The Dirichlet Problem for a Certain Degenerate Parabolic Equation, II

Nobutoshi Itaya and Yasumaro Kobayashi ${ }^{(1)}$
Department of Mathematical Sciences, Faculty of Science, Shinshu University
(Received 25 December 1997)

Abstract

We make an extension of the result obtained in our preceding paper [1] for the degenerate parabolic equation $u_{t}=[x(1-x)]^{\alpha} u_{x x}(x, t) \quad(\alpha=1)$, studying the case of $0<\alpha<1$.

1. Introduction

In the preceding paper [1], for the case of $\alpha=1$, we have considered the Dirichlet problem for the degenerate parabolic equation

$$
\begin{gather*}
u_{t}(x, t)=w(x)^{\alpha} u_{x x}(x, t) \quad(0<x<1, t>0), \tag{1.1}\\
u(x, 0)=u_{0}(x) \quad\left(u_{0}(0)=u_{0}(1)=0\right), \\
u(0, t)=u(1, t)=0 \quad(t \geq 0), \\
{[w(x)=x(1-x)],}
\end{gather*}
$$

demonstrating the unique existence of the time-global solution of (1.1) under some conditions on $u_{0}(x)$. Here, we shall study the same problem for $\alpha \in(0,1)$. The notations are the same as in [1].

2. Preliminaries

We make some preparations for constructing the solution of (1.1) for $\alpha \in(0,1)$. Firstly, we use the conventional method of separation of variables as in [1]. If $U(x, t)=X(x) T(t)$ satisfies $(1.1)^{1}-(1.1)^{3}$, then we have

$$
\begin{equation*}
T^{\prime}(t) X(x)=w(x)^{\alpha} X^{\prime \prime}(x) T(t), \tag{2.1}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{T^{\prime}(t)}{T(t)}=w(x)^{\alpha} \frac{X^{\prime \prime}(x)}{X(x)}=-\lambda(=\text { const. }) \tag{2.2}
\end{equation*}
$$

[^0]whence
\[

\left\{$$
\begin{array}{c}
X^{\prime \prime}(x)=-\lambda w(x)^{-a} X(x) \quad(0<x<1) \tag{2.3}\\
X(0)=X(1)=0, \\
T(t)=C e^{-\lambda t} \quad(C, \text { const. })
\end{array}
$$\right.
\]

which shows that λ and $X(x)$ are an eigenvalue and an eigenfunction corresponding to λ for the eigenvalue problem (2.3), respectively. As easily seen (cf. [1, Afterword]), the ordinary differential equation (2.3) is equivalent to the following integral one:

$$
\left\{\begin{array}{l}
X(x)=\lambda \int_{0}^{1} G(x, \xi) \frac{1}{w(\xi)^{\alpha}} X(\xi) d \xi=\lambda G^{\circ} \frac{X}{w^{\alpha}}(x) \quad\left(X(x) \in C^{0}([0,1])\right) \tag{2.4}\\
G(x, \xi)= \begin{cases}(1-x) \xi & (x \geq \xi) \\
(1-\xi) x & (x \leq \xi)\end{cases}
\end{array}\right.
$$

where we note that the following inequality holds,

$$
\begin{gather*}
|X(x)|=|\lambda| \cdot\left|\int_{0}^{1} G(x, \xi) w(\xi)^{-\alpha} X(\xi) d \xi\right| \leq C_{0}|\lambda| w(x)|X|_{f}^{(0)} \tag{2.4}\\
\left(I=[0,1] ; C_{0}, \text { const. }\right)
\end{gather*}
$$

which is derived in the same way as in [1]. Now, apart from our subject, for a while we discuss the eigenvalue problem (2.4). Defining $G_{a}(x, \xi)$ by

$$
\left\{\begin{array}{l}
G_{\alpha}(x, \xi)=[w(x) w(\xi)]^{-\frac{\alpha}{2}} G(x, \xi)= \begin{cases}\frac{(1-x)^{1-\frac{\alpha}{2}} \xi^{1-\frac{\alpha}{2}}}{x^{\frac{\alpha}{2}}(1-\xi)^{\frac{\alpha}{2}}} & (1 \geq x \geq \xi \geq 0) \\
\frac{(1-\xi)^{1-\frac{\alpha}{2}} x^{1-\frac{\alpha}{2}}}{\xi^{\frac{\alpha}{2}}(1-x)^{\frac{\alpha}{2}}} & (1 \geq \xi \geq x \geq 0)\end{cases} \tag{2.5}\\
((x, \xi) \neq(0,0),(1,1)) \\
G_{\alpha}(0,0)=G_{\alpha}(1,1)=0,
\end{array}\right.
$$

where we note that

$$
\left\{\begin{array}{l}
G_{\alpha}(x, \xi)=G_{\alpha}(\xi, x), G(x, x)=(1-x)^{1-\alpha} x^{1-\alpha}, 0 \leq G_{\alpha}(x, \xi) \leq 1 \tag{2.5}\\
G_{\alpha}(x, \xi) \text { is continuous on }[0,1] \times[0,1]
\end{array}\right.
$$

We transform (2.4) into an integral equation having a symmetric and continuous kernel $G_{\alpha}(x, \xi)$ as follows:

$$
\begin{equation*}
\tilde{X}(x)=\lambda \int_{0}^{1} G_{\alpha}(x, \xi) \tilde{X}(\xi) d \xi\left(=\lambda G_{\alpha} \circ \tilde{X}(x)\right), \quad\left(\tilde{X}=w^{\frac{\alpha}{2}} X\right) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left[\text { N.B. }: \tilde{X}(x) \in C^{0}([0,1])\left(\operatorname{cf} .(2.4)^{\prime}\right), \tilde{X}(0)=\tilde{X}(1)=0\right] . \tag{2.6}
\end{equation*}
$$

In the next place, we state the following 7 lemmas.

Lemma 2.1. The functions of the set $\left\{G_{a} \circ f(x) \mid f \in C^{0}([0,1]),\|f\|_{L^{2}} \leq 1\right\}$ are uniformly bounded and equicontinuous. Thus, G_{a} as an operator from $C^{0}([0,1])$ into itself is
completely continuous (cf.[7]).

Proof. (i) The uniform boundedness of the above-mentioned functions is obvious. (ii) The equicontinuity of those functions is easily to be demonstrated, if we note that

$$
\begin{align*}
& \left|G_{\alpha^{\prime}} \circ f(x)-G_{\alpha^{\circ}} \circ f\left(x^{\prime}\right)\right| \leq \int_{0}^{1}\left|G_{\alpha}(x, \xi)-G_{\alpha}\left(x^{\prime}, \xi\right)\right| \cdot|f(\xi)| d \xi \\
& \leq\left[\int_{0}^{1}\left|G_{\alpha}(x, \xi)-G_{a}\left(x^{\prime}, \xi\right)\right|^{2} d \xi\right]^{\frac{1}{2}}\|f\|_{L^{2}} \quad\left(0 \leq x \leq x^{\prime} \leq 1\right) \tag{2.7}\\
& \leq\left[\int_{0}^{x}|\cdots|^{2} d \xi+\int_{x}^{x^{\prime}}|\cdots|^{2} d \xi+\int_{x^{\prime}}^{1}|\cdots|^{2} d \xi\right]^{\frac{1}{2}} \\
& =\left[I_{1}+I_{2}+I_{3}\right]^{\frac{1}{2}}
\end{align*}
$$

and that

$$
\begin{equation*}
0 \leq\left(x^{\prime}\right)^{\gamma}-x^{\gamma} \leq\left|x^{\prime}-x\right|^{\gamma} \quad\left(0 \leq x \leq x^{\prime} \leq 1,0 \leq \gamma \leq 1\right) \tag{2.7}
\end{equation*}
$$

(Q.E.D.).

Lemma 2.2. The eigenvalues λ 's in the eigenvalue problem (2.4) (or, what is the same, (2.3)) are positive. Moreover, if $X(x)$ is an eigenfunction corresponding to λ, being normalized with $w(x)^{-\alpha}$, then we have,

$$
\begin{equation*}
|X(x)| \leq \sqrt{\lambda} . \tag{2.8}
\end{equation*}
$$

Proof. By virtue of the estimate (2.4)' of $|X(x)|, X^{\prime}(0)$ and $X^{\prime}(1)$ exist, being continuous there. Thus, from (2.3) we obtain

$$
\begin{equation*}
0<\int_{0}^{1} X^{\prime}(x)^{2} d x=\lambda \int_{0}^{1} w(x)^{-\alpha} X(x)^{2} d x \tag{2.8}
\end{equation*}
$$

[N.B.: $X(x)$ is non-trival so that $X^{\prime}(x) \neq 0$.]
Moreover, if $X(x)$ is normalized with weight $w(x)^{-\alpha}$, then, by $(2.8)^{\prime}$,

$$
\begin{equation*}
|X(x)| \leq \int_{0}^{1}\left|X^{\prime}(x)\right| d x=\left(\int_{0}^{1} X^{\prime}(x)^{2} d x \mid\right)^{\frac{1}{2}}=\lambda^{\frac{1}{2}} \tag{2.8}
\end{equation*}
$$

(Q.E.D.).

Thus, by lemmas 2.1 and 2.2, the eigenvalues λ 's are positive and countable.
Lemma 2.3. The eigenvalues λ 's are positive and countably infinite, i.e. $\{\lambda\}=\left\{\lambda_{n}\right\}_{n=0}^{\infty}$. Moreover, $\lambda_{0} \leq \lambda_{1} \leq \cdots \leq \lambda_{n} \leq \cdots\left(\lambda_{n} \rightarrow \infty(n \rightarrow \infty)\right)$.

Proof. If $\left\{G_{\alpha^{\circ}} f \mid f \in C^{0}([0,1])\right\}$ is of a finite demension n_{0}, then $G_{\alpha^{\circ}} 1, G_{\alpha} \circ x, \cdots, G_{\alpha}{ }^{\circ} x^{n_{0}}$ are linearly dependent (which is easily to be shown). Thus, there exist constants c_{0}, c_{1}, $\cdots, c_{n_{0}}$ such that

$$
\left\{\begin{array}{l}
\left(c_{0}, c_{1}, \cdots, c_{n_{0}}\right) \neq(0,0, \cdots, 0) \tag{2.9}\\
0=\sum_{j=0}^{n_{0} c_{j}} G_{x}{ }^{\circ} x^{j}=G_{\alpha} \sum_{i=0}^{n_{0}} c_{j} x^{j}
\end{array}\right.
$$

which implies that

$$
\begin{equation*}
0=\frac{d^{2}}{d x^{2}} 0=-w(x)^{-\frac{\alpha}{2}} \sum_{j=0}^{n_{0}} c_{j} x^{j}, c_{j}=0\left(j=0,1, \cdots, n_{0}\right) . \tag{2.9}
\end{equation*}
$$

The above conclusion is contradictory to (2.9).
(Q.E.D.).

Lemma 2.4. The system of the eigenfunctions $\left\{\tilde{X}_{n}(x)\right\}_{n=0}^{\infty}$ of the eigenvalue problem (2.6) is complete in $C^{0}([0,1])$.

Proof. Let $\left\{\tilde{X}_{n}\right\}$ be normalized with weight $1, f$ belong to $C^{0}([0,1])$, and, for any n, $\left(\tilde{X}_{n}, f\right)=0$. Then,

$$
\begin{gather*}
\left(\tilde{X}_{n}, f\right)=\lambda_{n}\left(G_{\alpha} \circ \tilde{X}_{n}, f\right)=\lambda_{n}\left(\tilde{X}, G_{\alpha} \circ f\right)=0 \text {, i.e., } \tag{2.10}\\
\left(\tilde{X}_{n}, G_{\alpha} \circ f\right)=0 \quad(\text { for any } n) . \tag{2.10}
\end{gather*}
$$

$G_{\alpha} \circ f(x)$ is to be absolutely and uniformly expanded in the following way (HilbertSchmidt's theorem),

$$
\begin{equation*}
G_{\alpha^{\circ}} \circ f(x)=\sum_{j=0}^{\infty} a_{j} \tilde{X}_{j}(x) \quad\left(a_{j}=\left(G_{\alpha} \circ f, \tilde{X}_{j}\right)\right), \tag{2.11}
\end{equation*}
$$

where, by (2.10)',

$$
\begin{equation*}
0=\left(\tilde{X}_{n}, \sum_{j=0}^{\infty} a_{j} \tilde{X}_{j}\right)=\sum_{j=0}^{\infty} a_{j}\left(\tilde{X}_{n}, \tilde{X}_{j}\right)=a_{n} \quad(n=0,1,2, \cdots) . \tag{2.13}
\end{equation*}
$$

Thus, $G_{\alpha^{\circ}} f(x) \equiv 0$, which implies that

$$
\begin{equation*}
0=\frac{d^{2}}{d x^{2}} 0=-w(x)^{-\frac{\alpha}{2}} f(x) \text {, i.e., } f(x) \equiv 0 \tag{2.12}
\end{equation*}
$$

(Q.E.D.).

Lemma 2.5. Let λ_{j} 's be as in lemmas 2.2 and 2.4. Then it holds that

$$
\begin{equation*}
\sum_{j=0}^{\infty} \lambda_{j}^{-1}=B(2-\alpha, 2-\alpha), \tag{2.14}
\end{equation*}
$$

where $B(\cdot, \cdot)$ is the Beta function.
Proof. The kernel $G_{\alpha}(x, \xi)$ of the integral equation (2.6) is obviously a positive-definite and symmetric one, being continuous on $[0,1] \times[0,1]$. Hence, by Mercer's theorem we have,

$$
\begin{equation*}
G_{a}(x, \xi)=\sum_{j=0}^{\infty} \lambda_{j}^{-1} \tilde{X}_{j}(x) \tilde{X}_{j}(\xi) \quad\left(X_{j}^{\prime} \text { s are normalized }\right), \tag{2.15}
\end{equation*}
$$

whence are obtained the equalities

$$
\begin{align*}
& \int_{0}^{1} G(x, x) d x=\int_{0}^{1}(1-x)^{1-\alpha} x^{1-a} d x=B(2-\alpha, 2-\alpha) \tag{2.15}\\
& =\sum_{j=0}^{\infty} \lambda_{j}^{-1} \int_{0}^{1} \tilde{X}_{j}(x)^{2} d x=\sum_{j=0}^{\infty} \lambda^{-1} .
\end{align*}
$$

(Q.E.D.).

Lemma 2.6. $X_{n}^{\prime}(x)=\frac{d}{d x} X_{n}(x) \quad(n=0,1,2, \cdots)$ satisfy

$$
\begin{equation*}
\left|X_{n}^{\prime}(x)\right| \leq B(1-\alpha, 1-\alpha) \lambda_{n}^{\frac{3}{2}} \tag{2.16}
\end{equation*}
$$

Proof. From (2.4) we have easily,

$$
\begin{equation*}
X_{n}^{\prime}(x)=\lambda_{n}\left[-\int_{0}^{x} \xi^{1-\alpha}(1-\xi)^{-\alpha} X_{n}(\xi) d \xi+\int_{x}^{1}(1-\xi)^{1-\alpha} \xi^{-\alpha} X_{n}(\xi) d \xi\right] . \tag{2.16}
\end{equation*}
$$

Thus, by (2.8)", $\left|X_{n}^{\prime}\right|$ is estimated as

$$
\begin{equation*}
\left.\left|X_{n}^{\prime}(x)\right| \leq \lambda_{n} \int_{0}^{1}(1-\xi)^{-\alpha} \xi^{-\alpha} d \xi \cdot\left|X_{n}\right|\right\}^{(0)} \leq B(1-\alpha, 1-\alpha) \lambda_{n}^{\frac{3}{2}} \tag{2.16}
\end{equation*}
$$

(Q.E.D.).

Lemma 2.7. $\frac{d^{2}}{d x^{2}} X_{n}(x)=X_{n}^{\prime \prime}(x) \quad(n=0,1,2, \cdots)$ satisfy

$$
\begin{equation*}
\left|X_{n}^{\prime \prime}(x)\right|=\lambda_{n} w(x)^{-\alpha}|X(x)| \leq C_{0} \lambda_{n}^{\frac{5}{2}} w(x)^{1-a} \leq \frac{C_{0}}{4} \lambda_{n}^{\frac{5}{2}} . \tag{2.17}
\end{equation*}
$$

Proof. By (2.3) and (2.4)', the relation (2.17) is obvious.
(Q.E.D.).

3. Main theorem

Let $\lambda_{n}, X_{n}(x)$ and $\tilde{X}_{n}(x)$ be as in the preceding sections 1 and 2 . Now, we construct a formal solution $U(x, t)$ of (1.1) ($\alpha \in(0,1))$ such that

$$
\left\{\begin{array}{c}
U(x, t)=\sum_{n=0}^{\infty} e^{-\lambda_{n} t} a_{n} X_{n}(x), \quad U(x, 0)=u_{0}(x)=\sum_{n=0}^{\infty} a_{n} X_{n}(x) \tag{3.1}\\
a_{n}=\int_{0}^{1} u_{0}(x) w(x)^{-\alpha} X_{n}(x) d x \quad(n=0,1,2, \cdots), \\
{\left[\int_{0}^{1} w(x)^{-\alpha} X_{n}(x)^{2} d x=\int_{0}^{1} \tilde{X}_{n}(x)^{2} d x=1\right]}
\end{array}\right.
$$

If $u_{0}(x)$ satisfies

$$
\left\{\begin{array}{l}
u_{0}(x) \in C^{0}([0,1]) \cap C^{2}((0,1)) \quad\left(u_{0}(0)=u_{0}(1)=0\right) \tag{3.2}\\
w(x)^{\frac{\alpha}{2}} u_{0}^{\prime \prime}(x) \in C^{0}([0,1])
\end{array}\right.
$$

then $u_{0}(x)$ is to be expanded abslutely and uniformly on [0,1] (Hilbert-Schmidt's theorem) as below,

$$
\begin{align*}
& u_{0}(x)=w(x)^{\frac{\alpha}{2}} \sum_{n=0}^{\infty}\left(G_{\alpha} \circ\left(-w^{\frac{\alpha}{2}} u_{0}^{\prime \prime}\right), \tilde{X}_{n}\right) \tilde{X}_{n}(x)=\sum_{n=0}^{\infty}\left(u_{0}, w^{-\alpha} X_{n}\right) X_{n}(x) \tag{3.3}\\
& =\sum_{n=0}^{\infty} a_{n} X_{n}(x)
\end{align*}
$$

$$
\text { [N.B. : } \left.a_{n}=\left(G_{a} o\left(-w^{\frac{\alpha}{2}} u_{0}^{\prime \prime}\right), \tilde{X}_{n}\right)=-\lambda_{n}^{-1}\left(w^{\frac{\alpha}{2}} u_{0}^{\prime \prime}, \tilde{X}_{n}\right)=-\lambda_{n}^{-1}\left(u_{0}^{\prime \prime}, X_{n}\right) \equiv \lambda_{n}^{-1} b_{n}\right] \text {. }
$$

As a final assertion we state:
Main Theorem. Under the assumption (3.2) on u_{0}, there exists a unique solution $u(x, t)$, belonging to $C^{0}([0,1] \times[0, T]) \cap C^{2,1}([0,1] \times(0, T])$ for an arbitrary $T \in(0$, $\infty)$. Moreover,

$$
\left\{\begin{array}{l}
|u(x, t)| \leq \mid u_{0}\left(y_{1}^{0)}, t\left|u_{x}(x, t)\right| \leq C_{1} B_{0}\right. \tag{3.4}\\
t^{2}\left|u_{x x}(x, t)\right| \leq C_{2} B_{0}, \quad t\left|u_{t}(x, t)\right| \leq C_{3} B_{0}
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
B_{0}=\left(\sum_{n=0}^{\infty} b_{n}^{2}\right)^{\frac{1}{2}}\left(\sum_{n=0}^{\infty} \lambda_{n}^{-1}\right)^{\frac{1}{2}}=\left\|w^{\frac{\alpha}{2}} u_{0}^{\prime \prime}\right\|_{L^{2}} B(2-\alpha, 2-\alpha)^{\frac{1}{2}} \tag{3.4}\\
C_{1}, C_{2} \text { and } C_{3} \text { are positive constants. }
\end{array}\right.
$$

Proof. The procedure of demonstrating the assertion is almost the same as in the proof of the main theorem of [1]. The inequalities in (3.4) are obtained by making use of the maximum principle, and lemmas $2.5,2.6$ and 2.7 , and by noting that

$$
\begin{align*}
& \left\{\begin{array}{l}
e^{-\lambda_{n} t} \lambda_{n}^{\beta} \leq e^{-\beta} \beta^{\beta} t^{-\beta} \quad(\beta>0, t>0) \\
e^{-\lambda_{n} t} \lambda_{n}^{\beta} \leq t^{-\beta} C_{4}(\beta) e^{-C_{5}(\beta) \lambda_{n} t} \\
\left(C_{4}(\beta), C_{5}(\beta)>0\right)
\end{array} .\right. \tag{3.5}
\end{align*}
$$

Remark: Under another condition on u_{0}

$$
\left\{\begin{array}{l}
u_{0} \in C^{0}([0,1]) \cap C^{6}((0,1)) \tag{3.6}\\
\left.w^{\frac{\alpha}{2}}\left(w^{\alpha} u_{0}^{\prime \prime}\right)^{\prime \prime}\right)^{\prime \prime} \in C^{0}([0,1]) \\
w^{\alpha} u_{0}^{\prime \prime}(0)=w^{\alpha} u_{0}^{\prime \prime}(1)=w^{\alpha}\left(w^{\alpha} u_{0}^{\prime \prime}\right)^{\prime \prime}(0)=w^{\alpha}\left(w^{\alpha} u_{0}^{\prime \prime}\right)^{\prime \prime}(1)=0
\end{array}\right.
$$

$u_{x}(x, t), u_{x x}(x, t)$ and $u_{t}(x, t)$ are continuous on $[0,1] \times[0, \infty)$, which is easily to be demonstrated. We have only to see that, under the condition (3.6),

$$
\left\{\begin{array}{l}
a_{n}=-\lambda_{n}^{-1}\left(u_{0}^{\prime \prime}, X_{n}\right)=\lambda_{n}^{-1}\left(w^{\frac{-\alpha}{2}} G_{\alpha^{\alpha}} w^{\frac{\alpha}{2}}\left(w^{\alpha} u_{0}^{\prime \prime}\right)^{\prime \prime}, w^{\frac{\alpha}{2}} \tilde{X}_{n}\right) \tag{3.7}\\
=\lambda_{n}^{-2}\left(\left(w^{\alpha} u_{0}^{\prime \prime}\right)^{\prime \prime}, X_{n}\right)=-\lambda_{n}^{-3}\left(\left(w^{\alpha} u_{0}^{\prime \prime}\right)^{\prime \prime}, X_{n}\right) .
\end{array}\right.
$$

References

[1] N. Itaya-Y. Kobayashi, The Dirichlet problem for a certain degenerate parabolic equation, J. Fac. Sci. Shinshu Univ., Vol, 32. No. 1, 1-13, 1997.
[2] Y. Komatsu, Introduction to Analysis, Hirokawa, 1962, (in Japanese).
[3] O. A. Ladyzhenskaya, et al., Linear and Quasilinear Equations of Parabolic Type, Nauka, 1968, (in Russian).
[4] S. Mizohata, Integral Equations, Asakura, 1968, (in Japanese).
[5] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Fizmatgiz, 1960, (in Russian).
[6] F. Tricomi, Integral Equations, Interscience, 1958.
[7] K. Yosida, Theory of Integral Equations (2nd ed.), Iwanami, 1997, (in Japanese).

Corrigenda to the paper [1]

$$
\begin{aligned}
& \text { Erratum } \\
& \text { Correction } \\
& \text { p.10, } 1.3 \\
& \cdots \leq \int_{I}\left(X_{n}^{\prime}\right)^{2} d x=\cdots \\
& \cdots \leq\left(\int_{I}\left(X_{n}^{\prime}\right)^{2} d x\right)^{\frac{1}{2}}=\cdots \\
& \text { p.11, ll. } 7 \sim 8 \quad\left\{\begin{array} { l }
{ \cdots , | u _ { x } (x , t) | \leq } \\
{ | u _ { x x } (x , t) | \leq \cdots , | u _ { t } (x , t) | \leq \cdots }
\end{array} \left\{\begin{array}{l}
\cdots, t\left|u_{x}(x, t)\right| \leq \cdots \\
t^{2}\left|u_{x x}(x, t)\right| \leq \cdots, t\left|u_{t}(x, t)\right| \leq \cdots
\end{array}\right.\right. \\
& \text { p.12. } l l .13 \sim 14 \\
& \left\{\begin{array} { l }
{ \cdots \leq A _ { 1 } , \cdots \leq A _ { 2 } } \\
{ \cdots A _ { 3 } (A _ { 1 } , A _ { 2 } , A _ { 3 } , \cdots) }
\end{array} \quad \left\{\begin{array}{l}
\cdots \leq t^{-1} \tilde{A}_{1}, \cdots \leq t^{-1} \tilde{A}_{2} \\
\cdots \leq t^{-2} \tilde{A}_{3}\left(\tilde{A}_{1}, \tilde{A}_{2}, \tilde{A}_{3}, \cdots\right)
\end{array}\right.\right.
\end{aligned}
$$

[^0]: ${ }^{(1)}$ Post-MC research student, Fac. Sci., Shinshu Univ.

