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Abstract

This is the extended exposition of the previous paper [2]. Given an infinitely
divisible (or ID) random measure A on a measurable space T, we provide a certain
method to construct a version of A based on a Poisson random measure on the product
space S=TXR\{0}). In particular, the present paper contains a new result about a
class of ID random measures on T which are realized by R-valued signed measures on
T. As an application we discuss the law equivalence of ID random measures on T by
using our constructive method with Kakutani’s theorem on the equivalence of infinite
product probability measures.

Mathematics Subject Classification (1991) : 60E07, 60G30, 60GhH7.

§1. Introduction.

In this paper we are concerned with our method to construct an infinitely divisible
random measure on a measurable space T based on a Poisson random measure on S—
T X Ry, where we put Ro=R\{0}. First we recall some basic definitions and notations.
Let T be an arbitrary nonempty set and € be a §-ring of subsets of T. We assume that
there exists an increasing sequence {T,; #>1}C% with T=J5-:T» and {¢#} € € for each
teT. Let A={A(A); A € T} be an infinitely divisible (or ID) random measure on T with
no Gaussian component, which is defined on a basic probability space (Q, &, P) (see [8]).
Precisely speaking, A is a real stochastic process with the following two properties.
(A1) Each A(A) is an infinitely divisible random variable with no Gaussian

component ;
(A.2) TFor every sequence of disjoint sets A» (#=>1) in ¥, the sequence {A(A»); n=>1)
is independent and, whenever U%-14, € €, we have
AUso An)=2051A(Ax)  P-almost surely.

Then the characteristic function of A(A) can be written in the Lévy’s canonical form

(L1) E[expliz/(A)] = explizv(A) -+ / A 9z D) M(didn) (2R, A€D),
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glz, x)=explizx)—1—izxl;(x), J=(—1,1),

where » : £—R is an R-valued signed measure on T and M is a measure on 8 satisfying
(12) [[ arz)Mddn <o (Acw.

We denote by P, the probability measure on a measurable space (R?, H(R?)) induced
by the map A: Q3 w— A(-, w) € RY, where R* is the set of all R-valued functions on
T and §(RY) is the o-algebra on R* generated by all coordinate functions. We mean by
A=, M] that the probability measure P, is determined by parameters v and M. Let
(S, ©) be the product measurable space given by &= g(¥)XB(Ro), where d(¥) is the ¢
-algebra on T generated by T and B(R,) is the Borel g-algebra on Ry. Let A =4(8S) be
the totality of nonnegative (possibly infinite) integer-valued measures on (S, &). Let
B(A) be the o-algebra on . generated by all functions /* on ./ given by

fry)=<uv,f> :j; fdv for € 7%(8)and v € 4,

where .7 " (S) is the set of all nonnegative measurable functions on (8, ©). An A ~valued
random element & is called a Poisson random measure on S with intensity M if it is

defined on (Q, &, P) and its Laplace transform is given by
(13) Elexp(—< &/ >)] = exp[— [n=exo (st 0 M (@) for £e 7S

The purpose of this paper is to construct a version of A=%[v, M] based on a
Poisson random measure on S with intensity M. Our construction will be applied to the
problem of law equivalence for ID random measures on T. In Section 2 we introduce
the notion of canonical probability space @, f§~, P) corresponding to the measure space
(8, 8, M). Then we have a probability space (A", B(4), Q¥) such that the identity map
[ on 4 is a Poisson random measure on S with intensity M. In this connection, we
obtain a criterion for the integrability of f{(¢,x) with respect to a Poisson random
measure on 8 when we impose on € a certain additional condition (Theorem 3).
Furthermore we obtain a class of ID random measures on T which are realized by R
-valued signed measures defined on € (Theorem 4). In particular, when M satisfies the

condition
(1.4) f ﬁ lalM(didn=m(A) < w0 (AcT),

we see that sample functions of A are realized by R-valued signed measures on T and
also that A is expressed as a difference of independent nonnegative ID random
measures on T (Theorem b).

In order to discuss the problem of law equivalence, we shall introduce some
notations. Given ¢-finite measures x and v on a measurable space (E, ®), we mean by
#< v that p is absolutely continuous with respect to v. We mean by p~v that g and
v are equivalent, ie. mutually absolutely continuous. The Hellinger-Kakutani

distance and inner product are defined respectively by
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dist(z, v) [f (Vdu ~ @)2}”2 and p(#,u):ﬁm'

Now given ID random measures A; and A, on T, we establish a sufficient condition
for P4,~P4, in terms of the parameters associated with A, and A..

Theorem 1. Assume A;=*[v;, M) (j=1,2). Then P, ~Pa, if the following three
conditions hold simultaneously:
ED MY~M3P
(E.2) dist(MP, M®) < oo,

(E.3) il A) — v A) = f ]; L a{MY = M) (ddz) (A€).

This theorem is closely related to the previous results stated in [1], [2], [3] and [4].
We shall prove Theorem 1 in Section 4. For this purpose we construct the versions of
A; (7 =1, 2) along the procedure stated in Section 2. They are defined on the canonical
probability spaces corresponding to (S, &, M) (j = 1, 2) respectively. The proof is then
reduced to the Kakutani's theorem on the equivalence of infinite product probability
measures. We note that (E.1) and (E.2) guarantee the law equivalence of Poisson
random measures & and & on 8 with intensities M and M® respectively (see [9]).

§2. A Construction of Infinitely Divisible Random Measures.

Let A=%v, M] be an ID random measure on T stated in Section 1. The aim of this
section is to construct a version of A based on a Poisson random measure on S with
intensity M. For simplicity we may assume M(S) > 0. We begin with the case that i/
is a finite measure on (S, &).

Case (I): M(S) < oo. For each k>1, let (S, &*, P,) be a probability space given
by P.= M(S) *M*, where we mean by (S8*, &, M*) the £-fold product measure space
of (S, &, M). Then we consider a probability space (Q*, §*, P*) defined by

2.1) ar=0st, g {ar= 0 Ag Ace et (h20),

P*(A%)=exp(— M) X (k) MS)PoA)  for  A*= Acegr,

where (8°, €°, Py) is the trivial probability space given by 8° = {0} and &° = {#, 8°}. We
call (Q*, §*, P*) the basic canonical probability space associated with (S, &, M). Let
@ Q*— 4 be an F*/B(N)-measurable map given by ®(0) =0 and

k —
(2.2) <O(w%), f > =2 flpdw™)  for [T
when w*= (pi(w*), -, p{w*)) € 8 (k=1). Then we obtain a Poisson random measure ®

on S with intensity M, which is defined on (Q*, &*, P*). We define

2.3) (A, *) = / A @ (didr, ") (AT, 0" € Q)
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©4) ANA, 0" = v(A)+ f /A o O i, %)~ f A aM(didr) (A€, o € ),
where we put ®(U, 0*) =[®(w*)(U) for Ue€& and w* € Q*. Then we easily see
2.5) E*[exp(izT(A))] = exp[ JI[.. fexpiza) - l}M(a’tdx)] (zeR, Ac),

where E*[ - ] stands for the expectation with respect to P*. Further we have

Proposition 1. The process A*={A*(A); A€ T} is an ID random measure on T
which is defined on (Q*, §*, P*) and characlerized by A*=[v, M].

Case (II): M(8) = oo. On account of (1.2) we can choose a sequence {S,; n=>1}C&
of disjoint subsets of 8 satisfying 8 = U7-18, and 0 < M(S,) < co(n > 1). Let {M,; n >
1} be a sequence of finite measures on (8, &) defined by M.(U)= M(UN S,) for U € &.
Let us introduce an infinite product probability space

2:6) @ & P =@ g P,

where (Q*, §*, P3) is the basic canonical probability space associated with (S, &, M,).
We call (@, §, P) the canonical probability space associated with decomposition M =
St M, on (S,©). Let ¥ and ¥, be 4 -valued random elements defined on (Q, &, P)

which are given by

2.7 ¥ = HZI (Do ) and v, = Z‘, (@om) (n=>1).

Here 7, denotes the #-th projection map from £ = (2*)* onto Q*. Then we have
Poisson random measures ¥ and ¥, on S with intensities M and Muw = 2751 M:

respectively. Inspired by (2.4), we define, for each n>1,
28  AAd)= v+ [ o FVldidz, @) - i Mo (didz) (A€, @ ).

Then we have an ID random measure A, = {A.{A); A€} on T, which is defined on
(Q, &, P) and characterized by A,.=[v, Mw). Further we see the sequence {A.(A); n=>
1} converges in law to A(A) for each fixed A € €. On account of the Lévy’s equivalence
theorem on the convergence of series with independent summands, we can find a
random variable A.(A) defined on (&, &, P) to which {4, (A)} converges almost surely
as n—> 0, Thus we have

Proposition 2.  The process Aw={Ae(A); A€ T} is an ID random measure on T
which is defined on (Q, §, P) and characterized by Aw="v, M].

Furthermore we shall provide an explicit representation of A.(A). For this
purpose we replace (2.8) by the expression
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2.9) AnA, &) = v(A) + / f( o P, @) — M(dhdn)}

N G e
+/j(‘AXJC)nR”x‘If(dtdx,w), (A€, @€),

where we put R, = U%18; (n = 1). Noting that E[W(A X J9)] = M(AX ] < oo, we see
the second integral of (2.9) converges almost surely as n—> 0. Therefore taking the
limit of (2.9) in probability, we immediately obtain

2.10) AA, @)= v(A) + / f 2 {W(didz, @) — M(didx)} + f f W(did, &)

P-almost surely for each A€S.

In the rest of this section we are concerned with a realization of A based on the
space A =A4(8) of nonnegative integer-valued measures on (S,&). We mean by
WV, BY), Q") a probability space given by
(2.11) Q" =[P*], inCase () and QY=[P]s in Case (ID),
where [P*o and [P]e stand for the images of P* and P induced by ® and ¥
respectively. Then the identity map I on (/, B(A), Q) is considered as a Poisson
random measure on 8 with intensity M. Consequently we introduce a process G =
{G(A); A € T} which is defined on (f, B(A), Q%) and expressed in the form

(212) GA, v = oA + [ luldide) — Mdtan}+ [[  ev(didz) (A€ T, ve ).
AX]J Axj¢
Precisely speaking, for each A € €, the first integral of (2.12) is defined as the limit in
probability of the sequence {/f x{vldtdx) — M{didx)}; n= 1} in Case (II). We
(AXJ)N Ry

note that the random variable G(A) is well defined by the above discussion. Then
Propositions 1 and 2 yield immediately the following

Theorem 2.~ The process G = {G(A); A € T} is an ID random measure on T which
is defined on (N, B, QM) and characterized by G=%v, M.

§3. A Subclass of Infinitely Divisible Random Measures.

The purpose of this section is to provide a class of ID random measures on T
which are realized by R-valued signed measures on T. First we consider the
integrability of measurable functions with respect to the Poisson random measure on
S which is associated with A="v, M]. Let (4, B(AV), Q") be the probability space given
by (2.11). Let ¥ (¢, x) be an R-valued measurable function on (S, ©). We put

3.1) M A) = f [4 e, DM ddz) (A€ D),

(3.2) VA, v) = f A W Dldtdz) (A€ T, ve ).

Proposition 3. Suppose my(A)< oo, Then there exists a set No€ BAN) satisfying
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(3.3) QM) =1 and VA, v)<oo (ve ).

Proof. By applying (1.3) to (¢, x) = 1a(¢)| ¥(¢, x)|, we have
G4)  Belexn(— VA, )] = exp| — [f[ | {1—exo(~ 19, 2)) Mata) |,

where Equ[ ] stands for the expectation with respect to Q". Putting

miA) = [ (—exp (= e, D) M(dtdz) (=1, 2)

with (1) =] and I(2) = J¢, we have n(A) < myp(A), 0< ma(A)<oo and

—logEq» [exp(— Vu(A, )] = mi(A)+ ma(A) < mp(A) + ma( A) < o0,
Then we have Egv[exp(— Vy(A,+ )] >0. Further putting 4 = {v € #; Vy(A, v)< o0}, we
see this implies Q*(45) >0. On the other hand we can apply the Kolmogorov's 0-1 law

to the expression

(35) VA, 0 =2 [[ et ol (e,

where By={r€Ro, 1I/n<|x]<1/(n—1)} (n=1) with 1/0=co. Thus we obtain
QY (A =1.

Remark. Whenever #(¢, x) is bounded on A X J, we can show the condition #4(A)
< oo is necessary in order to obtain 4 € B(A) satisfying (3.3).

For further investigation we need to introduce the following condition on <.
(3.6) For each A €%, there exists n =1 such that ACT,.

Theorem 3. Assume (3.6) and

(3.7) myp(A)y< oo for each A€ <.
Then theve exists a set W€ BNV satisfying
(3.8) QY M)=1 and VJA,v)<oo  for each A€ T and vE M.

Proof. It follows from (3.7) that Proposition 3 yields A4, € B(A) (n > 1) satisfying
3.9 QY(N)=1 and Vu(T, v)<oo (Ve ).
Now putting 46 = (=1 ./, we obtain (3.8) by (3.6) and (3.9).

We now provide here a class of ID random measures on T which are realized by
R-valued signed measures on T. Given an R-valued measurable function #(¢, x) on S,
we introduce a measure M, on (S, &) defined by
(3.10) MAD)=M{(t, x)e S, (£, ¥, x)e U)) for Ue®,

For Ae% and v e ., we put
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(3.11) HyA, V) = v(A) + f L W, D)udrdz) / [ (e, ) M(asax)

provided the integrals in the right hand side are finite. Otherwise we put Hy,{(A, v)=
Furthermore, if we assume (3.7) and also

(312 Sl DI, M didn) <o (Ae )
we have an R-valued signed measure #, on T defined by
(313 )= [[| W DL, 2) ~ L) Mdidz) (A€T)

Theorem 4. Assume (3.6), (3.7) and also
(3.14) Il o AR, DM dtdz) <o (AT,

Then the process Hy, = {H(A); A€ T} is an ID random measure on T which is defined
n (N, B, Q") and characterized by Hyp="2[v + iy, My).

Proof. First we introduce a map Iy : A&/ — . given by I4(v) = vy, where we put
(3.15) vl U) = v({(t, x) € 8; (¢, ¥(¢, ) € UY) (Ue & ved).
Then we see that 7, is a Poisson random measure on S with intensity M, which is
defined on (4, B(4), Q™). On the other hand, Theorem 3 guarantees the existence of a
set N € BUAY) with Q¥(A4) =1 such that Hy(A, v) is expressed by (3.11) for each A€ ¥
and v € 4. On account of (3.14), Hy(A, v) can be expressed as follows: For each A€

< and v € 4%, we have

HyA, v) = 0(A) + s A) + f /; o Wt DIVdldz) — f A o AL DL, ) M (i)

= 0(A) + g A) + f /A o Bveldtdz) f [ , aMy(didr)

Therefore we immediately obtain the conclusion by Theorem 2.

By applying Theorem 4 to #(¢, x) = x, we can realize A=“[v, M] in the space of

R-valued signed measures on T whenever both (3.6) and
= I
(3.16) I  lalM (@)= m(A) <o (A€T)

are satisfied. In detail, let H*={H*(A); A€ ¥}, H ={H (A); A%} and H={H(A);
A €%} be ID random measures on T, which are defined on (¥, %(/V ), Q") and expressed

as follows:
(3.17) H*(A, v)= v*(A) + m(A) + f f W(didz) /f 2 M(dtdx),
(3.18) H(A, v)= v(A) + f A o 2uldidz) f ﬁ  aM(didz).

Here v = v*— v~ stands for the Jordan decomposition of v. We put R = {+ x>0} and
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M(U)=MUNTXRL)) for U € & respectively. Then we have

Theorem 5. Assume (3.6) and (3.16). Then H* and H are characterized by H*="¢
[vE+m, My and H=1[v, M] respectively. Furthermorve H* and H~ are independent
and also theve exists a set No€ BA) with Q"(AN) = 1 satisfying
(3.19) HA, v)=HYA, vy— H (A, v) and 0<HA, v)<oo (A€, ve ).

§4. The Proof of Theorem 1.
On account of (E.1) and (E.2) we may assume that M(S) and MP(S) are
simultaneously finite or infinite. Indeed, (E.1) yields

uo)= [

? 216}

bAM® + /{ o AN <2 fs (JE—1)2dM®+16M® (($<16)),

where ¢ = dMY/dM®. This implies that
MOS) < 2dist(MD, MM+ 16 M9S) (4,7 =1, 2).

Therefore combining (E.2) with these inequalities yields the assertion.

Case (I): MY(S)< co (j=1,2). We construct the basic canonical probability space
Q*, ¥*, P*Y) associated with (8, &, M) for each j=1,2. It is obvious by the
construction that MPV~M® implies P*"~P*®, Let us consider a family of random
variables 5(A, w*) (A € ¥) defined by

@1) FA, %)= vl(A)+fAXR 2 ®(dtde, w*)—/ﬁxl M O(dtdy) (AT, w*e Q).
Then we see by (E.3) an alternative expression
42)  E(A, 0% = m(A)+ f fA  x@(dtdz, 0*)— f A L aMP(didr) (A€T, w* e 0°).

Therefore we see by Proposition 1 that & = {5(A); A € %) is an ID random measure
on T, which is defined on (Q*, §*, P*Y") and characterized hy

(4.3) E="y;, MY] with respect to P*¥ (=1, 2).
This implies that
(4.4) P, =[P*]z on (RY FRY) (=12),

where [P*¥]z stands for the image of P*“ induced by the map & : Q* > w*— Z(+, 0*)
€ R*. Thus combining (4.4) with P*®~P*® yields the relation P,~P4,.

Remark. In Case (I), we have the identity
(4.5) p(P*0, P*®) = expl —(1/2)dist(M®, MPY].
Indeed, putting M =MD+ M®, we construct the basic canonical probability space
(Q*, §*, P*) associated with (S, &, M). Then we have P*Y<P* (;=1,2) and

P, o) = [ a0 P dP P dP* P
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= i fs expMDS)dM Y dM* Jexp (MVS)dM P ] di* dP*

:exp[(l/Z)M(S)]é expl| —M(S)}(/f!)’lf A AMV%) M dM P dM* dM -

(/DM )3 (k1) [ f JAMOT M JaM®]dM dM}
=exp| —(1/DMOS)+ MA@+ [ VMOl J M/ di dM}

xpl —
—exp[ (1/2) f VdM®/dM — JaM “’/a’M}ZdM]
[—(1/2)dist(M®, 2],

Il

exp

Case (II); MY(8) = oo (j = 1, 2). First we note that the existence of the integral in
(E.3) is guaranteed by (E.2). Indeed, putting M =M+ M®, we have

(4.6) /A; ]xl-||M“>—M<2>1|(dtdx):fﬁxl ||| M) M — dM ) dM |dM

:fﬁxj WaMD] b — aM®]dM |- x|{y/dM O] dM + J dM®] dM Y aM
S[]LX] {/—dm“ﬁm}zd]ﬂ}m

Uf |2/ T a + Jam®]am }ZdM}w

2
< dist(M®, M(Z’)[Z f j; Nalam/am + dM(ZVdM}dMT'
— dist(M®, M(Z))[z II lap dM]”2< oo,

Here ||w|| stands for the total variation measure of a signed measure w. According to
the procedure stated in Section 2, we shall construct versions of A, and A: based on
Poisson random measures on 8. We can find a sequence {S»; #=1} of disjoint subsets
of 8 in & satisfying S=U5-18, and 0< M (8.} <o (n>1, j=1,2). For each j =1, 2,
we construct the canonical probability space

@, § P9 = fj(ﬂ*’ g Pr)

associated with decomposition MY = X150 MY on (8, &), where we put MFNU) =

MUNS,) for Ue & Now (E.1) implies MP~M? and also P;P~Pi® for each
n=1. Further (E.2) with (4.5) implies

47 1 o(Px, P*(z))*exp[ (1/2)%) dist (M, ﬁzﬂ

= exp[ ~—(1/2)dist (M, M(Z))Z] >0

Therefore we obtain PO~P® by the Kakutani’s theorem on the equivalence of infinite
product probability measures (see [5]). By applying Proposition 2, we obtain stochastic
processes AY = (AP (A); A€} (j=1,2) satisfying the following two conditions.
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4.8) AY is defined on (, § PY) and characterized by AY =¢[v;, M¥];
(4.9) For each A €, the sequence {A$ (A); n>1) converges almost surely to A% (A)
with respect to PV as n— o0, where we put M) = 31 M and

(410)  AP(A, @) = ofA) + | f Wz, @)~ | f MO (dide) (AeT, @€ ).
On account of (E.2) and (4.10) we have the following equations:

4.11) lim ff 2 M) — MPY (didr) = /f 2{MD— M®) (didx),

(4.12) AP(A, &)~ AP(A, @) = (A —wlA)= [[ 21— M) )

for Ae%, @€ and n=1. Therefore combining (E.3) with P“~P® yields that
AV (A)= AP (A) almost surely with respect to PP and P®. Now putting G(A, @)=
AD(A, @) for AeT and @€, we have a process @ ={O(A); Ac<} defined on
@, &, PY) for each ; =1, 2 and characterized by

(4.13) O = v;, M) with respect to PY (=1, 2).

This implies the equalities P, = [P?]e (7 = 1, 2), where [P“]o stands for the image of
P9 induced by the map ©: O 53— O(+, @) € R*. Thus we obtain the desired relation
P4, ~P,, from PO~P®@.
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