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Abstract : We give the topological classification of curve families on R? that is given
by the set of integral curves of the eigen space field of a matrix field where component
functions of the matrix are linear functions.

In the paper [2], we showed the local topological classification of generic curve
families defined by symmetric bilinear forms on a 2-dimensional Riemannian manifold.
In [3] we discussed the topological classification of global generic curve families
defined by symmetric bilinear forms on a compact 2-dimensional Riemannian
manifold.

In this paper, we give the topological classification of curve families on the
Euclidian plane R? defined by fields of 2-2 matrices such that their components are
linear functions. A given matrix field on R? defines an eigen space field of the larger
eigen value on the tangent bendle of R2 It gives a set of integral curves. We call this
a curve family. We consider the case that each component of the matrix is a linear
function of R% The origin of R? is a singular point of the curve family. But this singular
point is not generic. Its codimension of the origin (=3) is greater than the dimension
of the plane (=2).

The similar topological classification of linear flows on the Euclidian space R” is
well-known. Details of this fact are found in [1].

Let MZ(? Z) be a field of 2-2 matrices on R? where ¢, b, ¢ and d are smooth
functions of the coordinates x, ¥ of R% For a point p of R? let A be an eigen value of
M at p, and W,={x € R*|(M—AE)x=0} be the eigen space of A.If dim W,=2 or
there is no eigen value, we call this point p a singular point. We distinguish these 2 tpes
singular points. The eigen spaces of the matrix M are equal to the one of the matrix

((a— d)/?
¢
always 0.

(—a+d)/g)' From now we assume that ¢=—d. In this case t» M is

The condition of singular points is a=b=c¢=0 or a®?+bc>0. Let S be the set of
singular points. Eigen spaces W, of the larger eigen values A give a smooth line field
L on R?2—S. An integral curve family is defined by L. We call this the curve family
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defined by M. The curve family defined by — M is the same one defined by the eigen
space field defined by smaller eigen values. ,

Let C, and C, be smooth curve family on R? with singular points set S; and S,. If
there exists a homeomorphism % from R? to itself such that h maps S, onto S,
preserving a type of singular point, and for any curve of C, onto a curve of C,. We call
h a topological equivalence of C; and G, and we call that C is topological equivalent
to C.

Now we consider the particular case of M that @, b and ¢ are linear functions of
x, .

The definition of the eigen vector (#, v) and the eigen value 1 is (‘CZ _2)( Z ):A

u
v

This follows au+ bv=2Au and cu—av=Av. Let ®(x, y, u, v) = cu?—2auv— bv?. This
polynomial is a homogeneous polynomdial of degree 1 with respect to.x and y, and a
homogeneous polynomial of degree 2 with respect to # and ». And the eigen vector
condition ®=0 gives a graph I’ in the torus 7% At first we give some elementary
properties of it.

Proposition. 1. Amliost lines [={x : y is constant} intersect in 2 poinis or does
not intersect with T'. If il intersects in 3 or move poinls then [ is contained in T'. .

Proposition. 2. Almost lines |={u : v is constant} intersect in only 1 point with
. If it intersects in 2 or move points then | is contained in T.

Proposition. 3. If T includes a line of the type in Prop. 1 or Prop. 2, then @ is
Jactorized to 2 polynomials.

These results are followed from elementary properties of homogeneous
polynomial @.

Proposition. 4. Let A={x: y=u: utbe the diagonal line in T?. At an
intersection point of T and A, one of the half lines staviing from the ovigin divected
to x:y s a curve of the curve family.

inner halfline outer halfline critical halfline ‘critical

Ny /jjj/ o
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Proposition. 5. At the intersection point p, let 1<du : v)/d(x : y) (D) where d
(u : v) means the diffevential of the standard coovdinate of S*. This means that the
growth of (x : y) is superior to the growth of (u: v). So every curve of the curve
Jamily tends to 0 with the moving to the divection to the half line. We call this half line
an inner half line of the curve family.

Proposition. 6. On the other hand if d(u : v)/d(x s y)(P) <1 then the growth
of (x :y) is infevior to the growth of (u: v). So every curve of the curve family tends
fo oo with the moving to the divection fo the half line. We call this half line an outer
half line of the curve family. '

These two results are useful to determine the topological type of the curve family.

Proposition. 7. If there exists a point p with d(x: y)/dCu: v)=0, then T
contains the line {x : v is constant} D p or it is a simple critical point (d*(x : y)/d
(u : 0)2#0). In the second case, the ome outside vegion of the half line, theve exists no
eigen space. And on the half line, eigen values arve multiple.

Using these facts, we get the following classification of the polynomial ®. Each
following case defines a topological type of curve families.

-
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Case 1. Trivial case. a=b=c=0. All points of R? are singular.

Case 2. We assume that @ is factorized to Cax+gy)¥(u, v).

Case 2.1. If ¥ =0 has no solution in S then (ax+8y)=0 is the set of singular
points that has a 2 dimensional eigen space. And other points are singular points with
no eigen spaces.

Case 2.2. If =0 has only one solution in §* and the solution is not equal to the
direction of the singular line, the (Cax+8y) =0 is the set of singular points that has a
2 dimensional eigen space. And other points have constant 1 dimensional eigen spaces
with a different direction to the singular line.

Case 2.3. If =0 has only one solution in S' and the solution is equal to the
direction of the singular line, then the corresponding curve family is the set of parallel
lines, one of that is the singular line.

Case 2.4. If =0 has 2 solutions in S' and solutions are different from the
direction of the singular line, then (ax+ 8y) =0 is the set of singular points that has a
2 dimensional eigen space. And each outside region of the singular line has the curve
family of parallel lines with a different direction.

Case 2.5. If =0 has 2 solutions in S* and one solution is the same direction of the
singular line, then (ax-+B8y) =0 is the set of singular points that has a 2 dimensional
eigen space. And each outside region of the singular line has the curve family of
parallel lines with a different direction. One side of the parallel lines is parallel to the
singular line.

Case 3. @ is factorized to Cau-+pv)¥(y, v, x, y).

Case 3.1. ¥ =0 defines the linear transformation ¥ from S* to itself. We assume
that the mapping degree of ¢ is —1 then ¥ =0 and A intersects only 2 points of outer
type. Moreover we assume that the intersection of =0, A and the singular line is
empty.

Case 3.2. We assume the mapping degree of ¢ is —1 then =0 and A intersect
only 2 points of outer type. Moreover we assume that the intersection of ¥ =0, A and
the singular line is not empty. Then the half line is parallel to constant lines /: au-+
Bv=0.

Case 3.3. We assume that the mapping degree of ¢ is 1 and ¥=0 does not
intersect to A.

Case 3.4. We assume that the mapping degree of ¢ is 1 and ¥ =0 intersects to A.
at only 1 point with a different direction to /.

Case 3.5. We assume that the mapping degree of 4 is 1 and ¥ =0 intersects to A.
at only 1 point with the same direction to /.

Case 3.6. We assume that the mapping degree of v is 1 and ¥ =0 intersects to A.
at 2 points with a different direction to /.
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Case 3.7. We assume that the mapping degree of v is 1 and ¥ =0 intersects to A.
at 2 points. And one of the points has the same direction to /.

Case 3.8. =0 coincides with A.

Case 4. ®=0 is represented to the explicit function (x : y) = ¢ (« : v). And mapping
degree of ¢ is —2.

Case 5. ®=0 is represented to the explicit funhtion (x : y) = ¢ (« : v). And mapping
degree of ¢ is 0.

Case 5.1. ®=0 intersects to A in 1 point with the type of outer half line.

Case 5.2. ®=0 intersects to A in 1 point with the type of inner half line.

Case 5.3. ®=0 intersects to A in only a critical half line. Near the half line, all
curves are contact to the half line.

Case 5.4. ®=0 internects to A in 2 points. One of them is a tangent point and the
other is the type of outer half line.

Case 5.5. ®=0 intersects to A in 2 points. One of them is a tangent point and the
other is the type of inner half line.

Case 5.6. ®=0 intersects to A in 2 points. One of them is a tangent point and the
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other is a critical half line.

Case 5.7. =0 intersects to A in 3 points. Types of intersection points are inner,
outer, inner. respectively.

Case 5.8. ®=0 intersects to A in 3 points. Types of intersection points are inner,
outer, critical. respectively.

Case 5.9. =0 intersects to A in 3 points. Types of intersection points are inner,
outer, outer.

Case 5.10. =0 intersects to A in 3 points. Types of intersection points are critical,
outer, critical. respectively.

Case 5.11. @=0 intersects to A in 3 points. Types of intersection points are critical,
outer, outer. respectively.

Case 5.12. =0 intersects to A in 3 points. Types of intersection points are outer,
outer, outer. respectively.

Case 6. ®=0 is represented to the exphc1t function (x: y)= qs(u v). And the
mapping degree of ¢ is 2.
Case 6.1. The mapping degree of ¢ is 2 and ¥=( intersects to A in 1 point.

2.1 2.2 2.3 2.4
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Case 6.2. The mapping degree of ¢ is 2 and ¥=0 intersects to A in 2 points.

Case 6.3. The mapping degree of ¢ is 2 and ¥ =0 intersects to A in 3 points.

In cases of 5.3-5.12, we show only the graph of T", we abbreviate figures of the
curve families. It is easy to give an example of the matrix field in each case.

Theorem 1. Topological types of these cases are classified to following 18 types.

Type 1. cases 1, Type 2. case 2.1

Type 3. cases 2.2 Type 4. case 2.3, 2.5

Type 5. cases 2.4 Type 6. cases 4, 3.1, 3.2

Type 7. cases 6.1, 3.3 Type 8. cases 6.2, 6.3, 3.4-3.8
Type 9. cases 5.1 Type 10. cases 5.2

Type 11. case 5.3 Type 12. case 5.4

Type 13. case 5.5, 5.7 Type 14. case 5.6, 5.8

Type 15. case 5.9 Type 16. case 5.10

Type 17. case 5.11 Type 18. case 5.12

Theorem 2. We resirict the matrix to the symmetric case (b=c), topological types
are classified o following 6 types. In this condition, two eigen spaces ave orthogonal.
This follows that there exists only following types.

Type 1. case 1. Type 2. case 2.4
Type 3. case 2.5 Type 4. case 4
Type 5. case 6.1 Type 6. cases 6.2, 6.3

Three types 4,5 and 6 appear in generic. See [2],[3].
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