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                              Abstra£t
                                                '
   The power spectrum of the light scattered by a three-levei atom driven near

resonance between the ground state (11>) and the second excited state (I3>) by a

monochromatic classical electric field is evaluated following the method developed

by B. R. Mollow. The incident field is assumed to interact with the dipole moment

between the states Il> and l3>, while the emitted light is assumed to interact

with that between the state 13> and the first excited state l2> of the atom. The

atom is assumed to relax to equilibrium only via radiation damping for the sake

of simplicity. The power spectrum of the scattered field is explicitly calculated

from the two-time atomic dipole moment correlation function, which is evaiuated

on a Markoff-type assumption, and various limiting cases are discussed. In Appendix

the case is considered in which radiative damping between the higher excited state

and the ground state is also present.

gl. Introductio"

                                                                     '
   B. R. Moliow discussed the emission spectrum from two-level systems under

monochromatic incident Iight of arbitrary strength for the first time.i),2) As regard$

three-level systems T. Takagahara et al.3) made extensive studies for second order

optical processes and T. Tol<ihiro and E. Hanamura4) treated the corresponding

problem for the strong incident field using Langevin equations for the averaged

atomic operators in the Heisenberg picture with phenomenological relaxation con-

stants. In the present paper we evaluate the power spectrum of the radiation scatter-

ed by a three-level atom clriven by a strong incident field, near the atomic reso-

nance frequency between the ground state and the higher excited state, following
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the method developed by B. R. Mollowi),2) in the Schr6dinger picture, in order to

clarify some aspects of the problem more thoroughly. The atom is assumed to be

isolated and fixed in position, and come into equilibrium with the driving field

through the effect of radiation damping. Other relaxation processes are omitted

from our analysis for the sake of simplicity except some relaxation processes between

the first excited state and the ground state, which must be taken into account in

order to maintain steady emission of Iight from the atom. In the limit of weak

driving fields, the power spectrum consists almost entirely of the (broad) Raman

part, while in the limit of strong driving fields the power spectrum of the scattered

field has two peaks, the distance of the peaks increasing as the intenslty of the

driving field increases.

   In the next section of this paper, the basic model is introcluced. In g3 explicit

solutions are presented for the time evolution of the reduced density operator for

the atom. In g4 the power spectrum of the scattered field is given, and various

limiting cases are discussed. In Appendix are given explicit solutions for the time

evolution of the reduced clensity operator for the atom and the atomic correlation

function for the case in which radiative damping between the higher excited state

and the ground state is also taken into account.

S2. Driven Tkree-Level Atom in Resonant Approxiination

   We take as our basic model a fixed atom with three energy eigenstates: the

ground state 11>, the first excited state 12> and the second excited state l3>

with energies fitoi, fito2 and fitu3 (to2<to3) respectively. An arbitrary atomic operator

may then be expressed as a linear combination of the nine basis operators li><jl,

(i,j==1,2,3). The electric dipole moment operator d(t) of the atom is assumed to

have its matrix elements between the states 11> and 13> and between the states

12> and l3>. It is thus expressed as

                d(t) == pt3i(i3> <11)(t)+pt32 (1 3> <2))(t)+h. c., (2. 1)

with

                       ietij!ii<ilalj>, (i,j=1,2,3). (2.2)

The electric field E(r,t) at position r and time t is the sum of positive and negative

frequency parts

, E(r, t) == (1/2)'/2[E(+)(r, t)+E("' )(r, t)], (2. 3)

             E(+)(r, t)=E(r, t)eo+i(fi/V)i!2Xwki12ekbk(t)exp(ikr), (2.4)

                                     k
where tok, ek and bk denote the frequency, polarization vector-and annihilation



           Power Spectrum of Light Scattered by Three-Level Systems 91

operator respectively for the field mode k, and E(r, t)eo stands for the positive

frequency part of the classical driving electric field. We assume further that the

incident classical field oscillating harmonically near the atomic resonance frequency

tu3i!i]w3-toi interacts only with the dipole moment between thestates l3> and 11>,

while the scattered quantum-mechanical electromagnetic field interacts only with

the dipole moment between the states 13> and I2>. (The interaction of the scattered

field with the dipole moment between the states 13> and ]1> is taken into account

in the Appendix.) In order to ensure steady emission from the atom we are forcecl

to take into account some relaxation processes between the states 12> and 11>,

possibly other than radiation damping. We denote this relaxation constant by r.

   In the resonant approximation we are thus left with the following interaction

Hamiltonian:

          Hl(t)=-fi[( ] 3> <1 1 )(t)2e(O, t)+(1 3> <2 1 )(t)i X g:tebk(t)] +h. c., (2. s)

                                              k
                                        '                                           'with

                          2=-(1/2)i12(ps3ieo)/fi (2. 6)

and

                                                            '
                          gkE(pt32ek)(cak/2fiV)i12. (2.7)

   The total Hamiltonian H<t) of the system is

                           H(t)=Hb(t)+Hl[(t), (2.8)
with

                       3
                 Hb(t) -=fitoj(lj> <jl)(t)+=fi(vkbtk(t)bk(t). . (2. 9)

                       j=1 k
By integrating the equations of motion for the operators bk(t) and btk(t), we get in

the scattering region

                 E(+)(r, t)=g(r)(12><31)(t-r/c)+Ef(+)(r, t), (2. lo)

where

                                                          '                   p(r) mH- - (2'l2tu322/4ffc2r3)(pt32 x r) x r, (2, 11)

                    .t .                               to32 =!i Ws-to2 (2. 12)
and the freely propagating field operator Ef(+) (r,t) consists of a linear combination

of annihilation operators bk. The first order field correlation function at r' =r is

                   G(')jk(r, t' ; r, t)= <E(")j(r, t' )E(+)k(r, t)>

                     =pj(r)9k(r)g32;23(t-t'), (j,k=×,Y,Z), (2.13)



92 MOTOTADA FuJIIeKAzuHIKo SAIKAwA

where the atomic correlation function is defined by

           gij;ki(t-t' )-<(1i> <j l)(t' )(lk><1 D(t)>, (i, j, k, 1-= 1, 2, 3).

The power spectrum of the scattered field is given by

                         oo                 "v; r)i S-.dr exp(ivr) ]IIi.:IG(i)jj(r, O ; r, r)

                  '
                       ==1g(r)l2gl32;23(v),

with

                        oo               Ziij;ki(v)iii l drexp(ivr)gij;ki(T), (i,j,k,l=1,2,3).

                        -oo

The total intensity of the scattered field is

               ltot(r)=r i Kv; r)dv=2rc<E(-)(r, t)E(+)(r, t)>

                    ==2x1g(r)12ge2;23(O)･

g3. Reduced Density Operator for the Atone

   The Schr6dinger density operator p(t) for the joint system of field

atom is approximated on a Markoff assumption by the expression

   ' p(t) :::: 10> FF<OIpa(t),
where the vacuum state 10>F for the field is defined by

                            bk1O>.==O.

The reduced density operator for the atom is defined by

                            pa(t) = :TrFp(t),

where TrF means trace with respect to the fixed states of the field.

the time development operator U<t,t') for the Hamiltonian H6+Hl(t) in

dinger picture, the reduced density oparator for the atom at time t

the relation

               pa(t)=TrF[U(t, t' ) 1 O>FF<O l pa(t' )U-i (t, t' )].

In the present model for the atom, it obeys the differential equation

               pa(t) = rc 1 2> <3 l pa(t) l 3> <2 [
             dt

                   m(1/2)rc[1 1 3> <3 1 pa(t)+ s)a(t) I 3> <3 1 ]

                   +rI1><2ipa(t)I2><11'

(2. 14)

(2. 15)

(2. 16)

    (2. 17)

 modes and
 '

     (3. 1)

     (3.2)

     (3.3)

In terms of

 the Schr6-

is given by

     (3.4)
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                   -(1/2)r[I2><2lpa(t)+pa(t)12><2l]

                         3
                   +i[- X (tij I j> <j l +2E(O, t) l 3> <1 l

                         j=1

                   +2"E"(O,t)11><3i, pa(t)], (3･5)
where rc is the natural decay rate between the states l3> and l2> of the atom,

                           rc=Ipt,,[2to,,2/(3fffic3). (3.6)

The density operator pa(t) may be expressed in terms of the basis operators as

                               3
                       pa(t) -= X Cim(t)11><ml, (3.7)
                             l,m=1

where

                Cim(t)=:<llpa(t)lm>=Tr[p(t)[m><11]==Cmi(t)". (3･8)

Substitution of eq. (3.7) into eq. (3.5) leads to the differential equations for Cim(t) or

a column vector X(i) defined by the expression

       X(t)==:`[Cii(t), C,2(t), C,3(t), C2i(t), C,2(t), C23(t), C3,(t), C32(t), C33(t)]. (3.9)

   We shall be interested in the case in which the driving field oscillates harmon-

ically at a frequency to which is assumed to lie near the atomic resonance frequency

to3i, so that

                            E(O, t)- 8oexp(-i(vt), (3. 10)

where eo is a complex constant. In that case we define a new column vecter X' (t),

the corresponding elements of which being denoted by C'im(t), by the following

relation

                            Xt (t) == B(t)X(t), (3. 11)

where B(t) is the following 9×9 diagonal matrix

   B(t) ==

    1

           1
                  ebicat

                         1
                                                              , (3. 12)                                1
                                       e'-iwt

                                              eitot

                                                     eiest

                                                           1
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all the other elements being zero.

Then the vector X' (t) satisfies the differential equation

                           d                              Xt (t) -DXt (t),
                           dt

where D is a 9×9 matrix independent of time. The expression for

   D=-

     o o -ie                       o r o ie* o O
     O a" O O O O O ie" O
                          ･o o o o ie*   -ie*           Ob                       o

     O･O O a O -ie                                         ooo

     ie O O O O O b* O -ie
     o ie ooooo c* o     O O ie O O O -ie" O -M
where

                          a='-r/2-ica2i,

                          biii!-rc/2-into,,

                          c=-=-(r+rc)/2-idto2,

                          e{!]2Eo,

                          Abl1!!!!(v-(D31,

                          ntu2Eto-to32

and

                      (oij!!!toi-a)j, (i,j=1,2,3).

   The solution for .X' (t' +r) takes the form

                     X' (t' +r) = SZi' (r;t') .Z' (t' ),

where 2'(r;t') is a 9×9 matrix satisfying the initial condition

                          2t (O;tt )=I,

I standing for the unit matrix. Similarly we get

                  ' X(t' +T) = 2ZZ(r;t' ).X<t' ),

with

the

 '

   (3. 13)

matrik D is

   (3. 14)

   (3. 15a)

   (3. 15b)

   (3. 15c)

   (3. 15d)

   (3. 15e)

   (3. 15f)

   (3. 15g)

    (3. 16)

        '

    (3. 17)

        '
        '

    (3.18)
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                      Zi(T; t')==B-i(t'+r)S}" (r;t')B(t') ' (3･19)

and

                               Zi(O;tt)-I. (3,20)

By integrating eq. (3.l3) the Lapiace transform of the matrix Zi'(r;t') is found

to be

                        oo                 2'(s) =- I, e-sr zt' (T;tl )dT==(sl-D)-i, (3.21)

which is independent of t'. ･
   In order to get the power spectrum of the scattered field in the steady situation,

we use for Cim(t' ) in the expression for the power -spectrum their asymptOtic values

C'im(t'.oo)iiiC' OOim. Taking the Laplace transform of eq. (3.16) after settingt'=O,

we get

                    li}r-' (s) =-2' (s)x' (o) == (sl-D)'ix' (o). (3. 22)

The asymptotic values can be obtained by the relation

                                         A                              C' ooim=Hm sC' !m(s). (3･23)
                                     s--O
In evaluating these asymptotic values we may choose the initial state X' (O) in eq･

(3.22) arbitrarily as long as the normalization condition for the atomic density

operator pa(t) is satisfied, namely

                             X C' ii(o) =- 1.

                              i

Thus we may take X' (O), for example, as

                     Xt (O)-t[1, O, O, O, O, O, O, O, O]. (3.24)

In this way we get

             C' ooi3 = irb"e"/[rlbl2+(2r+rc)]eI2]

                 =-2i2"Eo'r(rc-2in(Di)/{r[rc2+4(AcDi)2]+(2r+rc)S?2}, (3.25)

                               Ct oo,,=O (3.26)
and

                    C' D033=rle]2/[rIb]2+(2r+rc)]e]2]

                               '
                         =rve2/ {r[rc2+4("cai)2]+(2r+rc)92}, (3. 27)

                                                    '
where the Rabi frequency me is defined by
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                          S2i!ii2111IEol. (3･28)
                    AThe matrix elements of 7' (s) we need are

                      A                      Zi' 32;i2(s) == ie/.f<s) == i2eo/f(s) (3. 29)

and

                   A                   21i'32;32(s)=(s-a')/.f<s)==(s+r/2-itu2i)/fls), (3.30)

where

               fls) Ei! (s -a*)(s -c*) + l e 1 2

                  :=:(s+r/2-ia,2i)[s+(1/2)(r-i-N)-ina)2]+S22/4

                  =s2+[(2r+rc)/2-i(to2i+atu2)]S

                  +r(r+rc)/4-tu,irito,+92/4

                  -i(1/2)[7ttito2+(r+rc)tu2i]･ (3.31)

The total intensity given by eq. (2.17) is thus

            ket(r) =2x 1 go(r) [ 2g32;23(O) =2T ] ep(r) 1 2 C' O033

                =2rrlg(r)l2r92/{r[rc2+4(ntoi)2]+(2r+m)92}. (3.32)

The intensity of the coherently scattered light is

                   .lboh(r)=2x<E(-`)(r, t)><E(+)(r, t)>

                                                           '
                       =2wlso(r)I21C' oo23I2=O. (3.33)

                                 '
g4. Power Spectrume of Scattered Field

   The two-time atomic correlation function gij;ki(t-t') defined by eq. (2.14) can

be expressed as

            gij;kl(t-t' )

                == Tr[1 0> FF<O I pa(t' )l i> <j l U'- i(t, t' )l k> <I W(t, t' )], (4. 1)

                     '                           '
while the expectation value Cik(t) of atomic operator at a given time defined by eq.

(3.8) can be written in the form

            Cik(t) ==Tr[10>FF<O]pa(t' )U-`(t, t' )] k> <i] U(t, t' )]. (4. 2)

Comparison of eqs. (4.1) and (4.2) shows that the expression for gij;id(t-t') is

obtained by substituting pa(t')li><j[ for pa(t') in the expression for Cik(t). If we

do these procedures in the expression '
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                        3                 Clk(t)=:: X Zill<;mn(T;t')Cmn(t'), (4,3)
                       m,ntl

we get

                            3
                 gij;kl(t-t')= .X.-i 2erlk;mj(T;t' )C.i(t' ). (4. 4)

In particular we get

                            3
                  g32;23(r;t')== = Zi32;m2(r;t')Cm3(t')

                           rn==1

                             3
                   =exp(-ia)T) = 2' 32;m2(T)C' m3(t' ), (4, 5)
                            m==1

and its Laplace transform

                  AA           gA32;23(S) == gy' 32;12(S+icV)C' oo13+gy' 32;32(S+icD)C' Oe33. (4, 6)

Since g32;23(s) is regular on the imaginary axis of the s plane, the spectral correlation

function g32;23(v) defined by eq. (2.16) can be evaluated as

           g32;23(v)=2Re[g32;23(-iv)] ==:C' oo33

             × {r(tu32-v)2+(r+rc)[T(r+rc)+92]/4}/[f(i(to-v))[2. (4,7)

The two roots of the equation f(s)=O are given by

                 s±=-(2r+rc)/4+i(to2i+titu2)/2±VR/2, (4.8)
with

                     R.-..rc2/4-(ntto,)2-92-ircidto,. (4.9)

   Let us first consider the case in which the incident field is exactly on resonance

with the atomic frequency to3t (atui =O). The two roots s. and s- are then

                 s±=-(2r+irc)/4+itu2i±,vtD/2 (4.lo)
With

                       DEirc2/4-92. (4.11)
If D>O, then g(v) is given by

           g(v) == {r92/[rrc2+(2r+rc)92]}

                             A,                 ×[
                    (v-di32)2+(r+rc/2-Vb)2/4

                    + (v-to32)S+(r+Ai/2+vD)2/4 ], (4･i2)
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where

                   A.-(rrc+292+2rVD)/(4,viD) (4.13)

and

                   A- =- -(rrc+292- 2rV b)/(4V D). (4. 14)

The spectrum consists of luminescence centered at p==to32. If the incident field is

weak enough so that the Rabi frequency is very smail compared to the natural

decay rate rc and the phenomenological relaxation constant r, eq. (4.12) reduces to

                                  r92
                   g32;23(V) =
                            rc2[(v-to32)2+r2/4]

                                for nttoi=O and 9<r, rc, (4.15)

that is, the spectrum consists of the (broad) Raman scattering part with the width

r/2. If D<O, on the other hand, the two roots s. and s- are given by

                   s±=:-(2r+rc)/4+ito2i±i(1/2)VD' (4.16)
with

                         D' Ei-D=92-rc2/4. (4.17)
In this case we have

               gb2;23(v)=(1/2)C' O033

                       (r+rc)- rc(tu32- v)/iviD'
                 ×[
                    (tu32-v-VD-' /2)2+(2r+rc)2/16

                 "(ca,2Erv"+"l"..(9;ii+Z/,V+(l):/i6]' (`''s)

that is, the power spectrum consists of a superposition of two Lorentzians centered

at v= to32 ±A/D' /2 with the same width (2r+rc)/4.

   For riwitO we give results for ,ge2;23(v) in two limiting cases of interest: that

of very low and that of very high incident field intensity. If the incident field is

weak enough so that the Rabi frequency is much smaller than both the parameters

r and nt, we have

                                         1           gt2;23(v) = {r92/[rc2+4(ntu,)2]}
                                  (tu'to2i-v)2+r2/4

                                for 9<r, rc. (4. 19)
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In this case the spectrum consists wholly of the (broad) Raman scattering part:

the Lorentzian centered at v=to-tu2i with the width r/2. ･ '
   If the incident field is intense enough so that 9 is much greater than r and rc,

the two roots of f(s)==O are approximately given by

                      s+=-ff,+i(1/2)((v2i+Ao2+S?') (4.20a)

and

                      Sdi::::-o-+i(1/2)(to2i+idto2-S?t) (4.20b)

with

                      a,==(1/4)(2r+rc+rcntoi/9') (4.21a)

                      a- == (1/4)(2r+rc-rctitoi19' ), (4. 21b)

                                  'where the parameter 9' is defined by

                      9' 2E92+(idte,)2. (4. 22)
The spectral correlation function g32;23 (v) in this case is then given by

                            r92
            g32;23(V) ==
                    S?'2[(2r+rc)S?2+4r(titoi)2]

                       B,-mS22(v.-v)/(2S2')                  ×[
                          (v÷-v)2+a+2

                  + B" i,"d9ti(.")'",-+".)i,(29') ]

                      '                                for 9> r, rc, (4. 23)

where

                      v+ iii! ("32+A(vi/2-S?' /2, (4. 24a)

                      v- !!! to32+"tui/2+9' /2 (4. 24b)

and

                   B.=-(2r+rc)22/4+r(titoi)2/2-rtatoi9' /2 (4. 25a)

and

                   BH iii(2r+rc)92/4+r(atoi)2/2+rntoi9' /2. (4. 25b)

If Abli>O, i.e. to32<a)-to2i, then v. and v- approach tu32 and (D-to2t respectively, as

the intensity of the incident field is reduced. On the other hand, if dtoi<O, i.e.

tu-to2i<tu32, then v+ and vm approach to-to2i and to32 respectively, as 9 is reduced.
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In the limit of very intensive incident fields, 9 is much greater than r, rc and

lntui), and we find that eqs. (4.23)-(4.25) reduce to･ . .

         '                                       '

          g32;23(v)== i [ (..-v)2+l2r+rc)2/i6

                 + (v--v)2+(12r+rc)2/16 ] (4･26)

with

                      v+ == bl32+titei/2-9/2 (4. 27a)

and

                      v-=:to32+titui/2+9/2. (4.27b)
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   The positive frequency part of the scattered field is

            E(')(r, t) -= p3i(r)( l l> <3 1 )(t - r/c)

                  + ge32(r)( [ 2> <3 I )(t-r/c) +Ei(+)(r, t)

with obvious notations.

   The differential equation for the atomic density operator pa(t) reads

             d             dt Pa(t)==rci]1><31pa(t)13><11

                  +rc2 1 2> <3 I s)a(t) I 3> <2 [

                  -(1/2)(rct+rc2)[[3><31pa(t)+pa(t)[3><3l]

                  +rI1><2lpa(t)12><11

                                   tt                                      '                  -(1/2)r[12><2lpa(t)+pa(t)l2><2I]

                                               '                        3･                  + i[- ], Ili.. l, a)j l j> <j 1 +RE(o, t) 1 3> <1 1

                                          '
                  --Z"E"(O,t)[1><3I, pa(t)].

This is equivaient to the differential equation for X' (t)

                          d                             Xt (t) -= DX' (t),
                          dt

where the time-independent matrix D is given by

     D=-

         o O -ie O r O ie* O rci
         O a" O O O O O le* O
                    bt O O .O       -ie*                                             oo                                                       ie*               o
      '                           a O･i -ie O                     oo         oo                                                        o

         oooo -r ooo m2         o o o -ie* o c' o o o
         ie O O O O O b'" O -ie
               ie o o o ･o o c'*
                                '                             '                    ie o o' o                                           -ie*                                                     -rcIMrc2

           Power SpeCtrum'of Ught Scattered by Three-Level Systems tol

                               AppeRdix

   In this appendix we give expiicit expressions for the atomic correlation function

for the case in which the radiative damping between the higher excited state 13>

and the ground state ]1> is taken into account. We denote this natural decay rate

by rci and that between the states l3> and 12> which we have so far written as

rc by rc2.

                                             .

,

.(A. 1)

(A.2)

(A.3)

(A.4)
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where a and e are given respectively by eq. (3.15a) and eq. (3.15d) and

                       br Ei-(rci+rc,)/2-into, (A,5a)

and

                       c' i=-(r+Ni+rc2)/2-i"ut2. (A.sb)

This expression for D for the present model is readily obtained from the correspond-

ing expression for D in 53given by eq. (3.14) simply by replacing rc, bandc

with rci+N2, b' and c' respectively, exqept that zero of the (11,33) element and rc

of the (22,33) element of the matrix D defined by eq. (3.14) must be replaced with

rci and rc2 respectivety.

   The first-order field correlation function at r' =r is

                G(t)jk(r, t' ; r, t) ==P31, j(r)931,k(r)g31;13(t-t' )

                    +932, j(r)932, 1<(r)g32;23(t-t' )

                    +931, j(r)932, k(r)g31;23(t-t' )

                    +rp32,j(r)P31,k(r)g32;13(t-t'), (j,k=X,Y,z). (A.6)

   The asymptotic values of the expectation values of the atomic density operator

                C' OOi3= 4irb' "e"/[4r1b' l2+(2r+rc2)92]

                    =-2i2*8,*(rc,+rc,-2intoi)/

                      {r[(rci+nf2)2+4(tidiD2]+(2r+rc2)92}, (A.7a)

                              Ct co,,=O (A.7b)
and

With use

       C' co33--r92/[4r1b' i2+(2r+N2)S22]

            = rS221 {r[(rci+rc2)2+4(A(vi)2] +(2r+rc2)S?2} ,

of eq. (4.4) the atomic correlation functions are expressed as

                 3
       g31;13(T)= ]X Sei31;ml(T; t' -->oo)COe.3

               m=t1

                         3
              ==exp(-itur) X Zi'3i;mi(r)C' oom3,

                        m=1

                 3
       g32;23(r)= X 232;m2(r; t' -,oo)Ccom3

               m=1

             =exp(-i(vr) l2Iil] z" 32;m2(T)C' oom3,

                        m=1

(A.7c)

(A,8a)

(A.8b)
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               g31;23(r) = th Zi32;ml (T; t'-oo)Coom3

                      m=l
                                    '
                               3
                    =exp(-i(vr) X Zt' 32;ml(T)C' Oem3 (A.8c)
                              m==1

and

               g32;13(T)= th Zt31;m2(T; t'eoo)COO.3

                      m=1

                               3
                    =exp(-ior) = Zi' 3i;m2(r) C' com3. (A.8d)
                              m--1

   The power spectrum of the scattered fielcl defined by eq. (2.15) is

                  qv; r)== lp31(r)12g31;i3(v)+1ep32(r)l2glB2;23(v)

                       +(q31(r)P32(r))[glr3i;23(v)+gk2;i3(V)]. (A.9)

The total intensity of the scattered field Itot(r) is given by

               <1/2sc)ltot(r) -- I ep31<r) l 2 g31 ;13<O) + l w32(r) i 2 g32;23(O)

                       +(ep3i(r)op32(r))[gti;23(O)+g32;13(O)]

                       =(lg3i(r)l2+]p32(r)12) C' oo33. (A. lo)

The intensity of the coherently scattered field koh(r) is given by

                  (1/2T)lhoh(r)=lgo3i(r)l2 1C' OOi3]2. (A. n)

In the limit of the weak incident field, we have

       . Ikoh(r)/kot(r)=Ip3i(r)I2/(lq3i(r)l2+Iso32(r)l2).                                                             (A.12)

                                                                 '
   The Laplace transforms of the atomic correla'tion functions are evaluated as

                   AA           g31;l3(S)=ZX' 31;11(S+ito)C' oo13+EZi' 31;31(S+iro)C' O033, (A.13a)

                  AA           g32;23(s)==2' 32;12(s+iw>C' oo13+Zi' 32;32(s+iQi)C' oo33, (A.13b)

and

                        1?31;23(S)=g32;13(S)=O, (A.13c)

where

            A           Z" 3i;1i(s) =:: ie(s + r)(s +mi + rc2)(s -b' )/[sfl (s)]

                   =iREo(s+r)(s+rci+rc2)(s-1-rci/2+rc2/2+into2)/[s.fl(s)] (A.14)

and
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            A            Zi'3i;3i(s)==[(s+r)(s+rci+rc2)(s-b')+(2s+2r+rc2)[e12]/A(s)

                   ==[(s+r)(s+mi+rc2)(s+rci/2+rc2/2+in(vi)

                   +(2s+2r+rc2)92/4]M(s) (A.15)
with

                               '
            .flL (s) fiE (s + r)(s + rci l- rc2) l b' l 2+(2s + rci + rc2)(2s + 2r + rc2) I e l 2

               =(S+r)(S+rci+rc2)[(S+rci/2+rc2/2)2+(idtu,)2]

               +(2s+rci+rc2)(2s+2r+rc2)92/4, (A.16)

and

                            '                      A                      Zt' 32;i2(s) == ie/.ICIi(s) == i2Eol]Ch(s) (A. 17)

                                                              '
and

                                                               '               A               2' 32;32(s) == (s -a*)/G(s) =(s+r/2-ito2i)/.ltli(s) (A. 18)

                                                             '
with

               .11i(s)=ny(s -a')(s -d ") + le l 2

                  =[(2s+r-2ito2D(2s+rci+m2+r-2iktu2)+S?2]/4. (A.19)

The spectral correlation function gB2;32(v) which results from the transition between

the atomic states )3> and 12> is given by

                   g32;32(V) =C' O033 {r(to32-V)2+(r+rci+rc2)

                        ×[r(r+rci+rc2)+92]/4}/lfli(i(to-v))l2. (A.2o)

This expression ls obtained from the corresponding expression given by eq. (4.7)

for the case in which the parameter rci is absent simply by replacing rc with rci+rc2

except for the factor C' O033, for which eq. (A.7c) must be used instead of eq. (3.27).

Therefore the various expressions for the power spectrurn given in g4 can readily

be translated into the corresponding expressions for the present case ln which the

relaxation constant rci is taken into account. ･ '.
                                                     '


