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1. Introduction

Let X={X(#); 0<t< T} be an R%valued stochastically continuous process
with independent increments on a basic probability space (£2, #, P). We assume that
X has no Gaussian component and X (0) =0 a.s. Then, for each ¢, the characteristic
function of X (¢) is known to be of the form

E[eiex®)] :exp[z’(z, al) + ﬁ;g{ei(z,u)_ 1— i(_ﬁ D) ) th(u)]

where a(¢) is an R%valued continuous function on 7 =1[0, T] with ¢(0) =0, and
{M:; t€T} is a set of Borel measures on Rf= R*\{0} satisfying the
conditions .A;ﬂ,(l Altul® dM, (u) < oo and My (R&) =0. The measures {M:} are called
the Lévy spectral measures of X. We note that M:(B) is continuous and
nondecreasing in ¢ provided that M, (B) <oo. We shall simply write X (¢) ~ (a(#),
M:) to express the fact that the probability law of X is determined by the
characteristic function of each X (¢) with the above form. There exists a process X
with X () ~ (a(t), M) for any pair Ca(t), M) satisfying the all conditions stated
above. Indeed, this fact will be seen by the Kolmogorov’s extension theorem.

To the Lévy spectral measures {M:} of X, there corresponds uniquely a Borel
measure M on S = T X R§, which is determined by the relation M ((s, ] X B) =
M:(B) — Ms(B) for any (s, t]C T and any Borel subset B C R¢ with Mr (B) < <o,
The measure M is called the time-jump measure of X. In the special case where M is
finite, the characteristic function of X (¢) can be written in the form

E [ei(z,X(l))] —_ exp[i (z,‘ al)) + Ag{ei(z,u)_ 1} th(u>]_
Here ¢ (#) is an R%valued continuous function on 7 given by
a0 =0~ [Tt diw.

The function 4 (¢) is called the drift component of X. If @2(¢#) =0 on T, the process
X is realized as the step functions with only a finite number of jumps on 7.
Now the purpose of this note is to give a certain method to construct the process
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X with X (&) ~(a(#), M:) more directly from the given data ¢ (¢) and M. When M
is finite, this is accomplished by constructing an auxiliary weighted direct sum
probability space (2%, Z*, P*) based on the Poisson distribution with intensity M s).
In the general case, we consider the product probability space (2, J P)= H (2%
F* P*™) which is associated with certain decomposition M = 2 M Jnto ﬁmte

Borel measures M ™

on S. Then the desired process X will be deﬁned on the space
(2, #, P) by the series with independent summands, which are constructed from M
(n = 1) respectively. We also note that the obtained process X is a Lévy process in the
sense of K. Ito [3].

The method given here is similar to those of P. L. Brockett and H. G. Tucker [1]
and J. A. Veeh [4]. But our construction seems to be more elementary and direct. By
employing our method in this note, we shall discuss elsewhere the problem on the

equivalence and singularity of processes with independent increments ([2]).
2. Processes with a finite number of jumps: the case M (§) < oo,

2.1. First we introduce the notion of the weighted direct sum of probability spaces,
which plays an important role in the following. Let (2, ¥, PY), ¢>0, be a
sequence of probability spaces, and let (p,) be a probability distribution on the space
of nonnegative integers. We assume that the sets 2, £ > 0, are pairwise disjoint. Then
wewconsider the probability space (2%, ¥+, P*) given by Q"= QOQ“’), Fr={A
= IL:JOAe; A eF? (£ =0)} and

P (A= gﬂl’“’) (A ps for any A= Q)AeE F.

We call (2%, 7+, P") the weighted divect sum of (P, F9, P9), ¢ =0, based on (p.).
2.2. Now let (S, #(S8), M) be a finite measure space satisfying the condition
M {t} X R =0 for each t & T, where % (S) is the Borel g-algebra on § =T X R{.
Then we consider the set {M; ; t & T} of spectral measures on R associated with M,
which are defined by M:(B) = M ([0, ¢] X B) for any Borel subset B C R¢. If the set
B is fixed, ¢ (¢) = M:(B) is a continuous nondecreasing function on 7' with ¢ (0) =0.
For any £>1, we denote by (S?, # (8%, M? the ¢-fold product measure space of
(8, #(8), M). Let us introduce the particular subset £, C S’ given by

Qo={Ch, w, -, t:, u) € 8%; t: < t; if i <j}.

By setting Po= ¢! M (8)* M’ on the Borel ¢-algebra % (£2,), we have a probability
space (&2, # (2., P»). For the sake of convenience, we also consider the trivial
probability space (8, Z ({), Py) given by £, = {0} and Z () = {¢, £&}. We denote by
(2%, F*, P*) the weighted direct sum of (£2,, 4 (20, Pr), £ =0, based on the Poisson
distribution with intensity M (S). Precisely speaking, (2% %*, P*) is a probability
space given by 2% = QO 2, Fr={A= Q}Ae ; Aee Z(82) (L =0} and
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P*(A) = e~M<S>§30 (ID M (S) P A for any A= po A, ET*.

We call (2%, F* P*) the triangular probability space associated with (8§, Z (8), M).
2.3. As usual, let D(T) be the space of R%valued functions on 7 which are
right-continuous and have left-hand limits everywhere. Let us introduce the particular
subset £ (T) C D (T) consisting of step functions f (¢) with (0) =0 and with only
a finite number of jumps on T'. Then we shall define a map @ : *— F(T) in the

following way. For any #>1 and any o*= (4, w, -, t, U € £, we set
?
[d)(w*)]<t):§ujl9(tj|t) (te T),

where we set (i) =0 (<s) and =1 (s < ). For w* < 2, we set [0 (w®] () =
0 (¢ & T). Clearly, the map @ is bijective. Thus we obtain a probability space (F (7T,
F(T), [P*]e), where F (T) is the g-algebra on F (T) givenby Z (T) ={0(A): A
€ %*} and [P*]s is the image measure of P* induced by @. We note that the
triangular probability space (2% *, P*) faithfully describes the function probability
space (F (1), & (1), [P*]o).

2.4. Now we introduce an R%valued process Z ={Z (¢); 0 < ¢ < T} defined on the
probability space (2%, Z* P*), which is given by

Z(t, o*)=[0 (™)) e’f, vred").

Then we have the following

THEOREM 1. FEach sample function of the process Z belongs to the space F (T).
The probability law of Z is given by the relation Z (t) ~ (a (1), M), where a(t) is a
continuous function on T defined by

_ u
(D) = [t dM.Cu) te .

9

Proof. For any ¢ =1, we denote by S% the subset of §* given by
Sh={(t, w, -, t, u) €8*; t;# ¢, if i #j}.

By the assumption on M, we see that M*(8°\S%) = 0. Then we have a measure space
(8%, (8L, M%), where we set M% = M’ on the Borel g-algebra & (S%). Next we
consider a surjective measurable map ¢.: S&— £ given by

G Chr, W, -+, Loy we) = (s, Uow, ", low, Uow),

where ¢ is a permutation on {1, -+, #} such that fom < -» < ts@. Then we see that
(M&lee= €1 M*= M (8)* P; on the measurable space (&, Z (&), where [ M%]s is the
image measure of M% induced by ¢.. We now compute

E¥[e 2] = /;*exp[i(z, [0 (] ()] dP*(w*)
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=3 [Lexpli Gz, [0 (@] ()] e 4 (D™ M (8) dPw®)

= u® S5 (4D [ expliCz, [0 @D] ()] dIMilu(@®
=MD [ [exnliCz, Zus0I0Y] dM4Ch, s, -+, fe uD)
= e MOS0 [ [T expli Gz, w0 (610)] dM*Ch, s, -+, ta, )
= o5 (07 [[expliCz, ub (1)) aM (s, w]
—exp| = M (S) + [flexoliCz, u0 G510)) dM (s, w |

= exp[/[oy tlxme“‘“ wdM (s, u) — /IO t]xm,dM (s, u)]
= exp[/;g{e“z' W — 1} dM. (u)]

Thus we obtain the relation Z (¢) ~ (a(¢), M:). Q. E. D.
By using the expression

E*[ei(z, Z(t))] — exp[’/;g{ei(z, w 1} dM, <u>j|’
we can further prove the following facts. When the support of M, is bounded, we have

E*[Z (D)= [ udM. (u),
E*[12 (0 = BXZ W] = [ lu i, ).

2.5. Here we shall give another method of constructing processes with independent
increments by using the technique of J. A. Veeh [4]. Let us consider the probability
spaces (8% Z(S%, @), £ >0, where Q@ is defined by =M (S)*M* for £ =1
and (8% Z (8%, @) stands for the trivial probability space. We denote by (£2%, ¥ *,
Q") the weighted direct sum of (8% #(S8%, @), £=0, based on the Poisson
distribution with intensity M (S). We call (2%, F*, Q") the rectangular probability
space associated with (8§, Z (8), M). Then we shall define a map ¥ : 2"— F(T) in

the following way. For any =1 and o™= (4, w, '+, L, u) € S¢, we set
I4
[T (D] :ng w; 0 (418 (te 1.

For w*€ 8°, we set [T (w™)] () =0 (+ & T). In this case the map ¥ is surjective but
not injective. Now we introduce an R%valued process Z ={Z (¢); 0 < t < T} defined
on the probability space (2%, #*, @), which is given by

Z(t, o")=[¥ ()] UET, wre Y.

Then we can show that Theorem 1 is also true for this process Z.
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3. Processes with infinitely many jumps : the case M (S) = oo,

3.1. Let M be a Borel measure on § = T X R¢ satisfying the conditions ,/,[s AN|uP
dM (t, u) < oo and M ({¢} X R®) =0 for each ¢ € T. Let us introduce a decomposition
§ = 8, which is given by S,=T' X By and Ba={5 <lul< Lo} ajo—co.
Then we obtain a sequence (S, Z(8), M"™) (n=1) of finite measure spaces, which
are defined by M () =M (U N S,) for any U # (S). We denote by {M.} and
{M{™} the spectral measures associated with M and M respectively.

3.2. For each » =1, we denote by (% F*, P*™) the triangular probability space
associated with (8, #(S), M™). Then we introduce the product probability space
(3, %, P)= i[l (Q*, F*, P*®™) and the #n-th projection 7 : & = (*)°— Q% which is
given by m.(@) = w} for each &= (¥, of, ) € Q.

By using the map @ : 2*— F (T) stated in Section 2, we set

Zn(t, @ =[0 (m(@)] (D te’T asd.

Then we have R%valued processes Z, = {Z,(#) : 0< ¢t < T} (n>1) defined on (2, Z,
P). We note that these processes are independent and the probability law of each Z,
can be described by Theorem 1. In other words, putting a.(¢) = '/;%,Tl;ulf dM (w),
we have the relation Z,(¢) ~ (a.(t), M™).

3.3. Let a(¢) be an arbitrary R*valued continuous function on 7T with a (0) =0. We
now introduce R%valued processes W,={W,(#); 0<t< T} (n=1) defined on
(2, F, P), which are given by

Wu(t, @) =a(t) + }él{zk(t, @) — ar(t)} (te T,. as Q.

Then we have the following
THEOREM 2. There exists an Rvalued process W={W{); 0<t< T}
defined on (2, F, P), for which the following conditions hold :
() Abmost all sample functions of W belong to the space D(T) ;
GD) For a a &E 8, sample functions Wa(t, &) converges uniformly on T to
W (¢, @) as n— oo ;
(iii)  The probability law of W is given by the relation W (1)~ (a (), Ms).
Proof. Let us write W,(¢, @) (% =2) in the form

Walt, @ = a(t) +{Z:(t, &) — a(O}+ Valt, @) + ba(D),
where we set
Yat, @ = 3 {Zu(t, @ — B1Z:(D)),
ba() = BB [Z(D] — an(D)).
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By means of the independence of {Z.}, we have, for any m > n > 2,
E[1%a(T) V(1P| = 31 E[12:CT) = BLZ(DIP]

= 3 [ JuldMi®w
k=n+1 0

:./1;(", m>1u|2 dMr(u), B (n, 7’Vl>:{%§|ul<%}

By using the Kolmogorov’s inequality, we can show the following :

Plsup ier| Yu(t) — Yu(Dl> el < 5‘2/

B(n, m

)l ulz dMT(“)
for any € > 0 and any m > n = 2. Therefore it follows from the assumption on M that

lim P{sup rer| Yu(t) — Ya()| > e} =0.

m,n—oo

Now by employing the Lévy’s equivalence theorem for sums of independent random

variables, we can show the existence of an R valued process Y ={Y (#);0<t< T}

with the following properties : Almost all sample functions of Y belong to the space

D(T) and, for a. a. @< @, sample functions Y»(#, @) converges uniformly on T to

Y (¢, @) as n— oo. On the other hand, it follows from the assumptions on M that

functions a.(¢) and b,(#) are continuous on T.| Fllgrther b.(t) converges uniformly on
u

T to a continuous function 6 (¢) = ﬁl<|u|<l)m udM,(u) as n— oo. Thus setting

W, d)=alt)+{L, &) —a(O}+ Y&, @)+ b)),

we obtain the process W ={W (¢); 0 <t < T}, for which the conditions (i) and (i)
hold. We now proceed to the condition (iii). First we note that

Eleie a0 —expli Gz, aa (D) + [y leiew—1-LE 58 gy |

It follows that

E~[e"<vaﬂ(”)]=exp[i(z, a()) + gljl;g{ei(z,u)_.l__ i(f] ll:l>2} th“”(u)}

—exp|i Gz (D) + [, e —1-EE 0y gy, )|

Therefore we see by the condition (ii) that

E i@V ] =1im E e #(D)]
n—co

=exp[i(z, a() + fyleren—1-TE5) am, () |

Thus we obtain the relation W (¢) ~ (a (£, M.). Q. E. D.

3.4. By modifying the process W stated in Theorem 2, we immediately obtain a Lévy
process in the sense of K. Ito [3]. For each U€ % (S), we denote by Jw (U, @) the
number of points ¢t & T, for which (¢, W, @ — W ({—0, @) & U holds. Then
{Jw(U); Us F (8)} is a Poisson random measure on S with intensity measure M. In
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the case M (S) = oo, almost all sample functions of W have infinitely many jumps on
T'. Additionally we note that the discussion in Section 3 also covers the case M (S)
< co,
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