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1. Introduction

On the radial limits and strong limits of subharmonic functions in the unit disc
U in C, J.E. Littlewood studied thoroughly in [[17], [2], [3]. He summed up his
results in [3], §10, p.234:
Theorem A (Littlewood). Suppose that u is a subharmonic function in U and
satisfies
1

( 1) 2 .
sup —— [ |ulre’?)| Pdh< oo
17257 <1 0

Jor some p, 0O p<oo. When p=1, there is almost always a radial limit

u*(e'?) = lim u(re'?)
ol
and u* is a strong limit of u for any z;m’ex q<p. When p > 1, there need be no
strong limit of u with index p, but u* is one under the stronger hypothesis that wu is
harmonic. When p=1, there need be no strong limit of u with index p(=1), even
when u is harmonic. When p<_1, there need be no strong limit for any index, nor
need a radial limit exist almost everywhere (it need not exist outside a null set of 6).

D. Ullrich [67] has recently defined and developed the basic properties of the
class of “M-subharmonic” functions in the unit ball B of C*. The main result of
[6] is as follows: .

Theorem B (Ullrich). An M-subharmonic function in B salisfying an appropriate
growth condition (analogous to (1) with p=1) has radial limits almost everywhere.

In the case =1 Theorem B is just the part of Theorem A, which relates to
the radial limits. The purpose of the present paper is to prove that the part of
Theorem A relating to the strong limits remains true for M-subharmonic functions.
(See below, p. 7, Theorem 3. 4.)

2. Preliminaries

Throughout this paper » is a positive integer, C” is the vector space of all
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n-tuples z=(zy,...,2,) of complex numbers, with hermitian inner product <z, w>
=3%zw;, norm |z|=<z, z>'?, and corresponding unit ball
B={zeC" : |z|<1},
whose boundary is the sphere
S={eC": |¢|=1}.
For z, a= B, a0, define

a—Paz—(1—|a|)? Q.z
¢a(z)‘f 1“‘<Z, a>

where Poz=<z, a>a/<a, a>, and P,z+@Qq.z=2z. By continuity, let ¢yz) =—z.
The group of biholomorphic mappings of B onto B will be denoted by M. Let

=11(n) be the group of all unitary operators on the Hilbert space C*. Then 11 is a

compact group and WCM. Actually, U= {¢&=M : $(0)=0}. Note that ¢,=M for all

acsB.
Let ¢ denote the W-invariant positive Borel measure on S, normalized so that

a(S)=1. 7 denotes the measure in B defined by
de(2)=(1—|z]®™"7! dy(a),
where v is the Lebesgue measure on C?=R?”, normalized so that v(B)=1. Note that
¢ is M-invariant: For f&Lc) and ¢&M, jB fop dr= JB f de (5], Theorem 2.2.6).
As usual, C(X) stands for the class of all complex-valued continuous functions

on X, where X is any topological space.
We shall also use the following notations:

yB={rz: zeB), rB={rz: 2B}, rS={#{ : (&S}

for 0<r<{1, where B={zeC" : |z|<1}.
2. 1. Definition ([6], §1.15). Suppose £ is an open subset of B and u: 92—
[—oo, co) is upper semicontinious. Then u is M-subharmonic in £ if (i) for every

ac £ there exists #(a)>0 with ¢.(r(e) B)c £, such that
ua)=[ updrt) dol¥)  (0=r=r(a)

and (ii) none. of thé integrals in (i) are —oo,
2. 2. Definition ([6], §1.1 and §1.5). Suppose 2CB is open and u€C({2). Then

# is M-harmonic in £ if
(2) ula)= [ uigalrC) do(l)

for any ¢€ and >0 such that ¢, (zrB)c?.
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2. 3. Proposition ((6], §1.8). If u is M-harmonic in 2, an open subset of B,

and ¢,(rB)C L2, then

1
WA= B o #

2. 4. Definition. For 0<¢<1, put

p(t):sup{!qiz (w)] : z €4S, WE%B}.

If 2€1S, then z=4,(0)Ed, (é—B), and so {=|z| <pl)<1. We define

for 0<t<1 + 0<c(t)<loo.

2. 5. Lemma (cf. [6], §1.9). Suppose 0 <t <1 and p(t)r<l. If u =0 is an
M-harmonic function in vB, then u(z) =c()u(0) for all z&18S.

Proof. Fix z€¢S. By the definition of the number p(¢),

$.(/.B)C pt)BC¥B.
It follows from Proposition 2.3 that

1

" Hg:(/.B)) L',U/zB) w de

ul(z)

1
< dr
“t(1/.B) L(:)B “

_ p®)B)
= H.B) #(0)=c()u(0).
2. 6. Proposition ([6], §1. 11 and [5], Lemma 5. 5.4). Suppose f&C(S), 0<r<
1. Then there exists a unique ueCrB) such that u is M-harmonic in vB and u(r{)=

f0) (€eS).
2. 7. Definition ([6], §1.12). For f&C(S) and 0<#<l1let P, [ f]be the M-har-

monic function in #B such that

(3) lim P,[f1(t)=1(0

uniformly for {eS. (See Proposition 2.6.)
Note that P, : C(S)— C(¥B) is linear and positive (P,[ f ] =0 for f=0) by the
maximum principle ([5], Theorem 4.3.2).
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2. 8. Lemma (cf. [6], §1.18). Suppose 0<t<1 and ot)}<v<1. If FeC(S) and
zetlS, then

(4) P LS YR 200 | £ do.

Proof. Let Re f=g and Im f=h. Then g, h€C(S) and f=g++/— 1h. Let g*
=max (g, 0) and g =max(—g, 0). Then g*, g €((S) and g*=0, g~ =0, g=g*—g¢",

lgl=g*+g".
Since P,[g*]=0 is M-harmonic in B, Lemma 2.5 and (2) show that

(5) P.Lg"Y&)=ctP,[g*10)
and
(6) s PrLg*1s0) do()=P,Lg*10)

for all s€(0, 7). Furthermore, by (3),

(7) lim [ P,LgI(s0da0)= [ &*(Ido(0).

By (5), (6) and (7), we have
(8) PLg Ne=elt) [ g do.
Similarly, it holds that
(9) P.Le Ya=elt) [, & do.
In virtue of (8) and (9), linearity of P, shows that
|P.LENa et [ (g"+e) do=clt) [ 18 do.
We also have
|PLLRYR) Zelt) [ 111 do.
Since f=g-+ +/—1 h, linearity of P, shows that
|P,LAA=Ct) [ (g1+101) do2elt) [ 171 do.

2. 9. Lemma (cf. [6], p. 504). Suppose 0< 11, plt)<r <1 and z2&tS. Then
there exists a function P, ,= L>(¢) which satisfies the following conditions:

i) 1Py, 2l[0=22¢(t),
if) P, 8)=0 for almost all (=S,
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i) jS P,,.do=1,
V) PLS1@= [, f Prado for all fECLS).

Proof. Since C(S) is a dense subspace of LY{s), in view of Lemma 2.8, there
exists a bounded linear functional 4 on LYe) such that 4(f)=P,[ f(z) for all feC(S),
and ||4]|=2c(#). Hence there exists a function P,,,€L>(a) such that ||P,,;|l«=]|4]|
=2¢(t) and

Af) =y 1Py

for all feL'o).
Since P,[-](z) is a positive linear functional on C(S), it holds that P, ,(()=0
for almost all {£S. For feC(S), we have

P.LIYa=A(f)=; fPr..ds.
In the case f=1 this shows that
JS P, do=1.

2. 10. Definition. Suppose 0 <t<1, p(f) <r <l and zetS. For fells), we
define

P.LfNe)=|g fPrdo.

By Lemma 2.9, this is compatible with Definition 2.7.

2. 11. Lemma. Suppose 0< <1, pt)<r<1 and 2€iS. If Uell, then P, .0
=P,,,0 U YC) for almost all £ES.

Proof. Let Uell and f=(C(S). Then foUe((S). By Definition 2.7, it holds that

lim Pr[fOU](SC)=f°U(€)=f(UC)ZSILrgl P,Lf] (sUT)

=lim P,[f](Us)=lim P,[f]oU(st).

Since P,[ foU] and P,[ f]oU are both M-harmonic in 7B, it follows from the maxi-
mum principle ([5], Theorem 4.3.2) that P,[ foU]=P,[ f]oU in #B. By Definition
2.10 and the U-invariance of the measure ¢, therefore we have

| /Prvado=P,LAVD=P.LfU] (2

=[P, do= | £(Pr0 U™ do.

Since this holds for all feC(S), we can conclude that P,y ({)=P,,, U Y{) for
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almost all {S.
2. 12. Lemma (cf. [6], pp. 504-505). Suppose 0<t<1 and pt)<r<1. If 1Zp

oo and feLP(e), then we have
[ 1P L73001 doO= [ 151 do.

Proof. Let dU denote Haar measure on . By [57, Proposition 1.4.7,

I= [ 1P,LF1e0)? @)= \P,Lf] (Ue)l? aU
=, I1PLAYUte)|? dU
where ¢,=(1,0,...,0)=S. It follows from Definition 2.10 that
1=[ 1 [ fOPute (© do(@))? aU.

By Lemma 2.9, ii), iii), Hoélder's inequality and Fubini’s theorem, we have

(10 1=] {5 1701? Provia(@ dotc)} av

- [S{l flo? Ju Prute (£) dU } da(l).

Lemma 2.11 shows that

(1) [ Prote © aU=| Pro cU0) aU.

Since 1l is a compact group, it is unimodular (see e. g. [4], p. 117). Hence it
follows from [5], Proposition 1.4.7 and Lemma 2.9, iii) that
(12 [ PrtecU(Q) dU= [ PrioUQ) dU

:,[S Py 1o, do=1.

By (10), (11} and (12), we have

SO da(0).

= ||

3. Strong limits of M-subharmonic functions

In addition to the preliminaries described in §2, we need further three theorems

to prove our main result (Theorem 3.4.).
3. 1. Theorem ([6], §3.1). Suppose u is an M-subharmonic function in B and

sup JS |y |do<oo

1egr<l



Strong Limits of M-subharmonic Functions 7

where u,L)=u(rl) for LS, 0<r<1. Then

w*Q)=lim u(x{)

r—1

exists for almost all &S,
3. 2. Theorem ([5], Theorem 3.3.4 and Theorem 4.3.3). Suppose u is an M-
harmonic function in B and

sup [ 1y |?do<eo
0<r<1 /S

Jor some peE(l, o). Then

limI |, — 1] Pdo = 0.
el JS

8. 8. Theorem ([67], §1. 22). Suppose u is an M-subharmonic function in B
and

sup J
0<r<l

s Ur do< oo,

Then there exist an M-harmonic function h in B and an M-subharmonic function v
such that

u=h+v, ush,v<0

in B and

(13) 7(0)=1im {S wn, do.

r—1

3. 4. Theorem. Suppose u is an M-subharmonic function in B and 1< p <{co.
If u satisfies

(14 sup [ 1| do<oo,
asr<1 JS

then we have

(15) limJ |, —u*1? do=0
y—1JS
Jor all q=(0, p).
Proof. First we consider the case 1< p<eo0. Since 1< p<leo and ¢(S)=1, we
have

(16) sup J |#,] do = {sup [ luy|? da} VP oo,
1p=r<l JS 1p=r<1)S
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by (14). It follows from Theorem 3.1 that the radial limit

u*(C):lir{l u(rg)

exists for almost all {€S. In view of (16), Theorem 3.3 shows that
u=h+v, h=u, v=0

in B, where & is an M-harmonic function in B and v is an M-subharmonic func-

tion in B. h satisfies (13). Hence we have
(17) lim [ 19, |do=0.
Let 2B and p(|z])<r<1. Then

(18) — @)+ Pyluy J(2) =P, vy |(2).

By Definition 2.10 and Lemma 2.9,
P, e =1 [ 0Py udol
<I1Py,2 1l Loy 1do= 20(121) [ 10/ do,
It follows from (17) and (18) that
(19) hnll Py Luy J(z)=h(2).
Suppose Y/, < t<1. If p(t)<<r<1, then
(20) [ 1P L0001 2do@) < 1y Pdo,
by Lemma 2.12. In view of (19), (20), Fatou’s lemma, we have
[ 1HtD1Pdo)= [ lim 1P, Lu, Jt0)] Pdo(0)
E r—1
<tim inf | [P, Lu, Jt0)| #do(0)
. ,
< lim inf fsxu,; do

= supJ lu,|?do.
1/9zr<l JS

Hence

(21) sup [ |hy|Pdoe<  sup J |ty |? do<loo.
egr<1 IS 1p=r<1 JS

Since v=u—#h, this also gives
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(22) sup J |v, | 2de<co,
1/,=r<1 JS

Now we shall prove (15). If (15) holds for one value of ¢, so does it for any
smaller value, and we may assume that 1< q<p. Let a=(p—1)/(p—q), B=(p—1)/
(g—1), then 1/a+1/B8=1 and g=1/a-+p/B, so that, Holder’s inequality shows

Js |vy | Tdo = [s |, 1Y v, | PP dg
< to, 1doyse ([ o, 12dop .
It follows (17) and (22) that

(23) lim js 10,19 do=0.

In view of (21), (22) and Theorem 3.1, the radial limits

RHO)=lim R(z{), v*(C)=Ilim o)

r—1 r—1

exist for almost all {&S. Since v <0, (17) and Fatou’s lemma show that »*{)= 0,
and so, #*({)=h*&) for almost all {&S. Hence

(24) j Iu,—u*lqda:J.‘ih,+v,—-h*]'1da
S S
<20 [ Uy —h 0dot [ o0 di)
In view of (21), Theorem 3.2 gives

(25) lim [S Vi —h* |9 =0,

By (23), (24) and (25), we have

lim js [ty — ™ | 9dir=0.

r—1

Secondly we consider the case p=1. (cf. [3]. p.229) Suppose 0<g<p=1. The-
orem 3.1 shows that the radial limit

w*)=lim u,({)

r—1

exists for almost all {=S. It follows from Egoroff’s theorem that for an arbitrarily
small number &€>0 there exists a closed subset E of S such that ¢(S\ E)<¢ and

(26) u*(C)=lim u,({)

r—1

uniformly for {e E. Since 1/¢>>1, Holder's inequality gives
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| o, —u*|do)?

¥ 1ds=ZSNEN ([,

(27) [S\E

g1 (JS |y —u*|de)?.
By Fatou’s lemma, we have

js |u*|da:JS lim |u, | do=lim_inf jS (4, |do

; luy | do=K< oo,

= sup j
I/e5r<l1

and so, for !f,=¢<1,
js |u,4u*|d,fgjslu,|da+[s;u*|dag2K.
It follows from (27) that

|, —u*| 9o (2K)? €474,

29 [sns

On the other hand, by (26),

(29) lim [E ity —u* | 7de =0.

yo=1
(28) and (29) give

1imjg [ty —u* |7 dp—0.

r—
This completes the proof.
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