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   1. gmtroduction

   This is the detailed exposition of [2]. In the theory of Gatissian randorri fields

(G.r.f.'s), the notion of conjugate sets has been introduced by P. L6vy and

employed by the author to study the conditional independence of G.r.f.'s with

parameter space Rd <[1]-[5]). The aim of this paper is to give a description of

G.r.f.'s with projective invariance by using the conjugate sets associated with

them. In particular, the parameter space is taken to be the real Hilbert space l2

                          oodefined by l2= {x=(xn)n)i; Xxn2<oo, xnER (n>1)}, in which every space Rd
                         n--1
(d;}},1) is embedded. Let X:={X(x); xEl2} be a mean zero G.r.f. on l2 with

homogeneous and isotropic increments such that the variance of X(x)-X(u) is given

by r(lx-yl), where the structure fttnction r(t) is assumed to be continuous and satisfy

the normalizing condition r(1)=1 ([8]). We may identify two G.r.f.'s on l2 with

common structure function r(t), because such G.r.f.'s have the same probabilistic

structure related to conditional dependence. From this point of view, we often use

the notation (X;r(t)) instead of X([3]). We note that there exists a one-to-one

correspondence between the class of these G.r.f.'s (Xlr(t)) on l2 and the class Y

of all the functions r(t) on [O, oo) expressed as follows: .

                             co ･                    r(t)=ct2+J,(1-e-`2")u"idr(u) (t>o), ' ' .

where c is a non-negative constant and r denotes a measure on (O, oo) such -that

JoOe(1+u)'midr(u)<oo and r(1) =1 ([7]). An important subclass of Y' is given by

          . .S`?={r(t)=ta; O<a<2}, .
whieh corresponds to the class of G.r.f.'s with projectlve invariance in the sense

of [6].

    We now proceed to the definition of the conjugate sets associated with. (X, r(t)).

Given Ec l2 (Eat¢), we denote by Rr(x,ylE) the conditional covariance function
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of (Xr(t)) relative to E, i.e.,

            Rr(X,YIE)=::E[(X(X)-Ltr(XIE))(X<y)Hptr(ylE))] (X,yEl2),

where ptr(x]E) stands for the conditional expectation of X(x) under the conditioning

by {X(z); zEE} (see Section 2). Then, for every xE l2, the maxinzal conjugate set

(or shortly conjugate set) yx(xlE) of x relative to E is defined as follows:

                    Y-x<xlE)= {yff l2; R,(x,ylE)=O} .

Since (X; r(t)) is a Gaussian system, the set Lsi'x(xlE) proves to be the locus of

yEl2 for which X(x) and X<y) are independent conditioned by {X(x); xEE}. In

this paper, we assume that E is finite and contains at ieast two points:

(1.1) E={ale}i<le<n and n=#E?2,
where ptE denotes the cardinal number of E. Then ptr(xlE) can be expressed in the

form

                          n                  ptr(xlE)=XX(ale)r.fe(xlE) (xEl2),
                          le==1
where rrh(xlE) (1<le<n) stand for certain real numbers satisfying the equation

 n
Xr.k(xlE)=1. Amapping ¢E: l2-R" is defined by diE(x)=:(lx-ai],･･･,gx-a.])
h-1

(xe l2). By an inversion on l2 with center xE l2 and radius t>O, we mean the

following transformation T on l2:

              Tx=t21x-xl'-2(x-x)+x (x#=x) and Tz=x.

We denote by f( l2) the set of all inversions on l2. We are now in a position to

state our main result.

   TffEOREM 1. Let (.X; r(t)) be a G.r.fL on l2 rigged with {a, E}, where r(t)EsJa,

aGE and E is given by (1,1). SuPPose that {a,E,r(t)} satisfies the following cond-

zttons:

(1.2) diE(L9'-x(al,El)) contains an interior Point; and

(1.3) rri(UalUE)r,j(UalUE)=tO for some U6-(l2) with center xuEE and some

i, 1' (i-l=j)･

Then it holds that r(t)E.S? if and only if

(1.4) .Srx(TalTE)==TLsY'x(alE) for any TEf(l2) with center xu.

   We note that Theorem 1 remains true even if l2 is replaced by Rd. Formerly

we obtained an analogous result with respect to similar transformations on Rd (see

Theorem 1 of [3]). The proof of Theorem 1 is given in Section 2 based on a certain

functional equation. Finaliy, in Section 3, we shall give a simplified version of

this theorem by specializing the set E.
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   2. Proof of the rnain theorem
                                                               /
   Let (.iY;r(t)) be aG.r.f. on l2 and Ebe a non-empty subset of l2. First we

note that the conditional expectation pt,(x]E) is defined in the sense of [5]. In other

words, we set

        ptr(x]E):=:X(Xo)+E[X<x)'X(xe)l.X(x)'X(zo); XeE] (xEl2, zoGE).

Here the right side does not depend on the choice of xoEE. In the special case

E={z}, we have ptr(x12) =X(z) and so the conditional covariance function R.(x,ylz)

is given by

            .R,(x,ylz)-{r(ix-zD+r(ly-xD-r(]x-yD}/2 (x,yEl2).

In general, if E is given by (1.1), we have the following expression: For any x,

yEl2,

(2.1) 2R,(x,y[E)=r(lx-ai[)+Ar(x,ylE)-r(lx-yl)-Ar(x,ailE),

                                                                   tt                       ftwhere we set A,(x,ylE)==Xr(ly-ahl)rrk(xlE). As for the class Y, we know some
                      k-=1
interesting properties ([3]). Among them, we note that each function r(t)ey, as

well as its inverse function r'-i(x), is strictly increasing and analytic.

   Proof of Theorern 1. The "only if" part immediately follows from the projective

invariance of (X;r(t)) in the sense of L6]. Therefore it suMces to prove the "if"

part. Without loss of generality, we may assume that rri(TsalTsE)rri(TsalTsE)=tO

for some s>O and some i, f' (il=j), where Tt denotes the inversion on l2 with

center ai and radiust(t>O). Because of the assumption (1.2), there exist open

                                              nintervals fk (1<le<n) contained in (O, oo) such that I[I I)?cdiE(gex(alE)). It foilows

                                             k-1
                           nthat, for each u=(ui,･･･,un)G II Ik, there exists y[u]efx(alE) such that

                           h=1
diE(y[u])=u or equivalently ly[u]-akl=:uk (1<fe<n). Then we see by (1.4) that

                                                      n
            Tty[u]EJ;inx(TtalTtE) for any (t,u)G(O, oo)× ll Ik.
                                                     k-:1 ･
In other words, by using the expression (2.1), we have the following: Forany(t,u)

         vz
E(o, oo) × IIE ile,

        le=1

                            n(2.2) r(ITta-Tty[a]1)= :liil]l r(ITty[u]-Ttakl)rrk(Tta]TtE)

                           k-1

                                 +r(ITta-Ttail)-Ar(Tta,TtailTtE)･

For the sake of convenience, we set th--lak-aiK2<le<lln) and further introduce the

following functions:
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          Ple(t)==r.k(T/7a]T/7E) (t>O, 1<le<n),
        Ig,:.`),r,TllZ;,7-.",:T,.(lgej-,,ds(ltJlf.}Z,i･:i3`BTg,J'!,',,,`',/),1fi.S,L

                                 '                                     '
                                             v't
Then it follows from (2.2) that, for any (t,u)e(O, oo)× leI.IE-ilk,

                            '                        '
(2. 3) r(th(ui, ･･･, un)) ==r( i ) Pi(t)+ il.ii, r(ltk".k, ) Pk(t)+g(t)･

Now we set

           D.(a, E)={(vi,･･･, v.); 1 EIi and lleVle Eik (2<le<n)} and

                                         Vl                              Vl

           fi(vi, ''', vn)==h( i , ig¥2,･･･, l'iY") (vED,(a, E)).

                  //                '                                                                 'Then the equation (2. 3) is replaced by the following: For aRy (t, v)E(O, oo)xD,(a, E),

                                   '                                                      '
(2.4) r(thN(vi, ･･･, v.))-= = r(tvk)Ple(t)+g(t).

     '
It should be noted that Pi(s2)Pj(s2)=#O and h(vi,･･･, v.)>O on the domain D,(a, E) of

R';. By applying Lemma7of [3] to the equation (2.4), we see that･r(t) can be

expressed in the form ･ '          '   . tt     '
 ' r(t)=Citct+C2 or r(t) =Plog t+ C3 ' ,(t>O),

where ct, P and Ck (1<le<3) are real constants (aCiS]O, P=tO). Therefore we obtain

the desired gxpression r(t). =tat (O<ct<2) by using the conditions r(O)==:O, r(1)=1 and

the concavity of r(Avlt) ([3]). The proof is thus completed.

            '                  '   3. A simplified result

            '
   In this section we shall give an interesting version of Theorem 1 by specializing

the set E. Let {e.}.>i be the canonical orthonormal basis of l2, We mean by E.

(n;}}},2) the subsets of l2 defined as follows:

                                '           '   '           E.={anle}i<k<n and anle==ele+i- h ;,II..liei+i (i<le<{n)･

For each t>O, Tnt denotes.an inversion on l2 with center ani and radius t, and

further St denotes a similar transformation on l2 given by Stx==tx. Then we have

the fo}lowing theorem. ' '

   THEeREM 2. Let (Xr(t)) be a G,r.f. on l2 with r(t)EiY. Then the following

three conditions are equivalent:
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(i) r(t)ey;

(ii) .SiSx(TntedTntEn):=:T.tyx(eiiE.) for any n;}})2 and any t>O;

(iii) LS7-x(SteilStE;2)==St.Si"x(eilEl,) for any n}}},2 and any t>O.

   Proof. In order to apply Theorem 1 we shall prove that {ei,En,r(t)} satisfies

the conditions (l.2) and (1.3) for sufficiently large n. First we note that lei-ankl==

tvX(2n-1)ln, la.fel=V(n-1)ln (1<fe<n) and la.j-a.kl=::V-i} (1<1'<fe<n). Then we

see by (2.1) that

            Iim 2Rr(ei, -ei]En)
            tl-oe
           =.lit,.. {2r(lei-anil)-r(l2eil)- ± k.,r([ani-ankl)}

           == r(V 2 )-r(2)<O.

Therefore we have Rr(ei, -eilE.)<O for sufliciently large n. In addition, the points

of En are independent and the point ei iies in the orthogonal complement of E,t･

ThLts we see by Proposition 1 of [3] that {ei,E.,r(t)} satisfies the condition (1.2) for

suMciently Iarge n. On the other hand, we can easily show that there exists a

sequence {gla(t)}.>2 of functions on (O, oo) such that iim gl,(t):=1 (t>O) and

                                            fl-oo
              rrk(Tntei]TntEn)=:gbe(t)ln (t>O, 2<fe<n, n)2),

which guarantees the condition (1. 3) for suthciently large n. Consequently by applying

Theorem 1, we have the equivalence of (i) and (ii). Moreover, we easily obtain the

equivalence of (i) and (iii) by using Theorem 1 of [3].
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