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Abstract

The power spectrum of the light scattered by a three-level atom driven near
resonance between the ground state (|1>>) and the second excited state ([3>>) by a
monochromatic classical electric field is evaluated following the method developed
by B. R. Mollow. The incident field is assumed to interact with the dipole moment
between the states |1> and |3>>, while the emitted light is assumed to interact
with that between the state |3°> and the first excited state [2>> of the atom. The
atom is assumed to relax to equilibrium only via radiation damping for the sake
of simplicity. The power spectrum of the scattered field is explicitly calculated
from the two-time atomic dipole moment correlation function, which is evaluated
on a Markoff-type assumption, and various limiting cases are discussed. In Appendix
the case is considered in which radiative damping between the higher excited state
and the ground state is also present.

§1. Introduction

B. R. Mollow discussed the emission spectrum from two-level systems under
monochromatic incident light of arbitrary strength for the first time. .2 As regards
three-level systems T. Takagahara et al.® made extensive studies for second order
optical processes and T. Tokihiro and E. Hanamura® treated the corresponding
problem for the strong incident field using Langevin equations for the averaged
atomic operators in the Heisenberg picture with phenomenological relaxation con-
stants. In the present paper we evaluate the power spectrum of the radiation scatter-
ed by a three-level atom driven by a strong incident field, near the atomic reso-
nance frequency between the ground state and the higher excited state, following
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the method developed by B. R. MollowD-2 in the Schrédinger picture, in order to
clarify some aspects of the problem more thoroughly. The atom is assumed to be
isolated and fixed in position, and come into equilibrium with the driving field
through the effect of radiation damping. Other relaxation processes are omitted
from our analysis for the sake of simplicity except some relaxation processes between
the first excited state and the ground state, which must be taken into account in
order to maintain steady emission of light from the atom. In the limit of weak
driving fields, the power spectrum consists almost entirely of the (broad) Raman
part, while in the limit of strong driving fields the power spectrum of the scattered
field has two peaks, the distance of the peaks increasing as the intensity of the
driving field increases.

In the next section of this paper, the basic model is introduced. In § 3 explicit
solutions are presented for the time evolution of the reduced density operator for
the atom. In §4 the power spectrum of the scattered field is given, and various
limiting cases are discussed. In Appendix are given explicit solutions for the time
evolution of the reduced density operator for the atom and the atomic correlation
function for the case in which radiative damping between the higher excited state
and the ground state is also taken into account.

§2. Driven Three-Level Atom in Resonant Approximation

We take as our basic model a fixed atom with three energy eigenstates: the
ground state |1>>, the first excited state [2> and the second excited state |[3>
with energies 7w, #Aw, and Aw; (w;<wy) respectively. An arbitrary atomic operator
may then be expressed as a linear combination of the nine basis operators |i><(j],
(i,j=1,2,3). The electric dipole moment operator d(f) of the atom is assumed to
have its matrix elements between the states |1> and |3>> and between the states
|2> and |3>. It is thus expressed as

d(f)= (13> + gtz (13><2) )+, (2.1)
with
pi=<ild|[i>, (,i=1,2,3). 2.2

The electric field E(r,t) at position r and time ¢ is the sum of positive and negative
frequency parts

Er, H=1/2 [ E&r, 1)+ E-Xr, )], 2.3)
With‘
EWF, =E@r, te,1-i#/V)? Z‘__, o %erbi(t)explikr), (2.4)
k

where o, er and br denote the frequency, polarization vector -and annihilation
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operator respectively for the field mode k, and &@r, f)e, stands for the positive
frequency part of the classical driving electric field. We assume further that the
incident classical field oscillating harmonically near the atomic resonance frequency
w3 =aw;—@; interacts only with the dipole moment between the states [3> and |1>,
while the scattered quantum-mechanical electromagnetic field interacts only with
the dipole moment between the states |3>> and |2>>. (The interaction of the scattered
field with the dipole moment between the states |3> and |1> is taken into account
in the Appendix.) In order to ensure steady emission from the atom we are forced
to take into account some relaxation processes between the states |2> and |1>,
possibly other than radiation damping. We denote this relaxation constant by 7.

In the resonant approximation we are thus left with the following interaction
Hamiltonian:

Hi{t)=—#L(]13><1|NB)AEW©, H+(]3><2|)¢t ngbk J+h.c., (2.5)
with
A=(1/ 21" py10)/ 1 (2.6)
and
gr=(ptsser)wn/ 28V )'2. 2.7)

The total Hamiltonian H{f) of the system is

H(t)=H,(t)+-Hi(t), (2.8)
with

3
Hy(t)= Zl fioni(|1><j1)O)+ ; Fiog D k(0)br(t). v (2.9)

By integrating the equations of motion for the operators bx(f) and b'x(f), we get in
the scattering region

EWr, t)=olr)(12><8|)t—r/c)+ B, 1), (2.10)
where
olr)=—(2' 25/ Amc®r®) pago X 7) X, (2.11)
with
O3 =03 — @y (2.12)

and the freely propagating field operator Ei+ (r,#) consists of a linear combination
of annihilation operators bz, The first order field correlation function at r' =r is

GOur, t'; v, 1)=<E4r, ' ) Eu(r, 6)>

=pjirokr) gt —1'), (J, k=x,y,2), (2.13)
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where the atomic correlation function is defined by
gt —1")=<(|iI><GN N KSANN>, (4,5, k,1=1,2,3). (2.14)

The power spectrum of the scattered field is given by

o

Ilv; r)= J’ de exp(ivr)Zijj(r, 0;r,7)

—c0 J
= | () |*8az;23(v), (2.15)
with
g’ii;kl(v)EJ dz explive)gi;wl(e), (1,5 k,1=1,2,3). (2.16)

~— 00

The total intensity of the scattered field is
La)= | 105 )= 20 Bl By, 03>
=2r| @(r}| 2232;23(0). (2.17)

§3. Reduced Density Operator for the Atom

The Schrédinger density operator p(f) for the joint system of field modes and
atom is approximated on a Markoff assumption by the expression

o(t)= | 0>rr<0] pa(t), (3.2
where the vacuum state |0>p for the field is defined by
br| 0>r=0. 3.2)

The reduced density operator for the atom is defined by
palt)=Trpp(?), (3.8)

where Trp means trace with respect to the fixed states of the field. In terms of
the time development operator U{f,¢') for the Hamiltonian Hy-+Hi(¢) in the Schrd-
dinger picture, the reduced density oparator for the atom at time ¢ is given by
the relation

pat)=Tre U@, t')|0>rr<lO| 0t U™ (£,2')]. (3.4)
In the present model for the atom, it obeys the differential equation
d
g7 ) =r12> 3] palt)|3><2]

—(1/2)L 8> <3| palt)+ 0af) | 8> <3| ]
+711><2] pa(t)| 22> <1|
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—(1/2)L12><2| palt)+ 0u(t) | 2><2] ]
+i[~—JZi;mj|j><jl+2€(0, H13><1|
+2%EX0, | 1><8I, palt)], (3.5)
where r is the natural decay rate between the states |3> and |2> of the atom,
5= | ptan | Pwsa?/(3ac). (3.6)

The density operator p.(f) may be expressed in terms of the basis operators as

3
palt) = 125‘1 Cim(8)| I><m], (3.7
where
Cim(t)=<1| palt)| m>=Tr[ p(t) | m><1| ]=Cumilt)*. (3.8)

Substitution of eq. (3.7) into eq. (3.5) leads to the differential equations for Cim(f) or
a column vector X{#) defined by the expression

X(B)="1Cu(t), Cr(t), Cislt), Carlt), Coalt), Coslt), Carlt), Casld), Caalt)]. (3.9)

We shall be interested in the case in which the driving field oscillates harmon-
ically at a {requency o which is assumed to lie near the atomic resonance frequency
w31, So that

&0, H=Eexp(—iwt), (3.10)

where €, is a complex constant. In that case we define a new column vector X (#),
the corresponding elements of which being denoted by C'w(t), by the following
relation

X' (t)=B{)X(1), (3.11)

where B(f) is the following 9x9 diagonal matrix

e-i(ut
1 . (3.12)

e—imz
eiwt

eimt
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all the other elements being zero.
Then the vector X' () satisfies the differential equation

d wrn_py
-dt—X #)=DX'(t), (3.13)

where D is a 9x9 matrix independent of time. The expression for the matrix D is

0 0 —ie 0 7 0 ie* 0 0
0 a* 0 0 0 0 0 ie* 0
—ie* 0 b 0 0 0 0 0 ie*
0 0 0 a 0 —ie 0 0 0
0 0 0 0 —7 0 0 0 \ (3.14)
0 0 0 —ie* 0 c 0 0
ie 0 0 0 0 0 b* 0 —ie
0 ie 0 0 0 0 0 c* 0
0 0 ie 0 0 0 —ie* 0 —K
where
a=—r/2—1wy, (3. 15a)
b=—r/2—ido, (3.15Db)
c=—(r+r)/2—ido,, (3.15¢)
e=JE,, (3.15d)
AG)1E(D_M31, (3. 156)
Aws=w—ws3 (3. 15f)
and
oi=ei—;, (,j=1,2,3). (3.15g)
The solution for X' (' 4+1) takes the form
X @ 4o)=2"(v;t') X' ('), (3.16)
where 2/ (r;#') is a 9x 9 matrix satisfying the initial condition
Z'(0;¢)=], (3.17)
I standing for the unit matrix. Similarly we get
X to)=2(c;t" ) X{'), (3.18)

with
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Z(t; ¢ )y=B (W +o)% («;t")Bt') (3.19)
and
z(0;¢)=I. (3.20)

By integrating eq. (3.18) the Laplace transform of the matrix 2 (r;t') is found
to he

2'(s) Ej e™T 2 (oot We=(sT— D), (3.21)
0

which is independent of #'.

In order to get the power spectrum of the scattered field in the steady situation,
we use for Cm(t') in the expression for the power spectrum their asymptotic values
C' im(t' —)=C" *1n. Taking the Laplace transform of eq. (3.16) after setting ¢’ =0,
we get

X' (s)=2" ()X (0)=(sI— D) '.X' (0). (3.22)

The asymptotic values can be obtained by the relation

C' *1m=lim sC' im(s). - (3.23)

S
In evaluating these asymptotic values we may choose the initial state X' (0) in eq.
(3.22) arbitrarily as long as the normalization condition for the atomic density
operator p.(t) is satisfied, namely

Z}C’ i{0)=1.

Thus we may take X'(0), for example, as
X' (0)=1,0,0,0,0,0,0, 0, 0]. (3.24)
In this way we get
C' *u=irb*e*/Lrb|*+(2r+x)|e] ]
=—22%E ¥ y(w—2idwy)/ {yL6*+ 4 do)*]+2r +£)2%, {3.25)
C' “5=0 (3.26)
and
C “u=rlel®/Lr|b|*+(2r-+r)le|?]
=12/ {fLe* + 4do)"1+(2r +)2%, (3.27)

where the Rabi frequency £ is defined by
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0R=2|2]1&]. (3.28)

The matrix elements of 2" (s) we need are

2 w1als)=ie/ fis)=i2€a/ f1s) (3.29)
and
2" sr5300s) =(s —=a*)/ F8)=(s +7/2—i0n1)/ F(5), (3.30)
where
Sis)=(s—a*s—c*)+el?
=(s+7/2—iw)[s+(1/2)r +r)—idw;]+2%/4
=s+[(2r+x)/2—i(war+ dowo)]s
{7 )/ A= a1 doy +£22/4
—i(1/2) 7 dws+ 7+ £)war ] (3.31)
The total intensity given by eq. (2.17) is thus
Trodr)=2m| (r) | 2g32;25(0) =27 | @(r) |2 C' 55
=2r| () |2r$2/ {(yLe* + A dor)* ]+ (2r +1)2% . (3.32)
The intensity of the coherently scattered light is
Tooh(tr) =20 B, 1> <E(r, 1>
=2r[p(F)|*|C" Zas|2=0. (3.33)

§4. Power Spectrum of Scattered Field

The two-time atomic correlation function gija{f—#') defined by eq. (2.14) can
be expressed as

Gialt—1")
=Tr[|0>rr<0] palt’ ) i><GIU XL, ¢ ) [k ><AUE )], 4.1)

while the expectation value Ci{t) of atomic operator at a given time defined by eq.
(3.8) can be written in the form

Ci(t)=Tr[10>pr<0] pa(" U, ' )| k> <1 UL, 2 )] (4.2)

Comparison of eqgs. (4.1) and (4.2) shows that the expression for gijm{t—¢t') is
obtained by substituting g.(f')|i><{j| for pa(f’) in the expression for Cuw(f). If we

do these procedures in the expression
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Clk(t): ‘73‘__, %lk;mn(f;t/ )Cmn(t’ ), (4. 3)

m,n=1

we get
8gii; klt t Z Ik;mj T A me( ) (4.4)

In particular we get

3

LY CHAS! Z‘, % 32;m2(z 3t )Cma(t")
m=1

3
=exp(—iwr) > 2" s2:m2(c)C’ mit'), (4.5)

m=1
and its Laplace transform
‘?:—32;23(8):%' 32;12(s +1w)C’ ©13+- 2 32;32(8 +iw)C' 3. (4.6)

Since Z;23(s) is regular on the imaginary axis of the s plane, the spectral correlation
function Z32;23(v) defined by eq. (2.16) can be evaluated as

Z32;03(v)=2Re[ Baz;23(— ) ]=C" “33
X (@ — )2+ +e)lr(r+a)+221/4) /| fil@—v))|2 (4.7)
The two roots of the equation f(s)=0 are given by

$a=—(2r+£)/4-+i(wa+ dwy)/2 14/ R /2, (4.8)
with
R=#*/4— (4o, — P —irdo,. (4.9)
Let us first consider the case in which the incident field is exactly on resonance
with the atomic frequency ws (do;=0). The two roots s, and s_ are then
Sa=—(2r+'K)/4+ iy =4/ D /2 (4.10)
With
D=g2/4—£%. (4.11)
If D>0, then g() is given by
BW)= {9/ Lre* +2r+r)27])
X [ A, —
(v—wa)? +(r+x/2—+/ D)*/4

A
+ (v—wg)+(r+r/2-+4/ D/4 ]’

4.12)
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where

A, =(ye+222+2p4/ D)/(4/ D) (4.13)
and

A_=—(ye+292°—2¢+/ D)/(44/ D). (4.14)

The spectrum consists of luminescence centered at v=aws. If the incident field is
weak enough so that the Rabi frequency is very small compared to the natural
decay rate & and the phenomenological relaxation constant y, eq. (4.12) reduces to

4"
ﬁz[(”—‘wsz)z +7‘2/4]

for dw;=0 and 2<p,x, {4.15)

Ba2;03v) =

that is, the spectrum consists of the (broad) Raman scattering part with the width
v/2. If D<0, on the other hand, the two roots s, and s. are given by

S+=—(2r+)/4-Fiwa Ti(1/28/D' (4.16)
with
D' =—D=0"—2/4. (4.17)
In this case we have

Z2;03(0)=(1/2)C" 45

X[ (7“1"5)—'6(6032_‘”)/'\/17
(ws2—v—a/D" /22 +(2r-+£)?2/16

(4.18)

(T‘H?H' (wgn— V)/N/ﬁ j[
(@2—v++/D' /202 +(2r+£)2/16 ©

that is, the power spectrum consists of a superposition of two Lorentzians centered
at v=wg +4/D' /2 with the same width (2r+x)/4.

For Aw;+#0 we give results for Zs;23(v) in two limiting cases of interest: that
of very low and that of very high incident field intensity. If the incident field is
weak enough so that the Rabi frequency is much smaller than both the parameters
r and &, we have

1

Boraale) = 2/ L+ Al D) o

for <y, . (4.19)
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In this case the spectrum consists wholly of the (broad) Raman scattering part:
the Lorentzian centered at v=0—w,; with the width /2.

If the incident field is intense enough so that £ is much greater than r and &,
the two roots of f(s)=0 are approximately given by

=0, +i(1/2)@s1+ o -+2') (4. 20a)
and

s_=—e_+1(1/2)ws+ dwy—2") (4.20D)
with

o, =(1/4Y2r + e+ rdw /") (4.21a)
and

o_=(1/4)2r+r—rdo,/2"), (4.21b)

where the parameter 2' is defined by
Q=04 fwy)?. (4.22)
The spectral correlation function Z32;03 (v) in this case is then given by

i
Q" [(2r+ )2+ dp(dr)*]

E3.03(v) =

« [ B, — %y, —v)/(22)

e te,t

n B_-+up_—v)/(22") }
(v_—v)+to.?
for 2>, x, (4.23)
where

v, =g+ do/2—2' /2, (4.24a)
v_=wg+Joy/2+ 2 /2 (4.24b)

and
B,=(2r+£)Q%/4+1(deo)f/2— 42" /2 (4. 25a)

and
B_=(2r+£)2%/4+y(dw.)2/ 2+ 7o' /2. (4. 25b)

If 4w >0, i.e. wyp<lw—wy, then v, and v approach s, and @—a, respectively, as
the intensity of the incident field is reduced. On the other hand, if 4,<0, i.e.
®—w2< Wy, then v, and v_ approach o—msy and ws; respectively, as £ is reduced.



100 MoToTADA Fujil « KAZUHIKO SAIKAWA

In the limit of very intensive incident fields, £ is much greater than y, « and
|do;], and we find that egs. (4.23)-(4.25) reduce to -

- (,,):_7_[ 1
B T b 2 )5/ 16
1
+ (w_—vP+2r+r)?/16 } (4.26)
with
v, =g+ do/2—52/2 (4.27a)
and
v_=wye+ A /2+82/2. (4.27b)
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Appendix

In this appendix we give explicit expressions for the atomic correlation function
for the case in which the radiative damping between the higher excited state |3>
and the ground state |1> is taken into account. We denote this natural decay rate
by # and that between the states |3>> and |2>> which we have so far written as

£ by ks
The positive frequency part of the scattered field is
E®r, t)=pa)(11><3|)t—7/c)
+aa )1 2> <8Nt —7/c) -+ B r, t) (A.1)

with obvious notations.
The differential equation for the atomic density operator p.(?) reads

%—pa(t):m]1><3|Pa(t)|3><1|

+1222><C3] palt) | 3> <21
—(1/2)(1+£2)[1 3> <3 palf)+ 0a(t) 3> <3| ]
+r11><2]palf) [ 2> <1

—(1/2);L12> <2 pot) - palt) [ 22> <21 ]

3
+il— §w513><j1 +1€(0, )13><1|

+24EX0, 1)[1><8], palt)]. (A.2)
This is equivalent to the differential equation for X' (¢)
d
—dt’“X' t)=DX' (2), (A.3)

where the time-independent matrix D is given by

D=
0 0 —ie 0 7 0 ie* 0 £y
0 a* 0 0 0 0 0 ie* 0

—ie* 0 b’ 0 0 0 0 0 ie*

0 0 0 a 0 —ie 0 0 0
0 0 0 0 —7r 0 0 0 £y , (A4
0 0 0 —ie* 0 ' 0 0 0
ie 0 0 0 0 0 b * 0 —ie
0 ie 0 0 0 0 0 c* 0
0 0 ie 0 0 0 —ie* 0 —ki—r
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where a and e are given respectively by eq. (3.15a) and eq. (3.15d) and
b E'—(Icl'l"ltg)/z—id(l)l (A- 5a)

and
¢ =—(r+rit+ra)/2—1dos. (A.5D)

This expression for D for the present model is readily obtained from the correspond-
ing expression for D in §3 given by eq. (3.14) simply by replacing &, b and ¢
with x,+x,, &' and ¢’ respectively, except that zero of the (11,33) element and «
of the (22, 33) element of the matrix D defined by eq. (3.14) must be replaced with
#; and &, respectively.

The first-order field correlation function at r' =r is
GOy, 1 5 1, )=pa1, j(rpas, kr)gsi;1at —1')
-+ 32, i3z, k(r) g3z 23 — ¢ )
+ 31, ()32, k) ga; st —1')
+ 32, (s, k)18t —1' ), (, k=xX,v,2). (A.6)

The asymptotic values of the expectation values of the atomic density operator

are
C' iy =4iyd' *e* /[ 470" |2+ (21 +a)2%]
= —212%EgM (ks i — 21 Jwy)/
{rl(ei 4 w2)2 -+ 4 dwr 2T+ (27 +£0)22) {A.7a)
C ®5=0 (A.7b)
and

C' Ca=12/[4r 16" |*+(2r +£2)27]
=72/ (L1t ko) +4(dewr)* 1+ (27 +a2) 0% (A.7c)

With use of eq. (4.4) the atomic correlation functions are expressed as

3
gus(e)= D) #Zamir; £ —00)C%ms

m=1
3
=exp(—iwr) >} 2’ 3;mi(7)C’ “ms, (A.8a)
m=1

3
gaun(t)= D) Hszmae; ¢ —00)C%m3
m=1

3
=exp(—ior) > Z' 32;m2(c)C' “m3, (A.8b)

m=1
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3
g31;23(7) = Z Z32:m1 (v ' —00)C%m3

m=1

w

=exp(—iwr) D 2" 32;m(c)C’" m3

m=1

and

3
gaus(c)= 2 #amc; 1 —00)C%m3
m=1

@

=exp(~iwr) Z 2 31;ma(7) C' “m3.

m=1
The power spectrum of the scattered field defined by eq. (2.15) is
Iv; r)=lpalr)|Zs1;130)+ | @salr) | 2Fs2;23(0)
F{epa1(r)epaalr)) L Za1;23(v) + &s2;13() .
The total intensity of the scattered field Iiot(r) is given by
(1/2x) or(r)= | oar{r)]? 31;13(0) + | 32(r) |2 &32;23(0)
+(3(r)psa(rr))[ g31:25(0) + &s2;1(0)]
=([a1(r)|*+ | zalr) [2) C' “33.
The intensity of the coherently scattered field I.onr) is given by
(1/27)leon(r) = | sa(1)]* [C" * 13"
In the limit of the weak incident field, we have

Teoh(r)/ Teorlr) = | 9031(7') 12/(] §031(r) 241 9032(7”) 19,

103

(A.8c)

(A.8d)

(A.9)

(A.10)

(A.11)

(A.12)

The Laplace transforms of the atomic correlation functions are evaluated as

§31;13(S)=?;\” a1 1(sHio)C' P13+ 2" a1,31(s +Hi)C' 33,

S32:23(s) =2 % (s -Ha)C' *13 +" sals + iw)C' a3,
and
231;23(5) = 232;13(5) =0,
where

A

Z' si;(s)=le(s+7)(s +r+r)s—b" )/ [sfi(s)]
=1Eo(S+7)s+ k1 Fr2)(S +w1/2+ o/ 2+ 1)/ [sfi(s)]

and

{A.132)

(A.13b)

(A.13c)

(A.14)
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2" s(S)=[(s s+ 45— ) H(2s-+2p k2 |1/ fils)
=[(s+7Ns+ 1+ +r1/2+ 12/ 2+1dw))
(254 2r +£2)822/47/ £1(S)

Sis)=(s+7)s+ritrg) |0 ll2+(23+/':1-i—lfz)(.28—l-2r+/cz)lel2
=(s+P)As a1 F e (S +51/ 2+ £/ 2+ (dw))¥]
+ (25 + &1+ r2)28 -+ 27+ 12)62%/ 4,

2" pys)=ie/ fols) =110/ fils)

~

7' 32;32(5) =(s—a*)/ fols) = (s +7/2—1wa1)/ f2(S)

Sals)=(s—a*)s—c' *)+[e]?
=[(2s 47— 2iwa1 (25 + 1+ 2+ 17— 21dwy) + £2%]/4.

(A.15)

{(A.16)

(A.17)

‘(A. 18)

(A.19)

The spectral correlation function Z32;32(») which results from the transition between

the atomic states |3>> and 2> is given by

gSZ;SZ(U):C’ a3 {7‘(&)32—”)24'(7”1‘/51‘}‘”2)
X [rlr+a1tro)+221/4} /| felilw—v)) |2

(A.20)

This expression is obtained from the corresponding expression given by eq. (4.7)

for the case in which the parameter «; is absent simply by replacing & with #;-+#.

except for the factor C' “g, for which eq. (A.7c) must be used instead of eq. (3.27).

Therefore the various expressions for the power spectrum. given in §4 can readily

be translated into the corresponding expressions for the present case in which the

relaxation constant #; is taken into account.



