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Z. Introductiom

   On the radial Iimits and strong limits of subharmonic functions in the unit disc

U in C, J.E. Littlewood studied thoroughly in [1], [2], [3]. He summed up his

results in [3], SIO, p.234:

   Theorem A (Littiewood). SmpPose that u is a subharmonic function in U and

satisfies

(1)
-.P
.., i l:" lu(re'e)Pdo<oo

for some P, O<P<oo, VVhen Pll, there is almost always a radial li7nit

                          u*(eie) =- lim tt(reie)
                                ,g:v'-1

                                'f:1""and u" is astrong limit ofufor ang i'ndexq<P. VVhen P>1, there need be no

strong limit of " with index P, but zt* is one under the stronger hyPothesis that u is

harmonic. WhenP==1, there need be no strong linzit of u with index P(=1), even

when u is harmonic. When P<1, there need be no strong limit for any index, nor

need a radial limit exist aimost everywhere (it need not exist outside a nulg set of 0).

   D. Ullrich [6] has recently defined and developed the baslc properties of the

class of "M-subharmonic" functions in the unit ball B of C". The main result of

[6] is as follows: .
   Theorem B (Ullrich). An M-subharmonic .fletnction in B satisflying an aPPrQPriate

growth condition (anelogous to (1) with P=1) has radial limits almost everywhere.

   In the case n=1 Theorem B is just the part of Theorem A, which relates to

the radial lirnits. The purpose of the present paper is to prove that the part of

Theorern A relating to the strong limits remains true for M-subharmonic functions.

(See below, p. 7, Theorem 3. 4.)

2. Preiimaimaries

   Throughout this paper n is a positive integer, C" is the vector space of all
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 n-tupies z==(zi,...,z.) of compiex numbers, with hermitian inner product <z, w>

 ==Z]zj-wj, norm lzl=<z, rr>'i2, and corresponding unit ball

                              B::= {zECn : 1zl<1},

 whose boundary is the sphere

                              S= {gECn : l4l-1} .

 For z, aEiB, a40, define

                              a-P.z-(1-1al2)'!2 Q.x
                        ¢a(Z) :r.                                   1-<2, a>

where Paz==<z, a>a/<a, a>, and Paa+(?az=z. By continuity, let ¢o(z) =in-z.
    The group .of biholomorphic mappings of B onto B will be denoted by M. Let

 U=U(n) be the group of all unitary operators on the Hilbert space C". Then U is a

compact group and UaM. Actually, 11=-r{ipEM:¢(O)=:O}. Note that ip.eM for all

aeB.
    Let a denote the U-invariant p'ositive Borel measure on S, normalized so that

if (S)=1, r denotes the measure in B defined by

                           dT(z)=7-(1-1zi2)-"-i dv(z),

where v is the Lebesgue ineasure on C"=R2", normalized so that v(B)==:l. Note that
r is M-invariant: For fEELi(r) and diEM, IBfoip dT==fBf dr ([5], Theorem 2.2.6).

    As usual, C(X) stands for the class of all complex-valued continuous functions

on X, where X is any topological space.

    We shall also use the foHowing notations:

               2B== {rz:zEB}, rB= {rz:2EB}, rS:= {rg:CES}

for O<r<1, where B== {aEC" : lzli$1}.

    2. Z. Definition ([6], gl.15). Suppose 9 is an open subset of B and u: 9-

(-oo, oo) is upper semicontinious. Then u is M-szabharmonic in 9 if (i) for every

aG9 there exists r(a)>O with ip.(r(a)B)c9, such that

                    u(a):Sl,u(dia(rC)) da(C) <O$r$r(a))

and (ii) none of th6 integrals in (i) are -oo.

   2. 2. Definitiopt ([6], gl.1 and gl.5). Suppose 9cB is open and uEC(9). Then

ec is M-harmonic in 9 if

(2) u(a)==l,u(¢a(rC)) da(4)

for any aG9 and r>O such that ¢. (rB)a9,
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   2. 3. Proposition ([6], g1.8). lf u is M-harmonic in 9, an QPen subset of B,

and ¢.(rB)c9, then

                         U(a)==r(¢.lrB))io.(rB) u dr'

   2. 4. Definitiom. ForO<t<1, put

                   p(t)= sup(@z (w)1 : a EtS, wE-ll]B]-

l)f 2EEitS, then z==g5z(O)Eg5a(mll-B), and so t=Izl<p(t)<1. We define

                                   T(p(t)B)
                              c(t)=
                                  r(-l}-B)

for O<t<1 : O<c(t)<oo.

   2. 5. Lewamaa (cf. [6], ss1.9). SuPPoseO<t<1 and p(t)<r<1. Lfu;l}O is an

M-harmonic ftenction in rB, then u(z)$c(t)u(O) for all zEtS.

   Proof. Fix zEtS. By the definition of the nurnber p(t),

                          ¢,(i!2B)cp(t)BcrB.

It follows from Proposition 2.3 that

                       u(z)== .(ip,(li,B)) Iip.,,hB) u dT

                          :l;l.(iiB) l,(t)B U dr

                            T(p(t)B)
                          = T(i/,B) "(O)==C(t)U(O).

   2. 6. Proposition ([6], gl. 11 and [5], Lemma 5. 5.4). SzaPPose fEC(S), O<r<

1. Then there exists a unique uEC(rB)such that u is M-harmonic in rB and u(rC)=

f(g) (4es).

    2. 7. Definition ([6], g1.12). For feC(S) and O<r<1Iet P. [f]be theM-har-

monic function in rB such that

(3) lim P,[f] (t4)-f(C)
                            t--r

uniformly for gES. (See Proposition 2.6.)

    Note that P. : C(S).C(rB) is Iinear and positive (P.[f] }i} O for f}l} O) by the

maximum principle ([5], Theorem 4.3.2).
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    2. 8. Lemrna (cf. [6], S1.13). SaPPose O<t<1 and p(t)<r<1. Ilf fEC(S) and

 zEtS, then

 (4) ]Pr[f](2)IE$ 2c(t)l.lfl da･

    Preof. Let Re f==gand Im f==h. Then g, hEC(S) and f==g+V-1h. Let g'

 =max (g, O) and g-==max(-g, O). Then g', g-eC(S) and g'}llO, g-ll}O, g=g'-gn,

 lgl ==g' +g-･

    Since PrEg']2-}iO is M-harmonic in rB, Lemma 2.5 and (2) show that

 (5) P,[g"](z);:$c(t)P,[g'](O)
 and

 (6) I, Pr[g'](sag) do(C)-=Pr[g'](O)

 for all sE(O, r). Furthermore, by <3),

(7) 1,'Lpa, l, Pr[g'](s4)da(C)==I, g-(s")da(4).

By (5), (6) and (7), we have

   '(s) P,[g"](2)E{c(t) ls g' da･

   Similarly, it holds that '

(9) P,[g-](g)$c(t) f, g'- da.

   In virtue of (8) and (9), linearity of P, shows that

                fpr[g](z)t$c(t) I, (g"+g') da=:c(t) f, igl dif.

We also have

                       1Pr[h](z)I:lllc(t) S, lhl da･

Since f=g+ N/-1 h, linearity of P, shows that

             IP,[f](x)i$c(t) J, (lgi+ihD da$2c(t) f, ifl da.

   2. 9. Lerwifftria (cf. [6], p. 504). SuPPose O<t<1, p(t)<r<1 and 2EtS. Then

there exists a .frenction Pr,.ELoo(a) tvhich satis.fies the following conditions:

           i) llPr,ai[oo;S2c(t),

           ii) P,,z(g)}IO for almost all ag(!iS,
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            iii) ls JPr, gda = 1,

            iV) Pr[.fl (2)== ,(, f Pr,gda for all fEC(S).

   Proof. Since C(S) is a dense subspace of Li(6), in view of Lemma 2.8, there

exists a bounded linear functional A on L'(a) such that A(f)==P.[f](z) for all fEC(S),

and HAII;:;l2c(t). Hence there exists a function Pr,,ELoe(a) such that HP.,zHoo==11AII

$2c(t) and

                          A(f)=f, fPr,zda

for all fGL'(a).

   Since P.[o](z) is a positive linear functional on C(S), it holds that P.,,(g))O

for almost ali CGS. For feC(S), we have

                      pr[f](z)= A(f)=J, fpr,zda･

In the case f:iil this shows that

                             Ss Pr,zda;=:1.

   2. XG. Definition. Suppose O<t<1, p(t)<r<1 and zEtS. For fE!L'(a), we

define

                         Pr[f](2)=l, fPr,zda･

By Lemma 2.9, this is compatible with Definition 2.7.

   2. 11. Lemxna. Sutubose O<t<1, p(t)<r<1 and 2GtS. lf UE!iiU, then Pr,uz(C)

==P.,,o U"i(C) for almost all agES.

   Proof. Let UEiiU and fGC(S). Then .fbUEC(S). By Definition 2.7, it holds that

             lim P.[foU](s4)=fbU(g)-f(U4)=lim P,[f] (sUC)

             s-r s-r                           :=liM Pr[f](USC) =liM Pr[f]OU(S4)･

                            s-r s-r
Since P,[foU] afid P.[f]oU are both M-harmonic in rB, it follows from the rnaxi-

mum principle ([5], Theorem 4.3.2) that P,[foU]=P,[f]oU in rB. By Definition

2. 10 and the U-invariance of the rneasure a, therefore we have

                   i, .fl'r,uzda=Pr[f](Uz)==Pr[fbU] (2)

                            =S,(fOU)Pr･2 da=S, f(Pr,go U-i) da.

Since this holds for all fGC(S), we can conclude that Pr,ug(ag)==JPr,goU"S(C) for



 almost ail geS.

     2. 12. Legitffwaa (cf. [6], pp. 504-505). SuPPose O<t<1 and p(t)<r<1. lf ISP

 <oo and feLP(a), then zve have

                      J, IPr[f](tg)lP da(g);;{ f, Ef1P da･

     Proof. Let dU denote Haar measure on U. By [5], Proposition 1.4.7,

             Iiiiii, lPr[f](tg)1P d6(g)=l, lPr[f] (tUei)IP dU

              ==f, IPr[f](Utei)IP dU

 where ei J=(1, O, . . . , O) GS. It follows from Definition 2. 10 that

                      I= J, 1 f, f(C)Pr･utei (4) da(C)IP dU･

 By Lernma 2.9, ii), iii), H61der's inequality and Fubini's theorem, we have

 (iO) I:l{l, (S,lf(g)IP Pr,ute,(q) do(g)] dU

                     ==f, (If(4)IP f, Pr･utei (ag) dU] da(C)･

Lemma 2.11 shows that

(11) lu Pr,utei (4) dU =:lu Pr,tei oU"'(C) dU･

Since U is a compact group, it is unimodular (see e. g. [4], p. 117). Hence it

follows from [5], Proposition 1.4.7 and Lemma 2.9, iii) that

(12) S,, Pr,teioUM'(g) dU=J, Pr,teioU(g) dU

                                     ;= is Pr,tei da=L

    By (10), (11) and <12), we have

                           i:fi l, tf(c)ip dff(e.

3. Stroxtg lirrwtits of ue-subharrrertomic fumctiorrts

   In addition to the preliminaries described in ss2, we need further three theorems

to prove our main result (Theorem 3.4.).

   3. g. Wlaeoreme ([6], g3.1). SuPPose u is an M-s"bharmonic ftenction in B and

                         ihsSr"<Pi fs IUrlda<oo
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where u,(g):= u(r4) for agES, O<r<1, Then

                         u"(ag)==lim u(rag)
                               r--.1

exists for almost aza geES.

   3. 2. Theorera ([5], Theorem 3.3.4 and Theorem 4.3.3). Supt)ose u is an M-

harmonic function in B and

                        ,.S,Y.P, I, Iur1Pda<oo

for some PE(1, oo). Then

                         l.i-M.i fs lar"u'IPda=o.

   3. 3. Theerem ([6], gl. 22). SuPPoseu is an M-subharmonic function zln B

and

                          oS<U,ei ls zir da<oo.

Then there exist an M-harmonic .function h in B and an M-subharmonic function v

such that

                           u=h+v, uSh,vSO

in B and

(i3) h(O)=l,il-rp, i, ur do･

   3. 4. Theorem. Sulipose u is an M-subharmonic fttnctton in B and 1:SP<oo.

ILf u satis.fies

(i4) ,i?$u,p., J, iurlP da<oo,

then we have

(15) I,i-M., I, IUr-U'iq da :=O

for all qe(O,. P).

   Proof. First we consider the case 1<P<oo. Since 1<P<oo and a(S) == 1, we

have

(16) ,1/,-,i,P., i, l"rl da S,1{,SY,P..,f, IUrlP da} i!P<oo,



 by (14). It follows from Theorem 3. 1 that the radial limit

                              u'(C)=::lim u(rg)
                                   r-1

 exists for almost all 4GS. In view of (16), Theorern 3.3 shows that

                            u:=:h+v, h}iiu, v:l{O

 in B, where h is an M-harmonic function in B and v is an M-subharmonic

 tion in B. h satisfies (13). Hence we have

 (17) l;.Ip, f, IVrlda =O･

    Let zEB and p(lzl)<r<1, Then

 (18) -h(X)+Pr[Ur](g)=Pr[Vr](Z)･
By Definition 2. 10 and Lemma 2.9,

                     lPr[Vr](2)1==lfs VrPr,zda1

                              IS{lHPr,z1IooS, 1VrIdo$ 2C(l21) i, iVrldif･

It foiiows from (17) and (I8) that

(19) liM Pr[Ur](Z)=h(z).
                            r-l

    Suppose i/2 ;:l{ t<1. If p(t)<r<1, then

(20) l, IPr[Ur](tC)IPda(4) !:;lf, lurlPda,

by Lemma 2.12. In view of (19), (20), Fatou's lemrna, we have

                   l, I h(tC) i "d6(C) == S, l LrEi l Pr[ur](tC) 1 Pda (4)

                               Slirp,.,inf l, 1Pr[ur](tag)IPda(C)

                               ;l{ lim.L,jnf Ss IurIPd6

                               IE{ il,sS,".P, fsIUrlPda･

Hence

(21) v/.-",P.,l, lhrlPda$ v,gye, f,lurlP da<oo･

Since v==u-h, this also gives

func-
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 (22) ,f,s-.u,,p., f, IVr lPda < oo･

    Now we shall prove (15). If (15) holds for one value of q, so does it for any

smaller value, and we may assume that 1<q<P. Let a==(P-1)/(P-q), P==(P-l)/

 (q-1), then 1/a+1/B=1 and q==1/a+P/P, so that, H61der's inequality shows

                    is 1vrlqda= is 1v,l'ia1v, P!Pda

                             $(.[s Ivr 1 da)'ia (ls lv, 1Pda)'fP.

It follows (17) and (22) that

(23) l,i-m., ls lvrlq da =O･

    In view of (21), (22) and Theorem 3.1, the radial limits

                        h"(C)=:lim h(rO, v*(4)=liin z)(rag)

                             r-l r-l
exist for almost all qES, Since v :il O, (17) and Fatou's Iemma show that v"(C)= O.

and so, u"(C):L'h*(g) for almost all CES. Hence

(24) Js lztr-u"lqdo =Is lhr s'vr -' h*lqdo

                                $L'q'i{ls lhr-h*vda -i- fs 1vrIq da} ･

In view of (21), Theorem 3.2 glves

(25) 1,i ui}, f, ihr -- h"la do == O.

By (23), (24) and (25), we have

                           1,JmM., fs lur-za'1qdo=o.

    Secondly we consider the case P[:il. (cf. [3]. p.229) Suppose O<q<P=L'1. The-

orem 3.1 shows that the radial limit

                           z{'(O:L'lim ur(C)
                                r--1

exists for almost all gE!S. It follows from Egoroff's theorem that for an arbitrarily

small number E>O there exists a closed subset E of S such that a(SXE)<E and

(26) u"(g)==lim ur(C)
                                r--l

uniformly for CEE. Since 1/q>1, H61der's inequality gives
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(27) lsxE lur-""lqdlT :il{(a(SXE))'-q (lsxE Iur-u" Ida)q

                                 :E{E'-q (is 1ur-u"1da)q.

    By Fatou's Iemma, we have

                   l,Iit*Ida=i, lirm,, Iur1da;E{lin}-i,nf l,Iztrlda

                           :{LhSrtL ,P. ,ls 1 "r l da =- K< .. ,

and so, fori/2Sr<1,

                   is 1ur-u*1do :ri{g j'slurIda+ls Iu"1da:{2K.

It follows from (27) that

(28) SsxElu,-u"lqda:;ll(2K)q si-q.

    On the other hand, by (26),

(29) ll-m, IE Iur - u"lqda -- O.

(28) and (29) give

                             liTM.i is lttr-u'1q do=o.

This cornpletes the proof.
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