Strong Limits of M-subharmonic Functions

By YASUO MATSUGU

Department of Mathematics, Faculty of Science Shinshu University (Received Feb. 27, 1987)

1. Introduction

On the radial limits and strong limits of subharmonic functions in the unit disc U in C, J.E. Littlewood studied thoroughly in [1], [2], [3]. He summed up his results in [3], §10, p.234:

Theorem A (Littlewood). Suppose that u is a subharmonic function in U and satisfies

(1)
$$\sup_{1/2 \le r < 1} \frac{1}{2\pi} \int_0^{2\pi} |u(re^{i\theta})|^p d\theta < \infty$$

for some p, $0 . When <math>p \ge 1$, there is almost always a radial limit

$$u^*(e^{i\theta}) = \lim_{\substack{q \neq 0 \\ q \neq 1}} u(re^{i\theta})$$

and u^* is a strong limit of u for any index q < p. When p > 1, there need be no strong limit of u with index p, but u^* is one under the stronger hypothesis that u is harmonic. When p=1, there need be no strong limit of u with index p(=1), even when u is harmonic. When p<1, there need be no strong limit for any index, nor need a radial limit exist almost everywhere (it need not exist outside a null set of θ).

D. Ullrich [6] has recently defined and developed the basic properties of the class of "*M*-subharmonic" functions in the unit ball *B* of \mathbb{C}^n . The main result of [6] is as follows:

Theorem B (Ullrich). An M-subharmonic function in B satisfying an appropriate growth condition (analogous to (1) with p=1) has radial limits almost everywhere.

In the case n=1 Theorem B is just the part of Theorem A, which relates to the radial limits. The purpose of the present paper is to prove that the part of Theorem A relating to the strong limits remains true for *M*-subharmonic functions. (See below, p. 7, Theorem 3. 4.)

2. Preliminaries

Throughout this paper n is a positive integer, C^n is the vector space of all

n-tuples $z = (z_1, ..., z_n)$ of complex numbers, with hermitian inner product $\langle z, w \rangle = \sum z_j \overline{w}_j$, norm $|z| = \langle z, z \rangle^{1/2}$, and corresponding unit ball

$$B = \{z \in \mathbb{C}^n : |z| < 1\},\$$

whose boundary is the sphere

$$S = \{ \zeta \in \mathbb{C}^n : |\zeta| = 1 \}.$$

For z, $a \in B$, $a \neq 0$, define

$$\phi_a(z) = \frac{a - P_a z - (1 - |a|^2)^{1/2} Q_a z}{1 - \langle z, a \rangle}$$

where $P_a z = \langle z, a \rangle a/\langle a, a \rangle$, and $P_a z + Q_a z = z$. By continuity, let $\phi_0(z) = -z$.

The group of biholomorphic mappings of B onto B will be denoted by M. Let $\mathfrak{U} = \mathfrak{U}(n)$ be the group of all unitary operators on the Hilbert space \mathbb{C}^n . Then \mathfrak{U} is a compact group and $\mathfrak{U} \subset M$. Actually, $\mathfrak{U} = \{\phi \in M : \phi(0) = 0\}$. Note that $\phi_a \in M$ for all $a \in B$.

Let σ denote the *u*-invariant positive Borel measure on S, normalized so that $\sigma(S)=1$. τ denotes the measure in B defined by

$$d\tau(z) = (1 - |z|^2)^{-n-1} d\nu(z),$$

where ν is the Lebesgue measure on $\mathbb{C}^n = \mathbb{R}^{2n}$, normalized so that $\nu(B) = 1$. Note that τ is *M*-invariant: For $f \in L^1(\tau)$ and $\phi \in M$, $\int_B f \circ \phi \ d\tau = \int_B f \ d\tau$ ([5], Theorem 2.2.6).

As usual, C(X) stands for the class of all complex-valued continuous functions on X, where X is any topological space.

We shall also use the following notations:

$$rB = \{rz : z \in B\}, \ rB = \{rz : z \in B\}, \ rS = \{r\zeta : \zeta \in S\}$$

for $0 \le r \le 1$, where $\overline{B} = \{z \in \mathbb{C}^n : |z| \le 1\}$.

2. 1. Definition ([6], §1.15). Suppose Ω is an open subset of B and $u: \Omega \to (-\infty, \infty)$ is upper semicontinious. Then u is *M*-subharmonic in Ω if (i) for every $a \in \Omega$ there exists r(a) > 0 with $\phi_a(r(a) \overline{B}) \subset \Omega$, such that

$$u(a) \leq \int_{S} u(\phi_a(r\zeta)) \ d\sigma(\zeta) \quad (0 \leq r \leq r(a))$$

and (ii) none of the integrals in (i) are $-\infty$.

2. 2. Definition ([6], §1.1 and §1.5). Suppose $\Omega \subset B$ is open and $u \in C(\Omega)$. Then u is *M*-harmonic in Ω if

(2)
$$u(a) = \int_{S} u(\phi_a(r\zeta)) \, d\sigma(\zeta)$$

for any $a \in \Omega$ and r > 0 such that $\phi_a(r\overline{B}) \subset \Omega$.

2. 3. Proposition ([6], §1.8). If u is M-harmonic in Ω , an open subset of B, and $\phi_a(r\overline{B}) \subset \Omega$, then

$$u(a) = \frac{1}{\tau(\phi_a(rB))} \int_{\phi_a(rB)} u \, d\tau$$

2. 4. **Definition**. For 0 < t < 1, put

$$\rho(t) = \sup \left\{ |\phi_z(w)| : z \in tS, \ w \in \frac{1}{2}B \right\}.$$

If $z \in tS$, then $z = \phi_z(0) \in \phi_z\left(\frac{1}{2}B\right)$, and so $t = |z| < \rho(t) < 1$. We define

$$c(t) = \frac{\tau(\rho(t)B)}{\tau\left(\frac{1}{2}B\right)}$$

for $0 < t < 1 : 0 < c(t) < \infty$.

2. 5. Lemma (cf. [6], §1.9). Suppose 0 < t < 1 and $\rho(t) < r < 1$. If $u \ge 0$ is an *M*-harmonic function in rB, then $u(z) \le c(t)u(0)$ for all $z \in tS$.

Proof. Fix $z \in tS$. By the definition of the number $\rho(t)$,

$$\phi_z(1/_2\overline{B}) \subset \rho(t)\overline{B} \subset rB.$$

It follows from Proposition 2.3 that

$$u(z) = \frac{1}{\tau(\phi_{z}(1/2B))} \int_{\phi_{z}(1/2B)} u \, dx$$
$$\leq \frac{1}{\tau(1/2B)} \int_{\rho(t)B} u \, d\tau$$
$$= \frac{\tau(\rho(t)B)}{\tau(1/2B)} u(0) = c(t)u(0).$$

2. 6. Proposition ([6], §1. 11 and [5], Lemma 5. 5. 4). Suppose $f \in C(S)$, 0 < r < 1. Then there exists a unique $u \in C(r\overline{B})$ such that u is M-harmonic in rB and $u(r\zeta) = f(\zeta)$ ($\zeta \in S$).

2. 7. Definition ([6], §1.12). For $f \in C(S)$ and 0 < r < 1 let $P_r[f]$ be the *M*-harmonic function in *rB* such that

(3)
$$\lim_{t \to r} P_r[f](t\zeta) = f(\zeta)$$

uniformly for $\zeta \in S$. (See Proposition 2.6.)

Note that $P_r : C(S) \to C(rB)$ is linear and positive $(P_r[f] \ge 0 \text{ for } f \ge 0)$ by the maximum principle ([5], Theorem 4.3.2).

2. 8. Lemma (cf. [6], §1.13). Suppose $0 \le t \le 1$ and $\rho(t) \le r \le 1$. If $f \in C(S)$ and $z \in tS$, then

$$|P_r[f](z)| \leq 2c(t) \int_S |f| \ d\sigma.$$

Proof. Let Re f=g and Im f=h. Then g, $h \in C(S)$ and $f = g + \sqrt{-1}h$. Let $g^+ = \max(g, 0)$ and $g^- = \max(-g, 0)$. Then g^+ , $g^- \in C(S)$ and $g^+ \ge 0$, $g^- \ge 0$, $g = g^+ - g^-$, $|g| = g^+ + g^-$.

Since $P_r[g^+] \ge 0$ is *M*-harmonic in *rB*, Lemma 2.5 and (2) show that

$$(5) P_r[g^+](z) \leq c(t) P_r[g^+](0)$$

and

(6)
$$\int_{S} P_{r}[g^{+}](s\zeta) \ d\sigma(\zeta) = P_{r}[g^{+}](0)$$

for all $s \in (0, r)$. Furthermore, by (3),

(7)
$$\lim_{s \to r} \int_{S} P_{r}[g^{+}](s\zeta)d\sigma(\zeta) = \int_{S} g^{+}(\zeta)d\sigma(\zeta)$$

By (5), (6) and (7), we have

(8)
$$P_r[g^+](z) \leq c(t) \int_S g^+ d\sigma.$$

Similarly, it holds that

$$(9) P_r[g^-](z) \leq c(t) \int_S g^- d\sigma$$

In virtue of (8) and (9), linearity of P_r shows that

$$|P_r[g](z)| \leq c(t) \int_S (g^+ + g^-) d\sigma = c(t) \int_S |g| d\sigma.$$

We also have

$$|P_r[h](z)| \leq c(t) \int_S |h| d\sigma.$$

Since $f = g + \sqrt{-1} h$, linearity of P_r shows that

$$|P_r[f](z)| \leq c(t) \int_S (|g|+|h|) \, d\sigma \leq 2c(t) \int_S |f| \, d\sigma.$$

2. 9. Lemma (cf. [6], p. 504). Suppose 0 < t < 1, $\rho(t) < r < 1$ and $z \in tS$. Then there exists a function $P_{r,z} \in L^{\infty}(\sigma)$ which satisfies the following conditions:

- i) $||P_{r,z}||_{\infty} \leq 2c(t)$,
- ii) $P_{r,z}(\zeta) \ge 0$ for almost all $\zeta \in S$,

Strong Limits of M-subharmonic Functions

iii)
$$\int_{S} P_{r,z} d\sigma = 1,$$

iv) $P_{r}[f](z) = \int_{S} f P_{r,z} d\sigma \text{ for all } f \in C(S).$

Proof. Since C(S) is a dense subspace of $L^1(\sigma)$, in view of Lemma 2.8, there exists a bounded linear functional Λ on $L^1(\sigma)$ such that $\Lambda(f) = P_r[f](z)$ for all $f \in C(S)$, and $||\Lambda|| \leq 2c(t)$. Hence there exists a function $P_{r,z} \in L^{\infty}(\sigma)$ such that $||P_{r,z}||_{\infty} = ||\Lambda|| \leq 2c(t)$ and

$$A(f) = \int_{S} f P_{r,z} d\sigma$$

for all $f \in L^1(\sigma)$.

Since $P_r[\cdot](z)$ is a positive linear functional on C(S), it holds that $P_{r,z}(\zeta) \ge 0$ for almost all $\zeta \in S$. For $f \in C(S)$, we have

$$P_r[f](z) = \Lambda(f) = \int_S f P_{r,z} d\sigma.$$

In the case $f \equiv 1$ this shows that

$$\int_{S} P_{r,z} d\sigma = 1.$$

2. 10. Definition. Suppose 0 < t < 1, $\rho(t) < r < 1$ and $z \in tS$. For $f \in L^1(\sigma)$, we define

$$P_r[f](z) = \int_S f P_{r,z} d\sigma.$$

By Lemma 2.9, this is compatible with Definition 2.7.

2. 11. Lemma. Suppose $0 \le t \le 1$, $\rho(t) \le r \le 1$ and $z \in tS$. If $U \in \mathfrak{U}$, then $P_{r,Uz}(\zeta) = P_{r,z} \circ U^{-1}(\zeta)$ for almost all $\zeta \in S$.

Proof. Let $U \in \mathfrak{U}$ and $f \in C(S)$. Then $f \circ U \in C(S)$. By Definition 2.7, it holds that

$$\lim_{s \to r} P_r[f \circ U](s\zeta) = f \circ U(\zeta) = f(U\zeta) = \lim_{s \to r} P_r[f](sU\zeta)$$
$$= \lim_{s \to r} P_r[f](Us\zeta) = \lim_{s \to r} P_r[f] \circ U(s\zeta).$$

Since $P_r[f \circ U]$ and $P_r[f] \circ U$ are both *M*-harmonic in *rB*, it follows from the maximum principle ([5], Theorem 4.3.2) that $P_r[f \circ U] = P_r[f] \circ U$ in *rB*. By Definition 2.10 and the \mathfrak{U} -invariance of the measure σ , therefore we have

$$\int_{S} fP_{r,Uz} d\sigma = P_{r} [f](Uz) = P_{r} [f \circ U] (z)$$
$$= \int_{S} (f \circ U) P_{r,z} d\sigma = \int_{S} f(P_{r,z} \circ U^{-1}) d\sigma$$

Since this holds for all $f \in C(S)$, we can conclude that $P_{r,Uz}(\zeta) = P_{r,z} \circ U^{-1}(\zeta)$ for

almost all $\zeta \in S$.

2. 12. Lemma (cf. [6], pp. 504-505). Suppose $0 \le t \le 1$ and $\rho(t) \le r \le 1$. If $1 \le p \le \infty$ and $f \in L^p(\sigma)$, then we have

$$\int_{S} |P_{r}[f](t\zeta)|^{p} d\sigma(\zeta) \leq \int_{S} |f|^{p} d\sigma.$$

Proof. Let dU denote Haar measure on \mathfrak{U} . By [5], Proposition 1.4.7,

$$I \equiv \int_{S} |P_{r}[f](t\zeta)|^{p} d\sigma(\zeta) = \int_{\mathbb{H}} |P_{r}[f](tUe_{1})|^{p} dU$$
$$= \int_{\mathbb{H}} |P_{r}[f](Ute_{1})|^{p} dU$$

where $e_1 = (1, 0, ..., 0) \in S$. It follows from Definition 2.10 that

$$I = \int_{\mathfrak{U}} | \int_{S} f(\zeta) P_{r,Ute_1} (\zeta) d\sigma(\zeta) |^{p} dU.$$

By Lemma 2.9, ii), iii), Hölder's inequality and Fubini's theorem, we have

(10)
$$I \leq \int_{\mathfrak{U}} \left\{ \int_{S} |f(\zeta)|^{p} P_{r, Ute_{1}}(\zeta) d\sigma(\zeta) \right\} dU$$
$$= \int_{S} \left\{ |f(\zeta)|^{p} \int_{\mathfrak{U}} P_{r, Ute_{1}}(\zeta) dU \right\} d\sigma(\zeta).$$

Lemma 2.11 shows that

(11)
$$\int_{\mathfrak{U}} P_{r,Ute_1}(\zeta) \ dU = \int_{\mathfrak{U}} P_{r,te_1} \circ U^{-1}(\zeta) \ dU.$$

Since u is a compact group, it is unimodular (see e. g. [4], p. 117). Hence it follows from [5], Proposition 1.4.7 and Lemma 2.9, iii) that

(12)
$$\int_{\mathfrak{U}} P_{r,te_1} \circ U^{-1}(\zeta) \ dU = \int_{\mathfrak{U}} P_{r,te_1} \circ U(\zeta) \ dU$$
$$= \int_{S} P_{r,te_1} \ d\sigma = 1.$$

By (10), (11) and (12), we have

$$I \leq \int_{S} |f(\zeta)|^{p} d\sigma(\zeta).$$

3. Strong limits of *M*-subharmonic functions

In addition to the preliminaries described in \$2, we need further three theorems to prove our main result (Theorem 3.4.).

3. 1. Theorem ([6], §3.1). Suppose u is an M-subharmonic function in B and

$$\sup_{1/2\leq r<1}\int_S |u_r|d\sigma <\infty$$

where $u_r(\zeta) = u(r\zeta)$ for $\zeta \in S$, 0 < r < 1. Then

$$u^*(\zeta) = \lim_{r \to 1} u(r\zeta)$$

exists for almost all $\zeta \in S$.

3. 2. Theorem ([5], Theorem 3.3.4 and Theorem 4.3.3). Suppose u is an M-harmonic function in B and

$$\sup_{0< r<1}\int_{S}|u_{r}|^{p}d\sigma <\infty$$

for some $p \in (1, \infty)$. Then

$$\lim_{r\to 1}\int_S |u_r-u^*|^p d\sigma=0.$$

3. 3. Theorem ([6], §1. 22). Suppose u is an M-subharmonic function in B and

$$\sup_{0< r<1}\int_S u_r \ d\sigma <\infty.$$

Then there exist an M-harmonic function h in B and an M-subharmonic function v such that

$$u=h+v, u\leq h, v\leq 0$$

in B and

(13)
$$h(0) = \lim_{r \to 1} \int_S u_r \ d\sigma.$$

3. 4. Theorem. Suppose u is an M-subharmonic function in B and $1 \le p < \infty$. If u satisfies

(14)
$$\sup_{1/2\leq r<1}\int_{S}|u_{r}|^{p} d\sigma <\infty,$$

then we have

(15)
$$\lim_{r \to 1} \int_{S} |u_r - u^*|^q \, d\sigma = 0$$

for all $q \in (0, p)$.

Proof. First we consider the case $1 . Since <math>1 and <math>\sigma(S) = 1$, we have

(16)
$$\sup_{1/2 \leq r < 1} \int_{S} |u_r| \ d\sigma \leq \sup_{1/2 \leq r < 1} \int_{S} |u_r|^p \ d\sigma \}^{-1/p} < \infty,$$

by (14). It follows from Theorem 3.1 that the radial limit

$$u^*(\zeta) = \lim_{r \to 1} u(r\zeta)$$

exists for almost all $\zeta \in S$. In view of (16), Theorem 3.3 shows that

$$u=h+v, h\geq u, v\leq 0$$

in B, where h is an M-harmonic function in B and v is an M-subharmonic function in B. h satisfies (13). Hence we have

(17)
$$\lim_{r\to 1}\int_{S}|v_{r}|d\sigma=0.$$

Let $z \in B$ and $\rho(|z|) < r < 1$. Then

(18)
$$-h(z)+P_{r}[u_{r}](z)=P_{r}[v_{r}](z).$$

By Definition 2.10 and Lemma 2.9,

$$|P_{r}[v_{r}](z)| = |\int_{S} v_{r} P_{r,z} d\sigma|$$

$$\leq ||P_{r,z}||_{\infty} \int_{S} |v_{r}| d\sigma \leq 2c(|z|) \int_{S} |v_{r}| d\sigma.$$

It follows from (17) and (18) that

(19)
$$\lim_{r \to 1} P_r[u_r](z) = h(z).$$

Suppose $1/2 \leq t < 1$. If $\rho(t) < r < 1$, then

(20)
$$\int_{S} |P_{r}[u_{r}](t\zeta)|^{p} d\sigma(\zeta) \leq \int_{S} |u_{r}|^{p} d\sigma(\zeta) \leq$$

by Lemma 2.12. In view of (19), (20), Fatou's lemma, we have

$$\int_{S} |h(t\zeta)|^{p} d\sigma(\zeta) = \int_{S} \lim_{r \to 1} |P_{r}[u_{r}](t\zeta)|^{p} d\sigma(\zeta)$$

$$\leq \liminf_{r \to 1} \int_{S} |P_{r}[u_{r}](t\zeta)|^{p} d\sigma(\zeta)$$

$$\leq \liminf_{r \to 1} \int_{S} |u_{r}|^{p} d\sigma$$

$$\leq \sup_{1/2 \leq r < 1} \int_{S} |u_{r}|^{p} d\sigma.$$

Hence

(21)
$$\sup_{1/2 \leq r < 1} \int_{S} |h_r|^p d\sigma \leq \sup_{1/2 \leq r < 1} \int_{S} |u_r|^p d\sigma < \infty.$$

Since v = u - h, this also gives

Strong Limits of M-subharmonic Functions

(22)
$$\sup_{1/2 \leq r < 1} \int_{S} |v_r|^p d\sigma < \infty$$

Now we shall prove (15). If (15) holds for one value of q, so does it for any smaller value, and we may assume that 1 < q < p. Let $\alpha = (p-1)/(p-q)$, $\beta = (p-1)/(q-1)$, (q-1), then $1/\alpha + 1/\beta = 1$ and $q = 1/\alpha + p/\beta$, so that, Hölder's inequality shows

$$\int_{S} |v_{r}|^{q} d\sigma = \int_{S} |v_{r}|^{1/\alpha} |v_{r}|^{p/\beta} d\sigma$$
$$\leq (\int_{S} |v_{r}| d\sigma)^{1/\alpha} (\int_{S} |v_{r}|^{p} d\sigma)^{1/\beta}$$

It follows (17) and (22) that

(23)
$$\lim_{r \to 1} \int_{S} |v_r|^q d\sigma = 0$$

In view of (21), (22) and Theorem 3.1, the radial limits

$$h^*(\zeta) = \lim_{r \to 1} h(r\zeta), v^*(\zeta) = \lim_{r \to 1} v(r\zeta)$$

exist for almost all $\zeta \in S$. Since $v \leq 0$, (17) and Fatou's lemma show that $v^*(\zeta) = 0$, and so, $u^*(\zeta) = h^*(\zeta)$ for almost all $\zeta \in S$. Hence

(24)
$$\int_{S} |u_{r} - u^{*}|^{q} d\sigma = \int_{S} |h_{r} + v_{r} - h^{*}|^{q} d\sigma$$
$$\leq 2^{q-1} \left\{ \int_{S} |h_{r} - h^{*}|^{q} d\sigma + \int_{S} |v_{r}|^{q} d\sigma \right\}.$$

In view of (21), Theorem 3.2 gives

(25)
$$\lim_{r \to 1} \int_{S} |h_r - h^*|^q d\sigma = 0.$$

By (23), (24) and (25), we have

$$\lim_{r\to 1}\int_{S}|u_r-u^*|^qd\sigma=0.$$

Secondly we consider the case p=1. (cf. [3], p.229) Suppose 0 < q < p=1. Theorem 3.1 shows that the radial limit

$$u^*(\zeta) = \lim_{r \to 1} u_r(\zeta)$$

exists for almost all $\zeta \in S$. It follows from Egoroff's theorem that for an arbitrarily small number $\epsilon > 0$ there exists a closed subset *E* of *S* such that $\sigma(S \setminus E) < \epsilon$ and

$$(26) u^*(\zeta) = \lim_{r \to 1} u_r(\zeta)$$

uniformly for $\zeta \in E$. Since 1/q > 1, Hölder's inequality gives

Yasuo Matsugu

(27)
$$\int_{S \setminus E} |u_r - u^*|^q d\sigma \leq (\sigma(S \setminus E))^{1-q} \left(\int_{S \setminus E} |u_r - u^*| d\sigma \right)^q$$
$$\leq \varepsilon^{1-q} \left(\int_S |u_r - u^*| d\sigma \right)^q.$$

By Fatou's lemma, we have

$$\int_{S} |u^{*}| d\sigma = \int_{S} \lim_{r \to 1} |u_{r}| d\sigma \leq \liminf_{r \to 1} \int_{S} |u_{r}| d\sigma$$
$$\leq \sup_{1/2 \leq r < 1} \int_{S} |u_{r}| d\sigma \equiv K < \infty,$$

and so, for $1/2 \leq r < 1$,

$$\int_{S} |u_{r}-u^{*}| d\sigma \leq \int_{S} |u_{r}| d\sigma + \int_{S} |u^{*}| d\sigma \leq 2K.$$

It follows from (27) that

(28)
$$\int_{S \searrow E} |u_r - u^*|^q d\sigma \leq (2K)^q \varepsilon^{1-q}.$$

On the other hand, by (26),

(29)
$$\lim_{r \to 1} \int_E |u_r - u^*|^q d\sigma = 0.$$

(28) and (29) give

$$\lim_{r\to 1}\int_S |u_r-u^*|^q \ d\sigma=0.$$

This completes the proof.

References

- J.E. Littlewood, On functions subharmonic in a circle, J. London Math. Soc. 2 (1927), 192-196.
- [2] J.E. Littlewood, On functions subharmonic in a circle (II), Proc. London Math. Soc. 28(1928), 383-394.
- [3] J.E. Littlewood, On functions subharmonic in a circle (III), Proc. London Math. Soc. 32(1931), 222-234.
- [4] L.H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand (1953).
- [5] W. Rudin, Function theory in the unit ball of Cⁿ, Springer-Verlag (1980).
- [6] D. Ullrich, Radial limits of *M*-subharmonic functions, Trans. Amer. Math. Soc. 292(1985), 501-518.

10