Cohomotopy sets of projective planes

S. Kikkawa*, J. Mukai and D.Takaba*
Department of Mathematical Sciences, Faculty of Science, Shinshu
University
(Received July 27, 1998)

Abstract

We set $\mathbf{F}=\mathbf{R}$ (real), \mathbf{C} (complex), \mathbf{H} (quaternion), $\mathbf{0}$ (octonian) and $d=\operatorname{dim}_{\mathbf{R}} \mathbf{F}$. We denote by $\mathbf{F P}^{2}$ the \mathbf{F}-projective plane. The purpose of this note is to determine the cohomotopy set $$
\pi^{n}\left(\mathbf{F P}^{2}\right)=\left[\mathbf{F P}^{2}, S^{n}\right]
$$

Let $h=h(\mathbf{F}): S^{2 d-1} \rightarrow S^{d}$ be the Hopf map. Then we have a cell structure $\mathrm{FP}^{2}=S^{d} \cup_{h} e^{2 d}$ and a cofiber sequence: $$
\begin{equation*} S^{2 d-1} \xrightarrow{h} S^{d} \xrightarrow{i} \mathbf{F P}^{2} \xrightarrow{p} S^{2 d} \xrightarrow{\Sigma h} S^{d+1} \longrightarrow \cdots, \tag{1} \end{equation*}
$$ where i is the inclusion map, $p=p(\mathrm{~F})$ is a map pinching S^{d} to one point and Σh is the reduced suspension of h. Our result is given by the table on page 7. Its essence is stated as follows.

Theorem $\quad h^{*}: \pi_{d}\left(S^{n}\right) \rightarrow \pi_{2 d-1}\left(S^{n}\right)$ is a monomorphism and there exists a bijection

$$
\pi^{n}\left(\mathbf{F P}^{2}\right)=p^{*} \pi_{2 d}\left(S^{n}\right) \cong \pi_{z d}\left(S^{n}\right) /\left(\sum h\right)^{*} \pi_{d+1}\left(S^{n}\right) .
$$

Our method is to use the cofiber sequence (1) and our calculation is based on the results of homotopy groups of spheres given by Toda (1962 [3]).

1 The real, complex and quaternionic planes

Throughout this note we use the following exact sequence induced from the cofiber sequence (1) :

$$
\begin{equation*}
\pi_{2 d-1}\left(S^{n}\right) \stackrel{h^{*}}{\leftrightarrows} \pi_{d}\left(S^{n}\right) \stackrel{i^{*}}{\leftrightarrows} \pi^{n}\left(\mathbf{F P}^{2}\right) \stackrel{p^{*}}{\leftrightarrows} \pi_{2 d}\left(S^{n}\right)^{(\underline{2 n})^{*}} \pi_{d+1}\left(S^{n}\right) \tag{2}
\end{equation*}
$$

In general no group structure exists on the set $\pi^{n}\left(\mathbf{F P}^{2}\right)$ except for the case $n \geq d$

[^0]+1 . To express our result simply, we give a virtual group structure in this set so that $p^{*}: \pi_{2 d}\left(S^{n}\right) \longrightarrow \pi^{n}\left(\mathbf{F P}^{2}\right)$ is a homomorphism. This group structure is realized for $n \geq d$ +1 since $\pi^{n}\left(\mathrm{FP}^{2}\right)$ is stable. We also note that the Hopf multiplication of S^{n} for $n=3$ or 7 induces the homomorphism $p^{*}: \pi_{2 d}\left(S^{n}\right) \longrightarrow \pi^{n}\left(\mathbf{F P}^{2}\right)$.

As is easily seen, we obtain the following: $\pi^{1}\left(\mathbf{F P}^{2}\right)=0, \pi^{2 d}\left(\mathbf{F P}^{2}\right)=\mathbf{Z}\{p(\mathbf{F})\}$ except for $\mathbf{F}=\mathbf{R}, \pi^{n}\left(\mathbf{F P}^{2}\right)=0$ for $2 d<n$ and $\pi^{n}\left(\mathbf{F P}^{2}\right) \cong \pi_{2 d}\left(S^{n}\right) \cong \pi_{2 d-n}^{S}\left(S^{0}\right)$ for $d+1<n$, where $\pi_{k}^{S}\left(S^{0}\right)$ stands for the k -stem stable homotopy group of a sphere. So it suffices to work in the case $2 \leq n \leq d+1$.

By abuse of notation, we often use the same letter to denote a map and its homotopy class. First we recall the following results of homotopy groups of spheres (Toda 1962 [3]):

$$
\begin{gathered}
\pi_{n}\left(S^{n}\right)=\mathbf{Z}\left\{c_{n}\right\}(n \geq 1) ; \pi_{3}\left(S^{2}\right)=\mathbf{Z}\left\{\eta_{2}\right\} ; \\
\pi_{n+1}\left(S^{n}\right)=\mathbf{Z}_{2}\left\{\eta_{n}\right\}(n \geq 3) ; \pi_{n+2}\left(S^{n}\right)=\mathbf{Z}_{2}\left\{\eta_{n}^{2}\right\}(n \geq 2),
\end{gathered}
$$

where $\eta_{2}=h(\mathrm{C}), \eta_{n}=\Sigma^{n-2} \eta_{2}$ and $\eta_{n}^{2}=\eta_{n} \circ \eta_{n+1}$ for $n \geq 2$.
Obviously we have the following:

$$
\pi^{2}\left(\mathbf{R} \mathbf{P}^{2}\right)=\mathbf{Z}_{2}\{p(\mathbf{R})\} ; \pi^{2}\left(\mathbf{C P}^{2}\right)=0
$$

We show

Lemma $1 \quad \eta_{2_{*}}: \pi^{3}\left(\mathbf{F P}^{2}\right) \rightarrow \pi^{2}\left(\mathbf{F P}^{2}\right)$ is bijective if $\mathbf{F}=\mathbf{H}$ or $\mathbf{0}$.
Proof. By making use of the Hopf fibration $\eta_{2}: S^{3} \rightarrow S^{2}$, we have an exact sequence (Mimura-Toda 1991 [1])

$$
0=\left[\mathbf{F P}^{2}, S^{1}\right] \longrightarrow\left[\mathbf{F P}^{2}, S^{3}\right] \xrightarrow{h_{*}}\left[\mathbf{F P}^{2}, S^{2}\right] \xrightarrow{\bullet \bullet}\left[\mathbf{F P}^{2}, B S^{1}\right],
$$

where $B S^{1}=K(\mathbf{Z}, 2)$ is the classifying space of S^{1} and $i^{\prime}: S^{2} \hookrightarrow B S^{1}$ is the inclusion map. $\left[\mathbf{F P}^{2}, B S^{1}\right]$ is isomorphic to the cohomology group $\tilde{H}^{2}\left(\mathbf{F P}^{2}: \mathbf{Z}\right)$ which is trivial in our case. This completes the proof.

We recall the following (Toda 1962 [3]):
$\pi_{5}\left(S^{3}\right)=\mathbf{Z}_{4}\left\{\nu^{\prime}\right\} \oplus \mathbf{Z}_{3}\left\{\alpha_{1}(3)\right\} ; \quad \pi_{7}\left(S^{4}\right)=\mathbf{Z}\left\{\nu_{4}\right\} \oplus \mathbf{Z}_{4}\left\{\Sigma \nu^{\prime}\right\} \oplus \mathbf{Z}_{3}\left\{\alpha_{1}(4)\right\} ; \quad \pi_{n+3}\left(S^{n}\right)=\mathbf{Z}_{8}\left\{\nu_{n}\right\} \oplus$ $\mathrm{Z}_{3}\left\{\alpha_{1}(n)\right\}\left(\nu_{n}=\sum^{n-4} \nu_{4}\right.$ for $n \geq 4$ and $\alpha_{1}(n)=\sum^{n-3} \alpha_{1}(3)$ for $n \geq 3$); $2 \nu_{n}=\Sigma^{n-3} \nu^{\prime}$ for $n \geq 5$. We can take $h=h(\mathbf{H})=\nu_{4}+\alpha_{1}(4)$, and so $\Sigma h=\nu_{5}+\alpha_{1}(5)$. We also recall the following:

$$
\begin{gathered}
\pi_{7}\left(S^{3}\right)=\mathbf{Z}_{2}\left\{\nu^{\prime} \circ \eta_{6}\right\} ; \quad \nu^{\prime} \circ \eta_{6}=\eta_{3} \circ \nu_{4} ; \eta_{3} \circ \sum \nu^{\prime}=0 ; \\
\pi_{8}\left(S^{4}\right)=\mathbf{Z}_{2}\left\{\nu_{4} \circ \eta_{7}\right\} \oplus \mathbf{Z}_{2}\left\{\sum \nu^{\prime} \circ \eta_{7}\right\} ; \pi_{9}\left(S^{5}\right)=\mathbf{Z}_{2}\left\{\nu_{5} \circ \eta_{8}\right\} ; \\
\pi_{8}\left(S^{3}\right)=\mathbf{Z}_{2}\left\{\nu^{\prime} \circ \eta_{6}^{2}\right\} ; \quad \pi_{9}\left(S^{4}\right)=\mathbf{Z}_{2}\left\{\nu_{4} \circ \eta_{7}^{2}\right\} \oplus \mathbf{Z}_{2}\left\{\Sigma \nu^{\prime} \circ \eta_{7}^{2}\right\} ; \\
\pi_{4}^{5}\left(S^{0}\right)=\pi_{5}^{5}\left(S^{0}\right)=0 ; \quad \pi_{5}^{5}\left(S^{0}\right) \cong \mathbf{Z}_{2} .
\end{gathered}
$$

We recall $\pi_{10}\left(S^{3}\right)=\mathbf{Z}_{3}\left\{\alpha_{2}(3)\right\} \oplus \mathbf{Z}_{5}\left\{\alpha_{1}^{\prime}(3)\right\}$. We set $\alpha_{2}(n)=\Sigma^{n-3} \alpha_{2}(3)$ and $\alpha_{1}^{\prime}(n)=\Sigma^{n-3} \alpha_{1}^{\prime}(3)$ for $n \geq 3$. Then we know $\pi_{11}\left(S^{4}\right)=\mathbf{Z}_{3}\left\{\alpha_{2}(4)\right\} \oplus \mathbf{Z}_{5}\left\{\alpha_{1}^{\prime}(4)\right\} ; \pi_{15}\left(S^{8}\right)=\mathbf{Z}\left\{\sigma_{8}\right\} \oplus \mathbf{Z}_{8}\left\{\Sigma \sigma^{\prime}\right\}$
$\oplus \mathbf{Z}_{3}\left\{\alpha_{2}(8)\right\} \oplus \mathbf{Z}_{5}\left\{\alpha_{1}^{\prime}(8)\right\} ; \pi_{16}\left(S^{9}\right)=\mathbf{Z}_{16}\left\{\sigma_{9}\right\} \oplus \mathbf{Z}_{3}\left\{\alpha_{2}(9)\right\} \oplus \mathbf{Z}_{5}\left\{\alpha_{1}^{\prime}(9)\right\}$. We can take $h=h(\mathbf{0})=\sigma_{8}$ $+\alpha_{2}(8)+\alpha_{1}^{\prime}(8)$, and so $\Sigma h=\sigma_{9}+\alpha_{2}(9)+\alpha_{1}^{\prime}(9)$.

Since $\sum h(\mathbf{F})$ is a generator of $\pi_{2 d}\left(S^{d+1}\right)$ except for $\mathbf{F}=\mathbf{R}$, the exact sequence (2) implies $\pi^{d+1}\left(\mathbf{F P}^{2}\right)=0$ except for $\mathbf{F}=\mathbf{R}$. We show

Lemma $2 \pi^{4}\left(\mathbf{H P}^{2}\right)=\mathbf{Z}_{2}\left\{\nu_{4} \circ \eta_{7} \circ p\right\}$ and $\pi^{3}\left(\mathbf{H P}^{2}\right)=\mathbf{Z}_{2}\left\{\nu^{\prime} \circ \eta_{6}^{2} \circ p\right\}$.

Proof. We consider the exact sequence (2) for $n=4$:

$$
\left.\pi_{7}\left(S^{4}\right) \stackrel{h^{*}}{!} \pi_{4}\left(S^{4}\right) \stackrel{i^{*}}{\stackrel{4}{4}} \pi^{(} \mathbf{H} P^{2}\right) \stackrel{p^{*}}{\stackrel{1}{2}} \pi_{8}\left(S^{4}\right) \stackrel{\left(\sum h\right)^{*}}{\stackrel{(}{5}\left(S^{4}\right) .}
$$

h^{*} is a monomorphism and we have $(\Sigma h)^{*}\left(\eta_{4}\right)=\eta_{4} \circ \nu_{5}+\eta_{4} \circ \alpha_{1}(5)=\sum \nu^{\prime} \circ \eta_{7}$ since $\eta_{4} \circ \alpha_{1}(5)=0$. This leads to the first half.

Next we consider the exact sequence (2) for $n=3$:

$$
\pi_{7}\left(S^{3}\right) h^{h^{*}} \pi_{4}\left(S^{3}\right) \stackrel{i}{*}_{\iota^{*}} \pi^{3}\left(\mathbf{H P}^{2}\right) \stackrel{p^{*}}{-} \pi_{8}\left(S^{3}\right)^{(2 h)^{*}} \pi_{5}\left(S^{3}\right)
$$

Since $h^{*}\left(\eta_{3}\right)=\eta_{3} \circ \nu_{4}=\nu^{\prime} \circ \eta_{6}, h^{*}$ is a monomorphism. We have

$$
\begin{aligned}
(\Sigma h)^{*}\left(\eta_{3}^{2}\right) & =\eta_{3} \circ \eta_{4} \circ \nu_{5} \\
& =\eta_{3} \circ \sum \nu^{\prime} \circ \eta_{7} \\
& =0 .
\end{aligned}
$$

This leads to the second half and completes the proof.

2 The Cayley projective plane

Hereafter we deal with the cohomotopy set $\pi^{n}\left(\mathrm{OP}^{2}\right)$. We recall the following:

$$
\begin{gathered}
\nu^{\prime} \circ \nu_{6}=0 ; \eta_{6} \circ \sigma^{\prime}=4 \bar{\nu}_{6} ; \eta_{7} \circ \sum \sigma^{\prime}=0 ; \eta_{6} \circ \bar{\nu}_{7}=\overline{\nu_{6}} \circ \eta_{14}=\nu_{6}^{3} ; \\
\pi_{15}\left(S^{7}\right)=\mathbf{Z}_{2}\left\{\sigma^{\prime} \circ \eta_{14}\right\} \oplus \mathbf{Z}_{2}\left(\bar{\nu}_{7}\right\} \oplus \mathbf{Z}_{2}\left\{\varepsilon_{7}\right\} ; \eta_{7} \circ \sigma_{8}=\sigma^{\prime} \circ \eta_{14}+\overline{\nu_{7}}+\varepsilon_{7} ; \\
\pi_{16}\left(S^{7}\right)=\mathbf{Z}_{2}\left\{\sigma^{\circ} \circ \eta_{11}^{2}\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{7}^{3}\right\} \oplus \mathbf{Z}_{2}\left\{\eta_{7} \circ \varepsilon_{8}\right\} \oplus \mathbf{Z}_{2}\left\{\mu_{77}\right\} ; \\
\pi_{16}\left(S^{8}\right)=\mathbf{Z}_{2}\left\{\sigma_{8} \circ \eta_{15}\right\} \oplus \mathbf{Z}_{2}\left\{\sum \sigma^{\prime} \circ \eta_{15}\right\} \oplus \mathbf{Z}_{2}\left\{\bar{\nu}_{8}\right\} \oplus \mathbf{Z}_{2}\left\{\varepsilon_{8}\right\} ; \\
\pi_{15}\left(S^{5}\right)=\mathbf{Z}_{8}\left\{\nu_{5} \circ \sigma_{8}\right\} \oplus \mathbf{Z}_{2}\left\{\eta_{6} \circ \mu_{7}\right\} \oplus \mathbf{Z}_{9}\left\{\beta_{1}(5)\right\} ; \\
2\left(\nu_{5} \circ \sigma_{8}\right)=\nu_{5} \circ \sum \sigma^{\prime} ; 3 \beta_{1}(5)=-\alpha_{1}(5) \circ \alpha_{2}(8) ; \\
\pi_{15}\left(S^{6}\right)=\mathbf{Z}_{2}\left\{\nu_{6}^{3}\right\} \oplus \mathbf{Z}_{2}\left\{\eta_{6} \circ \varepsilon_{7}\right\} \oplus \mathbf{Z}_{22}\left\{\mu_{6}\right\} ; \\
\pi_{16}\left(S^{6}\right)=\mathbf{Z}_{8}\left\{\nu_{6} \circ \sigma_{9}\right\} \oplus \mathbf{Z}_{22}\left\{\eta_{6} \circ \mu_{7}\right\} \oplus \mathbf{Z}_{9}\left\{\beta_{1}(6)\right\}\left(\beta_{1}(6)=\sum \beta_{1}(5)\right),
\end{gathered}
$$

We show
Lemma 3 (i) $\pi^{8}\left(\mathbf{O P}^{2}\right)=\mathbf{Z}_{2}\left\{\sigma_{8} \circ \eta_{15} \circ p\right\} \oplus \mathbf{Z}_{2}\left\{\overline{\mathcal{V}}_{8} \circ p\right\} \oplus \mathbf{Z}_{2}\left\{\varepsilon_{8} \circ p\right\}$.
(ii) $\pi^{7}\left(\mathrm{OP}^{2}\right)=\mathbf{Z}_{2}\left\{\sigma^{\prime} \circ \eta_{14}^{2} \circ p\right\} \oplus \mathbf{Z}_{2}\left\{\eta_{7} \circ \varepsilon_{8} \circ p\right\} \oplus \mathbf{Z}_{2}\left\{\mu_{7} \circ p\right\}$.
(iii) $\pi^{6}\left(\mathrm{OP}^{2}\right)=\mathbf{Z}_{2}\left\{\eta_{6} \circ \mu_{7} \circ p\right\} \oplus \mathbf{Z}_{3}\left\{\beta_{1}(6) \circ p\right\}$.

Proof. We consider the exact sequence (2) for $n=8$:

$$
\pi_{15}\left(S^{8}\right) \stackrel{h^{*}}{\leftrightarrows} \pi_{8}\left(S^{8}\right) \stackrel{i^{*}}{\leftarrow} \pi^{8}\left(\mathrm{OP}^{2}\right) \stackrel{p^{*}}{\leftrightarrows} \pi_{16}\left(S^{8}\right) \stackrel{(\Sigma h)^{*}}{\stackrel{(1)}{4}} \pi_{9}\left(S^{8}\right) .
$$

h^{*} is a monomorphism. We have

$$
\begin{aligned}
(\Sigma h)^{*}\left(\eta_{8}\right) & =\eta_{8}^{\circ} \sigma_{9} \\
& =\Sigma\left(\eta_{7} \circ \sigma_{8}\right) \\
& =\Sigma \sigma^{\circ} \circ \eta_{15}+\bar{\nu}_{8}+\varepsilon_{8} .
\end{aligned}
$$

So we have (i). Next we consider the exact sequence (2) for $n=7$:

$$
\pi_{15}\left(S^{7}\right) \stackrel{h^{h^{*}}}{\pi_{8}}\left(S^{7}\right) \stackrel{i^{*}}{ } \pi^{7}\left(\mathrm{OP}^{2}\right) \stackrel{p^{*}}{ }-\pi_{66}\left(S^{7}\right) \stackrel{\left(\sum h\right)^{*}}{\left(\pi_{9}\right.}\left(S^{7}\right) .
$$

Since $h^{*}\left(\eta_{7}\right)=\eta_{7} \circ \sigma_{8}=\sigma^{\prime} \circ \eta_{14}+\bar{\nu}_{7}+\varepsilon_{7}, h^{*}$ is a monomorphism. We have

$$
\begin{aligned}
(\Sigma h)^{*}\left(\eta_{7}^{2}\right) & =\eta_{7} \circ \eta_{8} \circ \sigma_{9} \\
& =\eta_{7} \circ\left(\sum \sigma^{\prime} \circ \eta_{15}+\overline{\nu_{8}}+\varepsilon_{8}\right) \\
& =\eta_{7} \circ \sum \sigma^{\prime} \circ \eta_{15}+\eta_{7} \circ \bar{\nu}_{8}+\eta_{7} \circ \varepsilon_{8} \\
& =\nu_{7}^{3}+\eta_{7} \circ \varepsilon_{8} .
\end{aligned}
$$

This leads to (ii).
We consider the exact sequence (2) for $n=6$:

$$
\pi_{15}\left(S^{6}\right) \stackrel{h^{*}}{\leftrightarrows} \pi_{8}\left(S^{6}\right) \stackrel{i^{*}}{\leftarrow} \pi^{6}\left(\mathrm{OP}^{2}\right) \stackrel{p^{*}}{\leftarrow} \pi_{16}\left(S^{6}\right) \stackrel{\left(\sum h\right)^{*}}{\curvearrowleft} \pi_{9}\left(S^{6}\right) .
$$

We have

$$
\begin{aligned}
h^{*}\left(\eta_{6}^{2}\right) & =\eta_{6} \circ \eta_{7} \circ \sigma_{8} \\
& =\eta_{6} \circ\left(\sigma^{\prime} \circ \eta_{14}+\bar{\nu}_{7}+\varepsilon_{7}\right) \\
& =\eta_{6} \circ \sigma^{\circ} \circ \eta_{14}+\eta_{6} \circ \bar{\nu}_{7}+\eta_{6} \circ \varepsilon_{7} \\
& =4 \bar{\nu}_{6} \circ \eta_{14}+\nu_{6}^{3}+\eta_{6} \circ \varepsilon_{7} \\
& =\nu_{6}^{3}+\eta_{6} \circ \varepsilon_{7} .
\end{aligned}
$$

So h^{*} is a monomorphism. We have $\left(\sum h\right)^{*}\left(\nu_{6}\right)=\nu_{6} \circ \sigma_{9}$ and $\left(\sum h\right)^{*}\left(\alpha_{1}(6)\right)=\alpha_{1}(6) \circ\left(\alpha_{2}(9)\right.$ $\left.+\alpha_{1}^{\prime}(9)\right)=-3 \beta_{1}(6)$ since $\alpha_{1}(6) \circ \alpha_{1}^{\prime}(9)=0$. This leads to (iii) and completes the proof.

We recall the following:

$$
\begin{gathered}
\nu^{\prime} \circ \bar{\nu}_{6}=\varepsilon_{3} \circ \nu_{11} ; \pi_{15}\left(S^{5}\right)=\mathbf{Z}_{504}\left\{\xi_{5}\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{5}^{\circ} \circ \bar{\nu}_{8}\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{5} \circ \varepsilon_{8}\right\} ; \\
\pi_{15}\left(S^{4}\right)=\mathbf{Z}_{2}\left\{\nu_{4} \circ \sigma^{\prime} \circ \eta_{14}\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{4} \circ \bar{\nu}_{7}\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{4} \circ \varepsilon_{7}\right\} \oplus \mathbf{Z}_{84}\left\{\sum \mu^{\prime}\right\} \oplus \mathbf{Z}_{2}\left\{\varepsilon_{4} \circ \nu_{12}\right\} \oplus \mathbf{Z}_{2}\left\{\sum \nu^{\prime} \circ \varepsilon_{7}\right\} .
\end{gathered}
$$

Here the generators ζ_{5} and $\Sigma \mu^{\prime}$ of the 2-primary components are used to represent \mathbf{Z}_{504} and \mathbf{Z}_{84}, respectively. We also recall the following:

$$
\begin{gathered}
\pi_{16}\left(S^{4}\right)=\mathbf{Z}_{2}\left\{\nu_{4} \circ \sigma^{\prime} \circ \eta_{14}^{2}\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{4}^{4}\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{4} \circ \mu_{7}\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{4} \circ \eta_{7} \circ \varepsilon_{8}\right\} \\
\oplus \mathbf{Z}_{2}\left\{\sum \nu^{\prime} \circ \mu_{7}\right\} \oplus \mathbf{Z}_{2}\left\{\sum \nu^{\prime} \circ \eta_{7} \circ \varepsilon_{8}\right\} ; \\
\pi_{15}\left(S^{3}\right)=\mathbf{Z}_{2}\left\{\nu^{\prime} \circ \mu_{6}\right\} \oplus \mathbf{Z}_{2}\left\{\nu^{\prime} \circ \eta_{6} \circ \varepsilon_{7}\right\} ; \\
\pi_{16}\left(S^{3}\right)=\mathbf{Z}_{2}\left\{\nu^{\prime} \circ \eta_{6} \circ \mu_{7}\right\} \oplus \mathbf{Z}_{3}\left\{\alpha_{1}(3) \circ \beta_{1}(6)\right\} ; \pi_{9}\left(S^{3}\right)=\mathbf{Z}_{3}\left\{\alpha_{1}(3) \circ \alpha_{1}(6)\right\} .
\end{gathered}
$$

We show

Lemma 4 (1) $\pi^{5}\left(\mathrm{OP}^{2}\right)=\mathbf{Z}_{504}\left\{\zeta_{5} \circ p\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{5} \circ \varepsilon_{8} \circ p\right\}$.
(2) $\pi^{4}\left(\mathrm{OP}^{2}\right)=\mathbf{Z}_{2}\left\{\nu_{4} \circ \sigma^{\prime} \circ \eta_{14}^{2} \circ p\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{4}^{4} \circ p\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{4} \circ \mu_{7} \circ p\right\} \oplus \mathbf{Z}_{2}\left\{\Sigma \nu^{\prime} \circ \mu_{7} \circ p\right\}$.
(3) $\pi^{3}\left(\mathrm{OP}^{2}\right)=\mathbf{Z}_{2}\left\{\nu^{\prime} \circ \eta_{6} \circ \mu_{7} \circ p\right\} \oplus \mathbf{Z}_{3}\left\{\alpha_{1}(3) \circ \beta_{1}(6) \circ p\right\}$.

Proof. In the exact sequence
we have $h^{*}\left(\nu_{5}\right)=\nu_{5} \circ \sigma_{8}$ and $h^{*}\left(\alpha_{1}(5)\right)=\alpha_{1}(5) \circ \alpha_{2}(8)=-3 \beta_{1}(5)$. So h^{*} is a monomorphism. We have

$$
\begin{aligned}
(\Sigma h)^{*}\left(\nu_{5} \circ \eta_{8}\right) & =\nu_{5} \circ \eta_{8} \circ \sigma_{9} \\
& =\nu_{5}^{\circ}\left(\sum \sigma^{\prime} \circ \eta_{15}+\overline{\nu_{8}}+\varepsilon_{8}\right) \\
& =\nu_{5} \circ \sum \sigma^{\prime} \circ \eta_{15}+\nu_{5}^{\circ} \bar{\nu}_{8}+\nu_{5} \circ \varepsilon_{8} \\
& =\nu_{5}^{\circ} \circ \bar{\nu}_{8}+\nu_{5}^{\circ} \circ \varepsilon_{8} .
\end{aligned}
$$

This leads to (i).
We consider the exact sequence

By Proposition 2.2.(1) of Ôguchi (1964 [2]), we know $\Sigma \nu^{\prime} \circ \sigma^{\prime}=2 \Sigma \varepsilon^{\prime}$. We have

$$
\begin{aligned}
h^{*}\left(\sum \nu^{\prime} \circ \eta_{7}\right) & =\sum \nu^{\prime} \circ \eta_{7} \circ \sigma_{8} \\
& =\sum \nu^{\prime} \circ\left(\sigma^{\prime} \circ \eta_{14}+\overline{\nu_{7}}+\varepsilon_{7}\right) \\
& =\sum \nu^{\prime} \circ \sigma^{\prime} \circ \eta_{14}+\sum \nu^{\prime} \circ \overline{\nu_{7}}+\sum \nu^{\prime} \circ \varepsilon_{7} \\
& =\varepsilon_{7} \circ \nu_{14}+\sum \nu^{\prime} \circ \varepsilon_{7}
\end{aligned}
$$

and

$$
\begin{aligned}
h^{*}\left(\nu_{4} \circ \eta_{7}\right) & =\nu_{4} \circ \eta_{7} \circ \sigma_{8} \\
& =\nu_{4} \circ\left(\sigma^{\prime} \circ \eta_{14}+\overline{\nu_{7}}+\varepsilon_{7}\right) \\
& =\nu_{4} \circ \sigma^{\prime} \circ \eta_{14}+\nu_{4} \circ \bar{\nu}_{7}+\nu_{4} \circ \varepsilon_{7} .
\end{aligned}
$$

So h^{*} is a monomorphism.

$$
\begin{aligned}
\left(\sum h\right)^{*}\left(\nu_{4} \circ \eta_{7}^{2}\right) & =\nu_{4} \circ \eta_{7} \circ \eta_{8} \circ \sigma_{9} \\
& =\nu_{4} \circ \eta_{7} \circ\left(\sum \sigma^{\prime} \circ \eta_{15}+\overline{\nu_{8}}+\varepsilon_{8}\right) \\
& =\nu_{4}^{4}+\nu_{4} \circ \eta_{7} \circ \varepsilon_{8}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\sum h\right)^{*}\left(\sum \nu^{\prime} \circ \eta_{7}^{2}\right) & =\sum \nu^{\prime} \circ \eta_{7} \circ \eta_{8} \circ \sigma_{9} \\
& =\sum \nu^{\prime} \circ \eta_{7} \circ\left(\sum \sigma^{\prime} \circ \eta_{15}+\overline{\nu_{8}}+\varepsilon_{8}\right) \\
& =\sum \nu^{\prime} \circ \eta_{7} \circ \sum \sigma^{\prime} \circ \eta_{15}+\sum \nu^{\prime} \circ \nu_{7}^{3}+\sum \nu^{\prime} \circ \eta_{7} \circ \varepsilon_{8} \\
& =\sum \nu^{\prime} \circ \eta_{7} \circ \varepsilon_{8}
\end{aligned}
$$

This leads to (ii).
Next, in the exact sequence

$$
\pi_{15}\left(S^{3}\right) \stackrel{h^{*}}{\leftrightarrows} \pi_{8}\left(S^{3}\right) \stackrel{i^{*}}{\leftrightarrows} \pi^{3}\left(\mathrm{OP}^{2}\right) \stackrel{p^{*}}{\leftrightarrows} \pi_{16}\left(S^{3}\right){ }_{(\Omega h)^{*}}^{\longleftrightarrow} \pi_{9}\left(S^{3}\right)
$$

we have

$$
\begin{aligned}
h^{*}\left(\nu^{\prime} \circ \eta_{6}^{2}\right) & =\nu^{\prime} \circ \eta_{6} \circ \eta_{7} \circ \sigma_{8} \\
& =\nu^{\prime} \circ \eta_{6} \circ \sigma^{\prime} \circ \eta_{14}+\nu^{\prime} \circ \eta_{6} \circ \bar{\nu}_{7}+\nu^{\prime} \circ \eta_{6} \circ \varepsilon_{7} \\
& =\nu^{\prime} \circ \eta_{6} \circ \varepsilon_{7} .
\end{aligned}
$$

So h^{*} is a monomorphism. Finally we have

$$
\begin{aligned}
(\Sigma h)^{*}\left(\alpha_{1}(3) \circ \alpha_{1}(6)\right) & =\alpha_{1}(3) \circ \alpha_{1}(6) \circ \alpha_{2}(9) \\
& =\alpha_{1}(3) \circ-3 \beta_{1}(6) \\
& =-3 \alpha_{1}(3) \circ \beta_{1}(6) \\
& =0 .
\end{aligned}
$$

This leads to (iii) and completes the proof.

Thus we have completed the proof of our theorem.

References

[1] Mimura, M. and Toda, H.: Topology of Lie groups, I and II, AMS Translations of Mathematical Monographs 91, 1991.
[2] ÔGUCHI, K. : Generators of 2-primary components of homotopy groups of spheres, unitary groups and symplectic groups, J. Fac. Sci. Univ. of Tokyo 11 (1964), 65-111.
[3] TodA, H. : Composition methods in homotopy groups of spheres. Ann. of Math. Studies, 49, Princeton, 1962.

Table of the result
Our result is summarized in the following table. Here $m+r^{k}$ means the direct sum of the ($k+1$) factors $\mathbf{Z}_{m} \oplus \mathbf{Z}_{r} \oplus \cdots \oplus \mathbf{Z}_{r}$ and ∞ means \mathbf{Z}.

n	$\left[\mathbf{R P ^ { 2 } , \mathbf { S } ^ { n }]}\right.$	$\left[\mathbf{C P}^{2}, S^{n}\right]$	$\left[\mathbf{H P}^{2}, S^{n}\right]$	$\left[\mathbf{O P}^{2}, S^{n}\right]$
1	0	0	0	0
2	2	0	2	6
3	0	0	2	6
4	\vdots	∞	2	2^{4}
5		0	0	$504+2$
6		\vdots	2	6
7			2	2^{3}
8			0	2^{3}
9				0
10				2
11				0
12				0
13				2
14				2
15				∞
16				0
17				\vdots
18				

[^0]: *The first and third authors are students of the second author.

