\end{aligned}
$$

Similarly $\beta D_{a} F_{3}(z)=D_{a} \beta F_{3}(z)$. Clearly $D_{a} \beta=\beta D_{a}$ on $E_{1}$. Finally

$$
D_{a} \beta E_{2}=D_{a}\left(\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}(t)\right)=\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}(t)=\beta E_{2}=\beta D_{a} E_{2}
$$

(for some $\boldsymbol{\xi}_{i} \in \boldsymbol{R}, t \in \boldsymbol{C} \perp$ ). Similarly $D_{a} \beta E_{3}=\beta D_{a} E_{3}$. Thus we have $D_{a} \beta=\beta D_{a}$, that is, $\beta \in\left(F_{4}\right)^{U(1)}$.

Theorem 2.7. The group $\left(F_{4}\right)^{\sigma_{3}}$ is isomorphic to the group $(U(1) \times \operatorname{Spin}(7)) / \boldsymbol{Z}_{2}$ where $\boldsymbol{Z}_{2}=\{(1,1),(-1,-1)\}$.

Proof. We define a mapping $\psi: U(1) \times \operatorname{Spin}(7) \rightarrow\left(F_{4}\right)^{\sigma_{3}}$ by

$$
\psi(a, \beta)=D_{a} \beta .
$$

Obviously $\psi$ is well-defined : $\psi(a, \beta) \in\left(F_{4}\right)^{\sigma_{3}}$ (Lemma 2.6). Since $D_{a}(a \in U(1))$ and $\beta \in \operatorname{Spin}(7)$ commute (Lemma 2.6), $\psi$ is a homomorphism. We shall show that $\psi$ is onto. Let $\alpha \in\left(F_{4}\right)^{\sigma_{3}}$. Put $\alpha F_{1}(1)=F_{1}\left(s_{0}\right), s_{0} \in \boldsymbol{C}$. Then we have

$$
\begin{align*}
& \alpha F_{1}(\omega)=\alpha F_{1}(\bar{\omega} 1 \bar{\omega})=\alpha D_{\omega} F_{1}(1)=D_{\omega} \alpha F_{1}(1)=D_{\omega} F_{1}\left(s_{0}\right)=F_{1}\left(\omega S_{0}\right),  \tag{1}\\
& \alpha F_{1}(\bar{\omega})=\alpha D_{\omega} D_{\omega} F_{1}(1)=D_{\omega} D_{\omega} \alpha F_{1}(1)=D_{\omega} D_{\omega} F_{1}\left(s_{0}\right)=F_{1}\left(\bar{\omega} S_{0}\right) . \tag{2}
\end{align*}
$$

Taking (1)-(2), we have $\alpha F_{1}(e)=F_{1}\left(e s_{0}\right)$. Now, choose $a_{0} \in \boldsymbol{C}$ such that $\bar{a}_{0}^{2}=s_{0}$. Then

$$
\alpha F_{1}(1)=F_{1}\left(s_{0}\right)=F_{1}\left(\bar{a}_{0}^{2}\right)=D_{a_{0}} F_{1}(1), \quad \alpha F_{1}(e)=F_{1}\left(e s_{0}\right)=F_{1}\left(\bar{a}_{0}^{2} e\right)=D_{a_{0}} F_{1}(e) .
$$

Put $\beta=D_{a_{0}}^{-1} \alpha$, then $\beta F_{1}(1)=F_{1}(1), \beta F_{1}(e)=F_{1}(e)$ and $\beta E_{1}=E_{1}$ (Lemma 2.5), so $\beta \in$ $\operatorname{Spin}(7)$. Thus we have

$$
\alpha=D_{a_{0}} \beta, \quad D_{a_{0}} \in U(1), \beta \in \operatorname{Spin}(7),
$$

that is, $\psi$ is onto. Obviously $\operatorname{Ker} \psi=\mathbb{Z}_{2}$. Thus we have the isomorphism $(U(1) \times \operatorname{Spin}$ (7)) $/ \mathbb{Z}_{2} \cong\left(F_{4}\right)^{\sigma_{3}}$.

Corollary 2.8. $\left(F_{4}\right)^{\sigma_{3}}=\left(F_{4}\right)^{S}$ where $S=\psi(U(1), 1)$. In particular, the manifold $F_{4} /\left(F_{4}\right)^{\sigma_{3}}$ has a homogeneous complex structure.
2. 3. Automorphism $w$ of order 3 and subgroup $(S U(3) \times S U(3)) / Z_{3}$ of $F_{4}$

Let $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} e \in \boldsymbol{C} \subset \mathbb{E}$ and we define an $\boldsymbol{R}$-linear transformation $w$ of $\mathfrak{F}$ by

$$
w(X+M)=X+\omega M, \quad X+M \in \mathfrak{\lessgtr}(3, C) \oplus M(3, C)=\mathfrak{\Im} .
$$

This $w$ is the same one as $w \in G_{2} \subset F_{4}$. Of course $w^{3}=1$.
Theorem 2.9. The group $\left(F_{4}\right)^{w}$ is isomorphic to the group $(S U(3) \times S U(3)) / Z_{3}$ where $\mathscr{Z}_{3}=\left\{(E, E),(\omega E, \omega E),\left(\omega^{2} E, \omega^{2} E\right)\right\}$.

Proof. We define a mapping $\psi: S U(3) \times S U(3) \rightarrow\left(F_{4}\right)^{w}$ by

$$
\psi(P, A)(X+M)=A X A^{*}+P M A^{*}, \quad X+M \in \Im(3, C) \oplus M(3, C)=\mathfrak{J} .
$$

$\psi$ is well-defined: $\psi(P, A) \in F_{4}[6]$ moreover $\in\left(F_{4}\right)^{w}$. Obviously $\psi$ is a homomorphism. We shall show that $\psi$ is onto. Let $\alpha \in\left(F_{4}\right)^{w}$. Since the restriction $\alpha^{\prime}$ of $\alpha$ to $\mathfrak{\Im}_{w}=\{X \in \mathfrak{F} \mid w X=X\}=\mathfrak{\Im}(3, C)$ belongs to the group $F_{4, C}=\left\{\alpha \in \operatorname{Iso}_{R}\left(\mathfrak{\Im}_{C}\right.\right.$, $\left.\left.\Im_{C}\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\}$, there exists $A \in S U(3)$ such that

$$
\alpha X=A X A^{*} \quad \text { or } \quad \alpha X=A \bar{X} A^{*}, \quad X \in \Im(3, C)
$$

[7]. In the former case, put $\beta=\psi(E, A)^{-1} \alpha$, then $\beta \mid \mathfrak{F}(3, C)=1$. Hence $\beta \in G_{2}$, moreover $\beta \in\left(G_{2}\right)_{e}=\left(G_{2}\right)^{w}$ (Theorem 1.1) $=S U(3)$. Hence there exists $P \in S U(3)$ such that

$$
\beta(X+M)=X+P M=\psi(P, E)(X+M), \quad X+M \in \Im_{c} \oplus M(3, C)=\Im
$$

Therefore we have $\alpha=\psi(E, A) \beta=\psi(E, A) \psi(P, E)=\psi(P, A)$. In the latter case, consider the mapping $\gamma: \Im \rightarrow \Im, \gamma(X+M)=\bar{X}+\bar{M}, X+M \in \Im$ and recall $\gamma \in G_{2} \subset$ $F_{4}$. Put $\beta=\alpha^{-1} \psi(E, A) \gamma$, then $\beta \in F_{4}$ and $\beta \mid \Im_{C}=1$. Hence $\beta \in\left(G_{2}\right)_{e}=\left(G_{2}\right)^{w} \subset$ $\left(F_{4}\right)^{w}$. Since $\beta, \alpha, \psi(E, A) \in\left(F_{4}\right)^{w}, \gamma$ also $\in\left(F_{4}\right)^{w}$, so $\gamma \in\left(G_{2}\right)^{w}$ which is a contradiction (Theorem 1.6). Thus we see that $\psi$ is onto. $\operatorname{Ker} \psi=\mathbb{Z}_{3}$ is easily obtained. Thus we have the isomorphism $(S U(3) \times S U(3)) / \mathscr{Z}_{3} \cong\left(F_{4}\right)^{w}$.

## 3. The group $E_{6}$

Let $\mathfrak{F}^{\mathrm{C}}=\left\{X_{1}+\mathrm{i} X_{2} \mid X_{i} \in \mathfrak{F}\right\}$ (called the complex exceptional Jordan algebra) be the complexification of $\mathfrak{F}$. As in $\mathfrak{\Im}$, in $\Im^{\mathrm{C}}$ also, we define multiplications $X \circ Y, X \times$ $Y$, the inner product $(X, Y)$, the trilinear form $(X, Y, Z)$ and the determinant $\operatorname{det} X$. Finally, in $\Im^{\mathrm{C}}$, we define a positive definite Hermitian inner pruduct $\langle X, Y\rangle$ by ( $\tau X$; $Y$ ).

The group

$$
\begin{aligned}
E_{6} & =\left\{\alpha \in \operatorname{Iso} \mathbf{c}\left(\Im^{\mathbf{c}}, \mathfrak{J}^{\mathbf{c}}\right) \mid \operatorname{det} \alpha X=\operatorname{det} X,\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{\mathbf{c}}\left(\Im^{\mathbf{c}}, \Im^{\mathrm{C}}\right) \mid(\alpha X, \alpha Y, \alpha Z)=(X, Y, Z),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}
\end{aligned}
$$

is a simply connected compact simple Lie group of type $E_{6}$ [6]. For $\alpha \in F_{4}$, its complexification $\alpha^{\mathrm{C}}: \Im^{\mathrm{C}} \rightarrow \Im^{\mathrm{C}}$ belongs to $E_{6}$, so we can regard $F_{4}$ as a subgroup of $E_{6}$ under the complexification.
3. 1. Automorphism $\gamma_{3}$ of order 3 and subgroup $(\boldsymbol{U}(\mathbf{1}) \times \operatorname{SU}(\mathbf{6})) / \mathbb{Z}_{2}$ of $\boldsymbol{E}_{6}$

We consider C -linear transformations $\gamma, \gamma_{3}$ of $\mathfrak{F}^{\mathrm{C}}$ which are the complexifications of $\gamma, \gamma_{3} \in G_{2} \subset F_{4}$, respectively. Of course $\gamma, \gamma_{3} \in E_{6}$ and $\gamma^{2}=1, \gamma_{3}{ }^{3}=1$.

Let $\mathbf{C}=\boldsymbol{R}^{\mathrm{C}}=\left\{\boldsymbol{\xi}_{0}+\mathrm{i} \boldsymbol{\xi}_{1} \mid \boldsymbol{\xi}_{i} \in \boldsymbol{R}\right\}$ and we define an $\boldsymbol{R}$-linear mapping $k: \boldsymbol{H} \rightarrow M(2$, C) by

$$
k\left(\left(\xi_{0}+\xi_{1} e_{1}\right)+e_{2}\left(\xi_{2}+\xi_{3} e_{1}\right)\right)=\left(\begin{array}{rr}
\xi_{0}+\mathrm{i} \xi_{1} & -\xi_{2}+\mathrm{i} \xi_{3} \\
\xi_{2}+\mathrm{i} \xi_{3} & \xi_{0}-\mathrm{i} \xi_{1}
\end{array}\right), \quad \xi_{i} \in \boldsymbol{R} .
$$

This $k$ is naturally extended to $R$-linear mappings

$$
k: M(3, \boldsymbol{H}) \rightarrow \mathrm{M}(6, \mathrm{C}), \quad k: \boldsymbol{H}^{3} \rightarrow \mathrm{M}(2,6, \mathrm{C}) .
$$

Moreover these $k$ are extended to $\mathbf{C}$-linear isomorphisms $k: M(3, \boldsymbol{H})^{\mathrm{C}} \rightarrow \mathrm{M}(6, \mathbf{C}), k$ : $\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}} \rightarrow \mathrm{M}(2,6, \mathrm{C})$ respectively by

$$
\begin{array}{ll}
k\left(X_{1}+\mathrm{i} X_{2}\right)=k\left(X_{1}\right)+\mathrm{i} k\left(X_{2}\right), & X_{i} \in M(3, \boldsymbol{H}), \\
k\left(\boldsymbol{a}_{1}+\mathrm{i} \boldsymbol{a}_{2}\right)=k\left(\boldsymbol{a}_{1}\right)+\mathrm{i} k\left(\boldsymbol{a}_{2}\right), & \boldsymbol{a}_{i} \in \boldsymbol{H}^{3} .
\end{array}
$$

Finally, we define a $\mathbf{C}$-vector space $\subseteq(6, \mathbf{C})$ by

$$
\mathfrak{S}(6, \mathbf{C})=\left\{\left.S \in \mathrm{M}(6, \mathbb{C})\right|^{t} \mathrm{~S}=-\mathrm{S}\right\}
$$

and a C-linear isomorphism $k_{J}: \Im(3, \boldsymbol{H})^{\mathrm{C}} \rightarrow \subseteq(6, \mathrm{C})$ by

$$
k_{J}\left(X_{1}+\mathrm{i} X_{2}\right)=k\left(X_{1}\right) J+\mathrm{i} k\left(X_{2}\right) J, \quad X_{i} \in \Im(3, \boldsymbol{H})
$$

where $J=\left(\begin{array}{ccc}J^{\prime} & 0 & 0 \\ 0 & J^{\prime} & 0 \\ 0 & 0 & J^{\prime}\end{array}\right), J^{\prime}=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.
Known result 3. 1. [6]. The group $\left(E_{6}\right)^{\gamma}$ is isomorphic to the group $(\operatorname{Sp}(1) \times \operatorname{SU}$ $(6)) / \mathcal{Z}_{2}$ by an isomorphism induced from the homomorphism $\psi: \operatorname{Sp}(1) \times \operatorname{SU}(6) \rightarrow$ $\left(E_{6}\right)^{\gamma}$,
$\psi(p, \mathrm{~A})(X+\boldsymbol{a})=k_{J}^{-1}\left(\mathrm{~A} k_{J}(X)^{\mathrm{t}} \mathrm{A}\right)+p k^{-1}\left(k(\boldsymbol{a}) \mathrm{A}^{*}\right), \quad X+\boldsymbol{a} \in \Im_{H}^{\mathrm{C}} \oplus\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}}=\mathfrak{F}^{\mathrm{C}}$ with $\operatorname{Ker} \psi=\boldsymbol{Z}_{2}=\{(1, \mathrm{E}),(-1,-\mathrm{E})\}$.

Theorem 3.2. The group $\left(E_{6}\right)^{\gamma_{3}}$ is isomorphic to the group $(U(1) \times \operatorname{SU}(6)) / \boldsymbol{Z}_{2}$ where $\boldsymbol{Z}_{2}=\{(1, \mathrm{E}),(-1,-\mathrm{E})\}$.

Proof. Let $U(1)=\left\{s \in C_{1}| | s \mid=1\right\} \subset S p(1) \subset H \subset \mathbb{S}$. We define a homomorphism $\psi: U(1) \times S U(6) \rightarrow\left(E_{6}\right)^{\gamma_{3}}$ by the restriction of $\psi$ of Known result 3.1. Then $\psi$ induces an isomorphism $(U(1) \times \operatorname{SU}(6)) / \mathbb{Z}_{2} \cong\left(E_{6}\right)^{\gamma_{3}}$ whose proof is similar to Theorems 1.2, 2. 2.

Corollary 3.3. $\left(E_{6}\right)^{\gamma_{3}}=\left(E_{6}\right)^{S}$ where $S=\psi(U(1)$, 1). In particular, the manifold $E_{6} /\left(E_{6}\right)^{\gamma_{3}}$ has a homogeneous complex structure.
3. 2. Automorphism $\gamma_{3}^{\prime}$ of order 3 and subgroup $(\operatorname{Sp}(\mathbf{1}) \times \mathbf{S}(\mathbf{U}(1) \times \mathbf{U}(5))) / \mathbb{Z}_{2}$ of $E_{6}$

Let $v=\exp \frac{2 \pi \mathrm{i}}{9} \in \mathbb{C}$ and put $\mathrm{A}_{\nu}=\left(\begin{array}{cccc}v^{5} & & & \\ & v^{-1} & & \\ & & \ddots & \\ & & & v^{-1}\end{array}\right) \in \mathrm{SU}(6) \subset \mathrm{M}(6, \mathrm{C})$. Put $\gamma^{\prime}=\psi\left(1, \mathrm{~A}_{\nu}\right)$ where $\psi$ is the mapping $\psi: \operatorname{Sp}(1) \times \mathrm{SU}(6) \rightarrow\left(E_{6}\right)^{\gamma}$ defined in Known result 3.1. Of course $\gamma^{\prime} \in E_{6}$ and $\gamma^{\prime 9}=1$. Since $\mathrm{A}_{\nu}^{3}=\nu^{6} \mathrm{E} \in z(\mathrm{SU}(6))$ (the center of SU (6)) and $\psi\left(1, A_{v}{ }^{3}\right)=\omega 1$ (where $\left.\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} \in \mathbb{C}\right) \in z\left(E_{6}\right)$ (the center of $E_{6}$ ), $\gamma^{\prime}$ induces an automorphism $\gamma_{3}^{\prime}$ of $E_{6}$ of order 3,

$$
\gamma_{3}^{\prime}(\alpha)=\gamma^{\prime} \alpha \gamma^{\prime-1}, \quad \alpha \in E_{6} .
$$

In order to investigate the group $\left(E_{6}\right)^{\gamma_{3}^{\prime}}$, we consider C-eigen vector subspaces $\left(\Im^{\mathrm{C}}\right)_{v^{i}} i=0,1, \ldots, 8$ of $\mathfrak{J}^{\mathrm{C}}$ with respect to $\gamma^{\prime}$ :

$$
\begin{aligned}
& \left(\mathfrak{\Im}^{\mathrm{C}}\right)_{\nu}=\left\{X+\boldsymbol{a} \in \mathfrak{\Im}_{\boldsymbol{H}}^{\mathrm{c}} \oplus\left(\boldsymbol{H}^{3}\right)^{\mathrm{c}} \mid \boldsymbol{\gamma}^{\prime}(X+\boldsymbol{a})=v(X+\boldsymbol{a})\right\} \\
& =\left\{0+\left(a_{1}\left(e_{1}-\mathrm{i}\right), a_{2}, a_{3}\right) \mid a_{1} \in \boldsymbol{H}, a_{2}, a_{3} \in \boldsymbol{H}^{\mathrm{c}}\right\}, \\
& \left(\mathfrak{J}^{\mathbf{C}}\right)_{\nu^{4}}=\left\{X+\boldsymbol{a} \in \Im_{H^{\mathrm{C}}}\left(\oplus\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}} \mid \gamma^{\prime}(X+\boldsymbol{a})=v^{4}(X+\boldsymbol{a})\right\}\right. \\
& \left.\left.=\left\{\begin{array}{ccc|c}
\frac{\xi_{1}}{\left(e_{1}+\mathrm{i}\right) a_{3}} & \left(e_{1}+\mathrm{i}\right) a_{3} & \overline{a_{2}\left(e_{1}-\mathrm{i}\right)} \\
a_{2}\left(e_{1}-\mathrm{i}\right) & 0 & 0 \\
\hline
\end{array}\right)+\left(a_{1}\left(e_{1}+\mathrm{i}\right), 0,0\right) \right\rvert\, \begin{array}{l}
\xi_{1} \in \boldsymbol{R} \\
a_{i} \in \boldsymbol{H}
\end{array}\right\}, \\
& \left(\mathfrak{J}^{\mathbf{C}}\right)_{v^{\prime}}=\left\{X+\boldsymbol{a} \in \mathfrak{\Im} \boldsymbol{H}^{\mathrm{C}} \oplus\left(\boldsymbol{H}^{3}\right)^{\mathbf{C}} \mid \gamma^{\prime}(X+\boldsymbol{a})=\boldsymbol{v}^{7}(X+\boldsymbol{a})\right\} \\
& =\left\{\left.\left(\begin{array}{ccc}
0 & \left(e_{1}-\mathrm{i}\right) a_{3} & \overline{a_{2}\left(e_{1}+\mathrm{i}\right)} \\
\overline{\left(e_{1}-\mathrm{i}\right) a_{3}} & \xi_{2} & a_{1} \\
a_{2}\left(e_{1}+\mathrm{i}\right) & \overline{a_{1}} & \xi_{3}
\end{array}\right)+\mathbf{0} \right\rvert\, \begin{array}{l}
\xi_{2}, \xi_{3} \in \boldsymbol{R} \\
\boldsymbol{a}_{1} \in \boldsymbol{H}^{\mathrm{C}}, a_{2}, a_{3} \in \boldsymbol{H}^{2}
\end{array}\right\}, \\
& \left(\mathfrak{J}_{\nu^{i}}^{\mathbf{C}}=\left\{X+\boldsymbol{a} \in \mathfrak{F}_{\boldsymbol{H}}{ }^{\mathrm{C}} \oplus\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}} \mid \gamma^{\prime}(X+\boldsymbol{a})=v^{i}(X+\boldsymbol{a})\right\}\right. \\
& =\{0\}, \quad i=0,2,3,5,6,8 .
\end{aligned}
$$

These spaces are invariant under the group $\left(E_{6}\right)^{\gamma_{3}^{\prime}}$.
Theorem 3.4. The group $\left(E_{6}\right)^{\gamma_{3}^{\prime}}$ is isomorphic to the group $(S p(1) \times \mathrm{S}(\mathrm{U}(1) \times \mathrm{U}$ (5)))/ $\mathscr{Z}_{2}$ where $\mathscr{Z}_{2}=\{(1,(1, E)),(1,(-1,-E))\}$.

Proof. First we shall show that $\left(\boldsymbol{H}^{3}\right)^{\mathbf{C}}$ is invariant under the group $\left(E_{6}\right)^{\gamma_{3}^{\prime}}$. From the form of $\left(\mathscr{S}^{\mathrm{C}}\right)_{v^{i}}$, it is sufficient to show that we have $\alpha a \in\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}}$ for $\alpha \in\left(E_{6}\right)^{\gamma_{3}}$, $\boldsymbol{a}=\left(a\left(e_{1}+\mathrm{i}\right), 0,0\right)=F_{1}\left(\left(a\left(e_{1}+\mathrm{i}\right)\right)\right), a \in H$. Now, in fact,

$$
\begin{aligned}
& \alpha F_{1}\left(\left(a\left(e_{1}+\mathrm{i}\right)\right) e\right)=-4 \alpha\left(\left(F_{1}(1) \times F_{3}\left(\left(e_{1}-\mathrm{i}\right) \bar{a}\right)\right) \times F_{3}(e)\right) \\
& \quad=-4\left(\left(\alpha F_{1}(1) \times \alpha F_{3}\left(\left(e_{1}-\mathrm{i}\right) \bar{a}\right)\right) \times \tau \alpha \tau F_{3}(e)\right. \\
& \quad \subset-4\left(\Im_{\boldsymbol{H}}^{\mathrm{C}} \times \Im_{\boldsymbol{H}}^{\mathrm{C}}\right) \times\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}} \subset \Im_{\boldsymbol{H}}^{\mathrm{c}} \times\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}} \subset\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}} .
\end{aligned}
$$

Thus we see that $\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}}$ is invariant under the group $\left(E_{6}\right)^{\gamma_{3}^{\prime}}$, hence $\mathfrak{\Im}_{\boldsymbol{H}}^{\mathbf{C}}=\left(\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}}\right) \perp=$ $\left\{X \in \mathfrak{F}^{\mathrm{C}} \mid<X, Y>=0\right.$ for all $\left.Y \in\left(\boldsymbol{H}^{3}\right)^{\mathrm{C}}\right\}$ is also invariant under $\left(E_{6}\right)^{\gamma_{3}^{\prime}}$. Consequently, $\alpha \in\left(E_{6}\right)^{\gamma_{3}^{\prime}}$ commutes with $\gamma:\left(E_{6}\right)^{\gamma_{3}^{\prime}} \subset\left(E_{6}\right)^{\gamma}$. Now, we define a homomorphism $\psi: S p(1) \times S(\mathrm{U}(1) \times \mathrm{U}(5)) \rightarrow\left(E_{6}\right)^{\gamma_{3}^{\prime}}$ by the restriction of $\psi$ of Known result 3.1. Clearly $\psi$ is well-defined. We shall show that $\psi$ is onto. Let $\alpha \in\left(E_{6}\right)^{y_{3}^{\prime}}$. Since $\left(E_{6}\right)^{\gamma_{3}^{\prime}} \subset\left(E_{6}\right)^{\gamma}$, from Known result 3.1 , there exist $p \in S p(1), A \in S U(6)$ such that $\alpha=\psi(p, \mathrm{~A})$. From the commutativity $\gamma_{3}{ }^{\prime} \alpha=\alpha \gamma_{3}{ }^{\prime}$, that is, $\psi\left(p, \mathrm{~A}_{v} \mathrm{~A}\right)=\psi\left(p, \mathrm{AA}_{v}\right)$, we have $A_{v} A=A A_{v}$. Hence $A \in S(U(1) \times U(5))(\cong U(5))$. Thus $\psi$ is onto. Obviously $\operatorname{Ker} \psi=\mathscr{Z}_{2}$. Thus we have the isomorphism $(S p(1) \times S(U(1) \times U(5))) / \mathbb{Z}_{2} \cong\left(E_{6}\right)^{\gamma_{3}^{\prime}}$.

Corollary 3.5. $\left(E_{6}\right)^{\gamma_{3}^{\prime}}=\left(E_{6}\right)^{\mathrm{S}}$ where $\mathrm{S}=\left\{\psi(1, \mathrm{~A}) \left\lvert\, \mathrm{A}=\left(\begin{array}{llll}\mathrm{a}^{5} & & & \\ & \mathrm{a} & \\ & \ddots & \\ & & \mathrm{a}\end{array}\right) \in \mathrm{SU}(6)\right., \mathrm{a} \in\right.$ $\mathrm{U}(1)\}$. In particular, the manifold $E_{6} /\left(E_{6}\right)^{\gamma_{3}^{\prime}}$ has a homogeneous complex structure.
3. 3. Automorphism $\sigma_{3}$ of order 3 and subgroup $(\mathbf{U}(\mathbf{1}) \times U(1) \times \operatorname{Spin}(8)) /\left(\mathcal{Z}_{4} \times\right.$ $\mathbb{Z}_{2}$ ) of $E_{6}$

Let $\mathrm{U}(1)=\{\theta \in \mathbb{C}| | \theta \mid=1\}$ and we define an imbedding $\phi: \mathrm{U}(1) \rightarrow E_{\mathrm{6}}$ by

$$
\phi(\theta)\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \overline{x_{1}} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\theta^{4} \xi_{1} & \theta x_{3} & \theta \overline{x_{2}} \\
\theta \overline{x_{3}} & \theta^{-2} \xi_{2} & \theta^{-2} x_{1} \\
\theta x_{2} & \theta^{-2} \bar{x}_{1} & \theta^{-2} \xi_{3}
\end{array}\right) .
$$

Now, we regard $\sigma, \sigma_{3} \in F_{4}$ as elements of $E_{6}$. Of course $\sigma^{2}=1, \sigma_{3}^{3}=1$.
Known result 3.6 [6]. (1) The group $\left(E_{6}\right)_{E_{1}}=\left\{\alpha \in E_{6} \mid \alpha E_{1}=E_{1}\right\}$ is isomorphic to the group Spin (10) which is the universal covering group of $S O(10)=S O\left(V^{10}\right)$ where $V^{10}=\left\{X \in \mathcal{S}^{\mathrm{C}} 2 E_{1} \times X=-\tau X\right\}$.
(2) The group $\left(E_{6}\right)^{\sigma}$ is isomorphic to the group $(\mathrm{U}(1) \times \operatorname{Spin}(10)) / Z_{4}$ by an isomorphism induced from the homomorphism $\psi: \mathrm{U}(1) \times \operatorname{Spin}(10) \rightarrow\left(E_{6}\right)^{\sigma}$,

$$
\psi(\theta, \beta)=\phi(\theta) \beta
$$

with $\operatorname{Ker} \psi=\mathbb{Z}_{4}=\{(1, \phi(1)),(-1, \phi(-1)),(\mathrm{i}, \phi(\mathrm{i})),(-\mathrm{i}, \phi(-\mathrm{i}))\}$.
Lemma 3.7. For $\alpha \in\left(E_{6}\right)^{\sigma_{3}}$, there exists $\xi \in \mathrm{U}(1)$ such that $\alpha E_{1}=\xi E_{1}$.
Proof is similar to Lemma 2.5 and see [6, Lemma 9].
We define a subgroup $\left(E_{6}\right)_{E_{1}, F_{1}(s)}$ of the group $E_{6}$ by

$$
\begin{aligned}
\left(E_{6}\right)_{E_{1}, F_{1}(s)} & =\left\{\alpha \in E_{6} \mid \alpha E_{1}=E_{1}, \alpha F_{1}(s)=F_{1}(s) \text { for all } s \in C\right\} \\
& =\left\{\alpha \in \operatorname{Spin}(10) \mid \alpha F_{1}(1)=F_{1}(1), \alpha F_{1}(e)=F_{1}(e)\right\} .
\end{aligned}
$$

This group $\left(E_{6}\right)_{E_{1}, F_{1}(s)}$ is isomorphic to the group $\operatorname{Spin}(8)$ which is the universal covering group of $S O(8)=S O\left(V^{8}\right)$ where $V^{8}=\left\{\xi E_{2}-\tau \xi E_{3}+F_{1}(t) \mid \xi \in \mathbf{C}, t \in \mathbb{C}^{\perp}\right\}$. Furthermore we use the following notation.

$$
\left.\left(E_{6}\right)\right)^{U(1)}=\left\{\alpha \in E_{6} \mid D_{a} \alpha=\alpha D_{a} \text { for all } a \in U(1)\right\}
$$

Lemma 3. 8. Spin $(8)=\left(E_{6}\right)_{E_{1}, F_{1}(s)}$ is a subgroup of $\left(E_{6}\right)^{U(1)}$.
Proof is similar to Lemma 2.6.
Theorem 3.9. The group $\left(E_{6}\right)^{\sigma_{3}}$ is isomorphic to the group $(\mathrm{U}(1) \times U(1) \times$ Spin (8)) $/\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)$ where $\mathbb{Z}_{4}=\left\{(1,1,1)\right.$, (i, $\left.\left.e, \phi(\mathrm{i}) D_{e}\right),(-1,-1,1),\left(-\mathrm{i},-e, \phi(\mathrm{i}) D_{e}\right)\right\}$ and $\mathbb{Z}_{2}=\{(1,1,1),(1,-1, \sigma)\}$.

Proof. We define a mapping $\psi: U(1) \times U(1) \times \operatorname{Spin}(8) \rightarrow\left(E_{6}\right)^{\sigma_{3}}$ by

$$
\psi(\theta, a, \beta)=\phi(\theta) D_{a} \beta .
$$

Obviously $\psi$ is well-defined : $\psi(\theta, a, \beta) \in\left(E_{6}\right)^{\sigma_{3}}($ Lemma 3.7). Since $\phi(\theta)(\theta \in U(1))$, $D_{a} \in U(1)$ and $\beta \in \operatorname{Spin}(8)$ commute with one another (Lemma 3.8), $\psi$ is a homomorphism. We shall show that $\psi$ is onto. Let $\alpha \in\left(E_{6}\right)^{\sigma_{3}}$. From Lemma 3. 7, there exists $\theta \in \mathrm{U}(1)$ such that

$$
\alpha E_{1}=\theta^{4} E_{1}=\phi(\theta) E_{1} .
$$

Put $\beta=\phi(\theta)^{-1} \alpha$, then $\beta E_{1}=E_{1}$, that is, $\beta \in\left(\left(E_{6}\right)^{\sigma_{3}}\right)_{E_{1}}=\left\{\alpha \in\left(E_{6}\right)^{\sigma_{3}} \mid \alpha E_{1}=E_{1}\right\}$. From Lemma 3.7, we see that the vector space

$$
\left\{F_{1}(s) \mid s \in C\right\}=\left\{X \in\left(\left(\Im^{\mathbf{C}}\right)_{\sigma_{3}}\right) \perp \mid E_{1} \times X=0,\left\langle E_{1}, X\right\rangle=0,2 E_{1} \times X=-\tau X\right\}
$$

is invariant under the group $\left(\left(E_{6}\right)^{\sigma_{3}}\right)_{E_{1}}$. So we can put $\beta F_{1}(1)=F_{1}\left(s_{0}\right), s_{0} \in \boldsymbol{C}$. Then we have also $\beta F_{1}(e)=F_{1}\left(e s_{0}\right)$ (cf. Theorem 2.7). Choose $a_{0} \in C$ such that $\bar{a}_{0}^{2}=s_{0}$. Then $\beta F_{1}(1)=D_{a_{0}} F_{1}(1), \beta F_{1}(e)=D_{a_{0}} F_{1}(e)$. Put $\delta=D_{a_{0}}{ }^{-1} \beta$, then $\delta \in \operatorname{Spin}(8)$. Hence we have

$$
\alpha=\phi(\theta) D_{a_{0}} \beta, \quad \theta \in \mathrm{U}(1), a_{0} \in U(1), \delta \in \operatorname{Spin}(8) .
$$

Thus $\psi$ is onto. Finally we shall determine $\operatorname{Ker} \psi$. Let $\phi(\theta) D_{a} \delta=1, \theta \in \mathrm{U}(1), a \in U$ (1), $\delta \in \operatorname{Spin}(8)$. From $\phi(\theta) D_{a} \delta E_{1}=E_{1}$, we have $\theta^{4}=1$. Hence $\theta= \pm 1$, $\pm \mathrm{i}$. In the case of $\theta=1$, from $D_{a} \delta F_{1}(1)=F_{1}(1)$, we have $F_{1}\left(\bar{a}^{2}\right)=F_{1}(1)$. so $a^{2}=1$. Therefore $a=1, \delta=$ 1 or $a=-1, \delta=D_{-1}=\sigma$. So $(1,1,1),(1,-1, \sigma) \in \operatorname{Ker} \psi$. In other cases of $\theta$, we can similarly determine elements of $\operatorname{Ker} \psi$. Thus

$$
\begin{aligned}
\operatorname{Ker} \psi= & \left\{(1,1,1),\left(\mathrm{i}, e, \phi(\mathrm{i}) D_{e}\right),(-1,-1,1),\left(-\mathrm{i},-e, \phi(\mathrm{i}) D_{e}\right),\right. \\
& \left.(1,-1, \sigma),\left(-\mathrm{i},-e, \phi(\mathrm{i}) D_{e}\right),(-1,1, \sigma),\left(-\mathrm{i}, e, \phi(-\mathrm{i}) D_{e}\right)\right\} \\
= & <\left(\mathrm{i}, e, \phi(\mathrm{i}) D_{e}\right)>\times<(1,-1, \sigma)>=\mathbb{Z}_{4} \times \mathbb{Z}_{2} .
\end{aligned}
$$

Thus we have the isomorphism $(\mathrm{U}(1) \times U(1) \times \operatorname{Spin}(8)) /\left(\mathbb{Z}_{4} \times \mathscr{Z}_{2}\right) \cong\left(E_{6}\right)^{\sigma_{3}}$.
Corollary 3.10. $\left(E_{6}\right)^{\sigma_{3}}=\left(E_{6}\right)^{S_{1}}$ where $S_{1}=\psi(1, U(1), 1)$

$$
=\left(E_{6}\right)^{S_{2}} \text { where } S_{2}=\psi(\mathrm{U}(1), U(1), 1)
$$

In particular, the manifold $E_{6} /\left(E_{6}\right)^{\sigma_{3}}$ has a homogeneous complex structure.
3.4. Automorphism $\sigma_{3}{ }^{\prime}$ of order 3 and subgroup $(\mathbf{U}(1) \times \operatorname{Spin}(10)) / \mathbb{Z}_{4}$ of $\boldsymbol{E}_{6}$

Let $\phi: \mathrm{U}(1) \rightarrow E_{\mathbf{6}}$ be the imbedding defined in Known result 3.6. Now, let $v=\exp$
$\frac{2 \pi \mathrm{i}}{9} \in \mathbb{C}$ and denote $\phi(v)$ by $\sigma^{\prime}$. Of course $\sigma^{\prime} \in E_{6}$ and $\sigma^{\prime 9}=1$. Since $\sigma^{\prime 3}=\omega 1 \in z\left(E_{6}\right)$, $\sigma^{\prime}$ induces an automorphism $\sigma_{3}{ }^{\prime}$ of $E_{6}$ of order 3,

$$
\sigma_{3}^{\prime}(\alpha)=\sigma^{\prime} \alpha \sigma^{\prime-1}, \quad \alpha \in E_{6}
$$

Theorem 3.11. The group $\left(E_{6}\right)^{\sigma_{3}^{\prime}}$ coincides with the group $\left(E_{6}\right)^{\sigma}$, so it is isomorphic to the group $(\mathrm{U}(1) \times \operatorname{Spin}(10)) / \mathbb{Z}_{4}$.

Proof. Since

$$
\sigma_{3}^{\prime}\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
v^{4} \xi_{1} & v x_{3} & v \overline{x_{2}} \\
v \bar{x}_{3} & v^{-2} \xi_{2} & v^{-2} x_{1} \\
v x_{2} & v^{-2} \bar{x}_{1} & v^{-2} \xi_{3}
\end{array}\right),
$$

C-vector subspaces $\left\{\xi E_{1} \mid \boldsymbol{\xi} \in \mathbf{C}\right\},\left\{F_{2}\left(x_{2}\right)+F_{3}\left(x_{3}\right) \mid x_{i} \in \mathscr{C}^{\mathrm{C}}\right\}$ and $\left\{\xi_{2} E_{2}+\xi_{3} E_{3}+F_{1}(x)\right.$ $\left.\mid \xi_{i} \in \mathrm{C}, x \in \mathbb{S}^{\mathrm{C}}\right\}$ of $\widetilde{\xi}^{\mathbf{C}}$ are invariant under the group $\left(E_{6}\right)^{\sigma_{3}^{\prime}}$. In particular, $\alpha \in$ $\left(E_{6}\right)^{\sigma_{3}^{\prime}}$ commutes with $\sigma:\left(E_{6}\right)^{\sigma_{3}^{\prime}} \subset\left(E_{6}\right)^{\sigma}$. The converse inclusion $\left(E_{6}\right)^{\sigma} \subset\left(E_{6}\right)^{\sigma_{3}^{\prime}}$ is clear because $\left(E_{6}\right)^{\sigma}=\phi(\mathrm{U}(1)) \operatorname{Spin}(10)$. Thus we have $\left(E_{6}\right)^{\sigma_{\mathrm{s}}^{\prime}}=\left(E_{6}\right)^{\sigma} \cong(\mathrm{U}(1) \times$ Spin (10))/ $\mathbb{Z}_{4}$.

Corollary 3.12. $\left(E_{6}\right)^{\sigma_{3}^{\prime}}=\left(E_{6}\right)^{\mathrm{S}}$ where $\mathrm{S}=\psi(\mathrm{U}(1), 1)$. In particular, the manifold $E_{6} /\left(E_{6}\right)^{\sigma_{3}^{\prime}}$ has a homogeneous complex structure.
3. 5. Automorphism $\boldsymbol{w}$ of order 3 and subgroup ( $S U(3) \times S U(3) \times S U(3)) / Z_{3}$ of $E_{6}$

Let $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} e \in C \subset \mathfrak{F}$ and we define a C-linear transformation $w$ of $\Im^{\mathrm{C}}$ by

$$
w(X+M)=X+\omega M, \quad X+M \in \Im(3, C)^{\mathbf{c}} \oplus M(3, \boldsymbol{C})^{\mathrm{C}}=\Im^{\mathrm{C}}
$$

This $w$ is the same one as $w \in G_{2} \subset F_{4} \subset E_{6}$. Of course $w^{3}=1$.
Theorem 3.5. The group $\left(E_{6}\right)^{w}$ is isomorphic to the group $(S U(3) \times S U(3) \times S U$ (3)) $/ Z_{3}$ where $Z_{3}=\left\{(1, E, E),(\omega 1, \omega E, \omega E),\left(\omega^{2} 1, \omega^{2} E, \omega^{2} E\right)\right\}$.

Proof. We define a mapping $\psi: S U(3) \times S U(3) \times S U(3) \rightarrow\left(E_{6}\right)^{w}$ by

$$
\begin{aligned}
\psi(P, A, B)(X+M)=h(A, B) X h(A, B)^{*}+P M \tau h(A, B)^{*}, \\
X+M \in \Im(3, C)^{\mathrm{C}} \oplus M(3, C)^{\mathrm{C}}=\mathfrak{J}^{\mathrm{C}}
\end{aligned}
$$

where $h: M(3, \boldsymbol{C}) \times M(3, \boldsymbol{C}) \rightarrow M(3, \boldsymbol{C})^{\mathrm{C}}$ is the mapping defined by $h(A, B)=$ $\frac{A+B}{2}+\mathrm{i} \frac{(A-B) e}{2} . \psi$ is well-defined : $\psi(P, A, B) \in E_{6}[7]$ moreover $\in\left(E_{6}\right)^{w}$. Obviously $\psi$ is a homomorphism. The proof that $\psi$ is onto is similar to Theorem 2.9. Thus we have the isomorphism $(S U(3) \times S U(3) \times S U(3)) / Z_{3} \cong\left(E_{6}\right)^{w}$.

## References

[1] J. A. Wolf-A. Gray, Homogeneous spaces defined by Lie group automorphisms I, J. diff. Geometry, 2 (1968) 77-114.
[2] I. Yoкota, Non-compact simple Lie group $G_{2}^{\prime}$ of type $G_{2}$, Jour. Fac. Sci., Shinshu Univ., 12
(1977) 45-52.
[3] I. Yokota, Exceptional Lie group $F_{4}$ and its representation rings, Jour. Fac. Sci., Shinshu Univ., 3 (1968) 35-60.
[4] I. Yokota, On a non-compact simple Lie group $F_{4,1}$ of type $F_{4}$, Jour. Fac. Sci., Shinshu Univ., 10 (1977) 71-80.
[5] I. Yокота, Non-compact simple Lie group $F_{4,2}$ of type $F_{4}$, Jour. Fac. Sci., Shinshu Univ., 12 (1977) 53-64.
[6] I. Yokota, Simply connected compact simple Lie group $E_{6(-78)}$ of type $E_{6}$ and its involutive automorphisms, J. Math. Kyoto Univ., 20 (1980) 447-473.
[7] I. Yokota T. Ishihara -O. Yasukura, Subgroup ( $\left.(S U(3) \times S U(6)) / \boldsymbol{Z}_{3}\right) \cdot \boldsymbol{Z}_{2}$ of the simply connected compact simple Lie group $E_{7}$, J. Math. Kyoto Univ., 23 (1983) 715-737.
[8] I. Yokota, Groups and representations (in Japanese), Shokabo (1973).

