Cohomotopy sets of projective planes

S. KIKKAWA*, J. MUKAI and D.TAKABA*

Department of Mathematical Sciences, Faculty of Science, Shinshu
University
(Received July 27, 1998)

Abstract

We set $\mathbf{F} = \mathbf{R}$ (real), \mathbf{C} (complex), \mathbf{H} (quaternion), \mathbf{O} (octonian) and $d = \dim_{\mathbf{R}} \mathbf{F}$. We denote by $\mathbf{F}\mathbf{P}^2$ the \mathbf{F} -projective plane. The purpose of this note is to determine the cohomotopy set

$$\pi^n(\mathbf{FP}^2) = [\mathbf{FP}^2, S^n].$$

Let $h = h(\mathbf{F}): S^{2d-1} \to S^d$ be the Hopf map. Then we have a cell structure $\mathbf{F}P^2 = S^d \cup_h e^{2d}$ and a cofiber sequence:

$$S^{2d-1} \xrightarrow{h} S^d \xrightarrow{i} FP^2 \xrightarrow{p} S^{2d} \xrightarrow{\Sigma h} S^{d+1} \xrightarrow{} \cdots, \tag{1}$$

where i is the inclusion map, $p = p(\mathbf{F})$ is a map pinching S^d to one point and $\sum h$ is the reduced suspension of h. Our result is given by the table on page 7. Its essence is stated as follows.

Theorem $h^*: \pi_d(S^n) \to \pi_{2d-1}(S^n)$ is a monomorphism and there exists a bijection

$$\pi^n(\mathbf{FP}^2) = p^* \pi_{2d}(S^n) \cong \pi_{2d}(S^n) / (\sum h)^* \pi_{d+1}(S^n).$$

Our method is to use the cofiber sequence (1) and our calculation is based on the results of homotopy groups of spheres given by Toda (1962 [3]).

1 The real, complex and quaternionic planes

Throughout this note we use the following exact sequence induced from the cofiber sequence (1):

$$\pi_{2d-1}(S^n) \stackrel{h^*}{\leftarrow} \pi_d(S^n) \stackrel{i^*}{\leftarrow} \pi^n(\operatorname{FP}^2) \stackrel{p^*}{\leftarrow} \pi_{2d}(S^n) \stackrel{(\Sigma h)^*}{\leftarrow} \pi_{d+1}(S^n). \tag{2}$$

In general no group structure exists on the set $\pi^n(FP^2)$ except for the case $n \ge d$

^{*}The first and third authors are students of the second author.

+1. To express our result simply, we give a virtual group structure in this set so that $p^*: \pi_{2d}(S^n) \longrightarrow \pi^n(\mathrm{FP}^2)$ is a homomorphism. This group structure is realized for $n \ge d + 1$ since $\pi^n(\mathrm{FP}^2)$ is stable. We also note that the Hopf multiplication of S^n for n = 3 or 7 induces the homomorphism $p^*: \pi_{2d}(S^n) \longrightarrow \pi^n(\mathrm{FP}^2)$.

As is easily seen, we obtain the following: $\pi^1(\mathbf{FP}^2) = 0$, $\pi^{2d}(\mathbf{FP}^2) = \mathbf{Z}\{p(\mathbf{F})\}$ except for $\mathbf{F} = \mathbf{R}$, $\pi^n(\mathbf{FP}^2) = 0$ for 2d < n and $\pi^n(\mathbf{FP}^2) \cong \pi_{2d}(S^n) \cong \pi_{2d-n}^S(S^0)$ for d+1 < n, where $\pi_k^S(S^0)$ stands for the k-stem stable homotopy group of a sphere. So it suffices to work in the case $2 \le n \le d+1$.

By abuse of notation, we often use the same letter to denote a map and its homotopy class. First we recall the following results of homotopy groups of spheres (Toda 1962 [3]):

$$\pi_n(S^n) = \mathbf{Z}\{\iota_n\}(n \ge 1); \ \pi_3(S^2) = \mathbf{Z}\{\eta_2\};$$

$$\pi_{n+1}(S^n) = \mathbf{Z}_2\{\eta_n\}(n \ge 3); \ \pi_{n+2}(S^n) = \mathbf{Z}_2\{\eta_n^2\}(n \ge 2),$$

where $\eta_2 = h(\mathbf{C})$, $\eta_n = \sum_{n=2}^{n-2} \eta_2$ and $\eta_n^2 = \eta_n \circ \eta_{n+1}$ for $n \ge 2$.

Obviously we have the following:

$$\pi^{2}(\mathbf{RP^{2}}) = \mathbf{Z}_{2}\{p(\mathbf{R})\}; \ \pi^{2}(\mathbf{CP^{2}}) = 0.$$

We show

Lemma 1 $\eta_{2*}: \pi^3(\text{FP}^2) \to \pi^2(\text{FP}^2)$ is bijective if $\mathbf{F} = \mathbf{H}$ or \mathbf{O} .

Proof. By making use of the Hopf fibration $\eta_2: S^3 \to S^2$, we have an exact sequence (Mimura-Toda 1991 [1])

$$0 = [\mathbf{FP}^2, S^1] \longrightarrow [\mathbf{FP}^2, S^3] \xrightarrow{h_*} [\mathbf{FP}^2, S^2] \xrightarrow{i_*} [\mathbf{FP}^2, BS^1]$$

where $BS^1 = K(\mathbf{Z}, 2)$ is the classifying space of S^1 and $i' : S^2 \hookrightarrow BS^1$ is the inclusion map. $[\mathbf{FP^2}, BS^1]$ is isomorphic to the cohomology group $\tilde{H}^2(\mathbf{FP^2} : \mathbf{Z})$ which is trivial in our case. This completes the proof. \square

We recall the following (Toda 1962 [3]):

 $\pi_6(S^3) = \mathbf{Z}_4\{\nu'\} \oplus \mathbf{Z}_3\{\alpha_1(3)\}; \quad \pi_7(S^4) = \mathbf{Z}\{\nu_4\} \oplus \mathbf{Z}_4\{\sum \nu'\} \oplus \mathbf{Z}_3\{\alpha_1(4)\}; \quad \pi_{n+3}(S^n) = \mathbf{Z}_8\{\nu_n\} \oplus \mathbf{Z}_3\{\alpha_1(n)\} \ (\nu_n = \sum^{n-4}\nu_4 \text{ for } n \ge 4 \text{ and } \alpha_1(n) = \sum^{n-3}\alpha_1(3) \text{ for } n \ge 3); \ 2\nu_n = \sum^{n-3}\nu' \text{ for } n \ge 5.$ We can take $h = h(\mathbf{H}) = \nu_4 + \alpha_1(4)$, and so $\sum h = \nu_5 + \alpha_1(5)$. We also recall the following:

$$\begin{split} \pi_{7}(S^{3}) &= \mathbf{Z}_{2}\{\nu' \circ \eta_{6}\}; \quad \nu' \circ \eta_{6} = \eta_{3} \circ \nu_{4}; \quad \eta_{3} \circ \sum \nu' = 0; \\ \pi_{8}(S^{4}) &= \mathbf{Z}_{2}\{\nu_{4} \circ \eta_{7}\} \oplus \mathbf{Z}_{2}\{\sum \nu' \circ \eta_{7}\}; \quad \pi_{9}(S^{5}) = \mathbf{Z}_{2}\{\nu_{5} \circ \eta_{8}\}; \\ \pi_{8}(S^{3}) &= \mathbf{Z}_{2}\{\nu' \circ \eta_{6}^{2}\}; \quad \pi_{9}(S^{4}) = \mathbf{Z}_{2}\{\nu_{4} \circ \eta_{7}^{2}\} \oplus \mathbf{Z}_{2}\{\sum \nu' \circ \eta_{7}^{2}\}; \\ \pi_{4}^{S}(S^{0}) &= \pi_{5}^{S}(S^{0}) = 0; \quad \pi_{6}^{S}(S^{0}) \cong \mathbf{Z}_{2}. \end{split}$$

We recall $\pi_{10}(S^3) = \mathbf{Z}_3\{\alpha_2(3)\} \oplus \mathbf{Z}_5\{\alpha_1'(3)\}$. We set $\alpha_2(n) = \sum^{n-3}\alpha_2(3)$ and $\alpha_1'(n) = \sum^{n-3}\alpha_1'(3)$ for $n \ge 3$. Then we know $\pi_{11}(S^4) = \mathbf{Z}_3\{\alpha_2(4)\} \oplus \mathbf{Z}_5\{\alpha_1'(4)\}$; $\pi_{15}(S^8) = \mathbf{Z}\{\sigma_8\} \oplus \mathbf{Z}_8\{\sum \sigma'\}$ $\oplus \mathbf{Z}_3\{\alpha_2(8)\} \oplus \mathbf{Z}_5\{\alpha_1'(8)\}$; $\pi_{16}(S^9) = \mathbf{Z}_{16}\{\sigma_9\} \oplus \mathbf{Z}_3\{\alpha_2(9)\} \oplus \mathbf{Z}_5\{\alpha_1'(9)\}$. We can take $h = h(\mathbf{O}) = \sigma_8 + \alpha_2(8) + \alpha_1'(8)$, and so $\sum h = \sigma_9 + \alpha_2(9) + \alpha_1'(9)$.

Since $\sum h(\mathbf{F})$ is a generator of $\pi_{2d}(S^{d+1})$ except for $\mathbf{F} = \mathbf{R}$, the exact sequence (2) implies $\pi^{d+1}(\mathbf{FP}^2) = 0$ except for $\mathbf{F} = \mathbf{R}$. We show

Lemma 2 $\pi^4(HP^2) = \mathbb{Z}_2\{\nu_4 \circ \eta_7 \circ p\}$ and $\pi^3(HP^2) = \mathbb{Z}_2\{\nu' \circ \eta_6^2 \circ p\}$.

Proof. We consider the exact sequence (2) for n=4:

$$\pi_7(S^4) \stackrel{h^*}{\longleftarrow} \pi_4(S^4) \stackrel{i^*}{\longleftarrow} \pi^4(\mathbf{HP}^2) \stackrel{p^*}{\longleftarrow} \pi_8(S^4) \stackrel{(\Sigma h)^*}{\longleftarrow} \pi_5(S^4).$$

 h^* is a monomorphism and we have $(\sum h)^*(\eta_4) = \eta_4 \circ \nu_5 + \eta_4 \circ \alpha_1(5) = \sum \nu' \circ \eta_7$ since $\eta_4 \circ \alpha_1(5) = 0$. This leads to the first half.

Next we consider the exact sequence (2) for n=3:

$$\pi_7(S^3) \overset{h^*}{\longleftarrow} \pi_4(S^3) \overset{i^*}{\longleftarrow} \pi^3(\mathbf{H}\mathrm{P}^2) \overset{p^*}{\longleftarrow} \pi_8(S^3) \overset{(\Sigma h)^*}{\longleftarrow} \pi_5(S^3).$$

Since $h^*(\eta_3) = \eta_3 \circ \nu_4 = \nu' \circ \eta_6$, h^* is a monomorphism. We have

$$(\sum h)^*(\eta_3^2) = \eta_3 \circ \eta_4 \circ \nu_5$$

$$= \eta_3 \circ \sum \nu' \circ \eta_7$$

$$= 0.$$

This leads to the second half and completes the proof.

2 The Cayley projective plane

Hereafter we deal with the cohomotopy set $\pi^n(\mathbf{OP}^2)$. We recall the following: $\nu' \circ \nu_6 = 0$; $\eta_6 \circ \sigma' = 4 \bar{\nu}_6$; $\eta_7 \circ \sum \sigma' = 0$; $\eta_6 \circ \bar{\nu}_7 = \bar{\nu}_6 \circ \eta_{14} = \nu_6^3$;

$$\pi_{15}(S^{7}) = \mathbf{Z}_{2}\{\sigma' \circ \eta_{14}\} \oplus \mathbf{Z}_{2}\{\bar{\nu}_{7}\} \oplus \mathbf{Z}_{2}\{\varepsilon_{7}\}; \ \eta_{7} \circ \sigma_{8} = \sigma' \circ \eta_{14} + \bar{\nu}_{7} + \varepsilon_{7};$$

$$\pi_{16}(S^{7}) = \mathbf{Z}_{2}\{\sigma' \circ \eta_{14}^{2}\} \oplus \mathbf{Z}_{2}\{\nu_{7}^{3}\} \oplus \mathbf{Z}_{2}\{\eta_{7} \circ \varepsilon_{8}\} \oplus \mathbf{Z}_{2}\{\mu_{7}\};$$

$$\pi_{16}(S^{8}) = \mathbf{Z}_{2}\{\sigma_{8} \circ \eta_{15}\} \oplus \mathbf{Z}_{2}\{\sum \sigma' \circ \eta_{15}\} \oplus \mathbf{Z}_{2}\{\bar{\nu}_{8}\} \oplus \mathbf{Z}_{2}\{\varepsilon_{8}\};$$

$$\pi_{15}(S^{5}) = \mathbf{Z}_{8}\{\nu_{5} \circ \sigma_{8}\} \oplus \mathbf{Z}_{2}\{\eta_{6} \circ \mu_{7}\} \oplus \mathbf{Z}_{9}\{\beta_{1}(5)\};$$

$$2(\nu_{5} \circ \sigma_{8}) = \nu_{5} \circ \sum \sigma'; \ 3\beta_{1}(5) = -\alpha_{1}(5) \circ \alpha_{2}(8);$$

$$\pi_{15}(S^{6}) = \mathbf{Z}_{2}\{\nu_{6}^{3}\} \oplus \mathbf{Z}_{2}\{\eta_{6} \circ \varepsilon_{7}\} \oplus \mathbf{Z}_{2}\{\mu_{6}\};$$

$$\pi_{16}(S^6) = \mathbf{Z}_8\{\nu_6 \circ \sigma_9\} \oplus \mathbf{Z}_2\{\eta_6 \circ \mu_7\} \oplus \mathbf{Z}_9\{\beta_1(6)\} (\beta_1(6) = \sum \beta_1(5)).$$

We show

Lemma 3 (i)
$$\pi^8(\mathrm{OP}^2) = \mathbf{Z}_2 \{ \sigma_8 \circ \eta_{15} \circ p \} \oplus \mathbf{Z}_2 \{ \overline{\nu}_8 \circ p \} \oplus \mathbf{Z}_2 \{ \varepsilon_8 \circ p \}.$$

(ii) $\pi^7(\mathrm{OP}^2) = \mathbf{Z}_2 \{ \sigma' \circ \eta_{14}^2 \circ p \} \oplus \mathbf{Z}_2 \{ \eta_7 \circ \varepsilon_8 \circ p \} \oplus \mathbf{Z}_2 \{ \mu_7 \circ p \}.$

(iii)
$$\pi^6(\mathrm{OP}^2) = \mathbb{Z}_2\{\eta_6 \circ \mu_7 \circ p\} \oplus \mathbb{Z}_3\{\beta_1(6) \circ p\}.$$

Proof. We consider the exact sequence (2) for n=8:

$$\pi_{15}(S^8) \stackrel{h^*}{\longleftarrow} \pi_8(S^8) \stackrel{i^*}{\longleftarrow} \pi^8(\mathrm{OP}^2) \stackrel{p^*}{\longleftarrow} \pi_{16}(S^8) \stackrel{(\Sigma h)^*}{\longleftarrow} \pi_9(S^8).$$

 h^* is a monomorphism. We have

$$egin{aligned} (\sum h)^*(\eta_8) &= \eta_8 \circ \sigma_9 \ &= \sum (\eta_7 \circ \sigma_8) \ &= \sum \sigma' \circ \eta_{15} + ar{
u}_8 + arepsilon_8 \end{aligned}$$

So we have (i). Next we consider the exact sequence (2) for n=7:

$$\pi_{15}(S^7) \overset{h^*}{\longleftarrow} \pi_{8}(S^7) \overset{i^*}{\longleftarrow} \pi^{7}(\mathbf{OP^2}) \overset{p^*}{\longleftarrow} \pi_{16}(S^7) \overset{(\Sigma h)^*}{\longleftarrow} \pi_{9}(S^7).$$

Since $h^*(\eta_7) = \eta_7 \circ \sigma_8 = \sigma' \circ \eta_{14} + \bar{\nu}_7 + \varepsilon_7$, h^* is a monomorphism. We have

$$\begin{split} (\sum h)^*(\eta_7^2) &= \eta_7 \circ \eta_8 \circ \sigma_9 \\ &= \eta_7 \circ (\sum \sigma' \circ \eta_{15} + \bar{\nu}_8 + \varepsilon_8) \\ &= \eta_7 \circ \sum \sigma' \circ \eta_{15} + \eta_7 \circ \bar{\nu}_8 + \eta_7 \circ \varepsilon_8 \\ &= \nu_7^3 + \eta_7 \circ \varepsilon_8. \end{split}$$

This leads to (ii).

We consider the exact sequence (2) for n=6:

$$\pi_{15}(S^6) \xleftarrow{h^*} \pi_{8}(S^6) \xleftarrow{i^*} \pi^6(\mathbf{OP^2}) \xleftarrow{p^*} \pi_{16}(S^6) \xleftarrow{(\Sigma h)^*} \pi_{9}(S^6).$$

We have

$$\begin{split} h^*(\eta_6^2) &= \eta_6 \circ \eta_7 \circ \sigma_8 \\ &= \eta_6 \circ (\sigma' \circ \eta_{14} + \bar{\nu}_7 + \varepsilon_7) \\ &= \eta_6 \circ \sigma' \circ \eta_{14} + \eta_6 \circ \bar{\nu}_7 + \eta_6 \circ \varepsilon_7 \\ &= 4 \bar{\nu}_6 \circ \eta_{14} + \nu_6^3 + \eta_6 \circ \varepsilon_7 \\ &= \nu_6^3 + \eta_6 \circ \varepsilon_7. \end{split}$$

So h^* is a monomorphism. We have $(\sum h)^*(\nu_6) = \nu_6 \circ \sigma_9$ and $(\sum h)^*(\alpha_1(6)) = \alpha_1(6) \circ (\alpha_2(9) + \alpha_1(9)) = -3\beta_1(6)$ since $\alpha_1(6) \circ \alpha_1(9) = 0$. This leads to (iii) and completes the proof.

We recall the following:

$$\nu' \circ \bar{\nu}_{6} = \varepsilon_{3} \circ \nu_{11}; \ \pi_{16}(S^{5}) = \mathbf{Z}_{504}\{\zeta_{5}\} \oplus \mathbf{Z}_{2}\{\nu_{5} \circ \bar{\nu}_{8}\} \oplus \mathbf{Z}_{2}\{\nu_{5} \circ \varepsilon_{8}\};$$

$$\pi_{15}(S^{4}) = \mathbf{Z}_{2}\{\nu_{4} \circ \sigma' \circ \eta_{14}\} \oplus \mathbf{Z}_{2}\{\nu_{4} \circ \bar{\nu}_{7}\} \oplus \mathbf{Z}_{2}\{\nu_{4} \circ \varepsilon_{7}\} \oplus \mathbf{Z}_{84}\{\sum \mu'\} \oplus \mathbf{Z}_{2}\{\varepsilon_{4} \circ \nu_{12}\} \oplus \mathbf{Z}_{2}\{\sum \nu' \circ \varepsilon_{7}\}.$$

Here the generators ζ_5 and $\sum \mu'$ of the 2-primary components are used to represent \mathbf{Z}_{504} and \mathbf{Z}_{84} , respectively. We also recall the following:

$$\pi_{16}(S^{4}) = \mathbf{Z}_{2}\{\nu_{4} \circ \sigma' \circ \eta_{14}^{2}\} \oplus \mathbf{Z}_{2}\{\nu_{4}^{4}\} \oplus \mathbf{Z}_{2}\{\nu_{4} \circ \mu_{7}\} \oplus \mathbf{Z}_{2}\{\nu_{4} \circ \eta_{7} \circ \varepsilon_{8}\}$$

$$\oplus \mathbf{Z}_{2}\{\sum \nu' \circ \mu_{7}\} \oplus \mathbf{Z}_{2}\{\sum \nu' \circ \eta_{7} \circ \varepsilon_{8}\};$$

$$\pi_{15}(S^{3}) = \mathbf{Z}_{2}\{\nu' \circ \mu_{6}\} \oplus \mathbf{Z}_{2}\{\nu' \circ \eta_{6} \circ \varepsilon_{7}\};$$

$$\pi_{16}(S^{3}) = \mathbf{Z}_{2}\{\nu' \circ \eta_{6} \circ \mu_{7}\} \oplus \mathbf{Z}_{3}\{\alpha_{1}(3) \circ \beta_{1}(6)\}; \ \pi_{9}(S^{3}) = \mathbf{Z}_{3}\{\alpha_{1}(3) \circ \alpha_{1}(6)\}.$$

We show

Lemma 4 (1)
$$\pi^{5}(OP^{2}) = \mathbb{Z}_{504}\{\xi_{5} \circ p\} \oplus \mathbb{Z}_{2}\{\nu_{5} \circ \varepsilon_{8} \circ p\}.$$

(2) $\pi^{4}(OP^{2}) = \mathbb{Z}_{2}\{\nu_{4} \circ \sigma' \circ \eta_{14}^{2} \circ p\} \oplus \mathbb{Z}_{2}\{\nu_{4}^{4} \circ p\} \oplus \mathbb{Z}_{2}\{\nu_{4} \circ \mu_{7} \circ p\} \oplus \mathbb{Z}_{2}\{\sum \nu' \circ \mu_{7} \circ p\}.$
(3) $\pi^{3}(OP^{2}) = \mathbb{Z}_{2}\{\nu' \circ \eta_{6} \circ \mu_{7} \circ p\} \oplus \mathbb{Z}_{3}\{\alpha_{1}(3) \circ \beta_{1}(6) \circ p\}.$

Proof. In the exact sequence

$$\pi_{15}(S^5) \stackrel{h^*}{\leftarrow} \pi_8(S^5) \stackrel{i^*}{\leftarrow} \pi^5(\mathbf{OP}^2) \stackrel{p^*}{\leftarrow} \pi_{16}(S^5) \stackrel{(\Sigma h)^*}{\leftarrow} \pi_9(S^5),$$

we have $h^*(\nu_5) = \nu_5 \circ \sigma_8$ and $h^*(\alpha_1(5)) = \alpha_1(5) \circ \alpha_2(8) = -3\beta_1(5)$. So h^* is a monomorphism. We have

$$\begin{split} (\sum h)^*(\nu_5 \circ \eta_8) &= \nu_5 \circ \eta_8 \circ \sigma_9 \\ &= \nu_5 \circ (\sum \sigma' \circ \eta_{15} + \bar{\nu}_8 + \varepsilon_8) \\ &= \nu_5 \circ \sum \sigma' \circ \eta_{15} + \nu_5 \circ \bar{\nu}_8 + \nu_5 \circ \varepsilon_8 \\ &= \nu_5 \circ \bar{\nu}_8 + \nu_5 \circ \varepsilon_8. \end{split}$$

This leads to (i).

We consider the exact sequence

$$\pi_{15}(S^4) \stackrel{h^*}{\leftarrow} \pi_{8}(S^4) \stackrel{i^*}{\leftarrow} \pi^{4}(\mathbb{OP}^2) \stackrel{p^*}{\leftarrow} \pi_{16}(S^4) \stackrel{(\Sigma h)^*}{\leftarrow} \pi_{9}(S^4).$$

By Proposition 2.2.(1) of Ôguchi (1964 [2]), we know $\sum \nu' \circ \sigma' = 2\sum \varepsilon'$. We have

$$h^{*}(\sum \nu' \circ \eta_{7}) = \sum \nu' \circ \eta_{7} \circ \sigma_{8}$$

$$= \sum \nu' \circ (\sigma' \circ \eta_{14} + \bar{\nu}_{7} + \varepsilon_{7})$$

$$= \sum \nu' \circ \sigma' \circ \eta_{14} + \sum \nu' \circ \bar{\nu}_{7} + \sum \nu' \circ \varepsilon_{7}$$

$$= \varepsilon_{7} \circ \nu_{14} + \sum \nu' \circ \varepsilon_{7}$$

and

$$h^*(\nu_4 \circ \eta_7) = \nu_4 \circ \eta_7 \circ \sigma_8$$

= $\nu_4 \circ (\sigma' \circ \eta_{14} + \bar{\nu}_7 + \varepsilon_7)$
= $\nu_4 \circ \sigma' \circ \eta_{14} + \nu_4 \circ \bar{\nu}_7 + \nu_4 \circ \varepsilon_7.$

So h^* is a monomorphism.

$$(\sum h)^*(\nu_4 \circ \eta_7^2) = \nu_4 \circ \eta_7 \circ \eta_8 \circ \sigma_9$$

$$= \nu_4 \circ \eta_7 \circ (\sum \sigma' \circ \eta_{15} + \bar{\nu}_8 + \varepsilon_8)$$

$$= \nu_4^4 + \nu_4 \circ \eta_7 \circ \varepsilon_8$$

and

$$\begin{split} (\sum h)^* (\sum \nu' \circ \eta_7^2) &= \sum \nu' \circ \eta_7 \circ \eta_8 \circ \sigma_9 \\ &= \sum \nu' \circ \eta_7 \circ (\sum \sigma' \circ \eta_{15} + \bar{\nu}_8 + \varepsilon_8) \\ &= \sum \nu' \circ \eta_7 \circ \sum \sigma' \circ \eta_{15} + \sum \nu' \circ \nu_7^3 + \sum \nu' \circ \eta_7 \circ \varepsilon_8 \\ &= \sum \nu' \circ \eta_7 \circ \varepsilon_8. \end{split}$$

This leads to (ii).

Next, in the exact sequence

$$\pi_{15}(S^3) \stackrel{h^*}{\leftarrow} \pi_{8}(S^3) \stackrel{i^*}{\leftarrow} \pi^3(\mathbf{OP}^2) \stackrel{p^*}{\leftarrow} \pi_{16}(S^3) \stackrel{(\Sigma h)^*}{\leftarrow} \pi_{9}(S^3),$$

we have

$$h^*(\nu' \circ \eta_6^2) = \nu' \circ \eta_6 \circ \eta_7 \circ \sigma_8$$

$$= \nu' \circ \eta_6 \circ \sigma' \circ \eta_{14} + \nu' \circ \eta_6 \circ \bar{\nu}_7 + \nu' \circ \eta_6 \circ \varepsilon_7$$

$$= \nu' \circ \eta_6 \circ \varepsilon_7.$$

So h^* is a monomorphism. Finally we have

$$(\sum h)^*(\alpha_1(3) \circ \alpha_1(6)) = \alpha_1(3) \circ \alpha_1(6) \circ \alpha_2(9)$$

$$= \alpha_1(3) \circ -3\beta_1(6)$$

$$= -3\alpha_1(3) \circ \beta_1(6)$$

$$= 0.$$

This leads to (iii) and completes the proof.

Thus we have completed the proof of our theorem.

References

- [1] MIMURA, M. and Toda, H.: *Topology of Lie groups, I and II*, AMS Translations of Mathematical Monographs **91**, 1991.
- [2] ÔGUCHI, K.: Generators of 2-primary components of homotopy groups of spheres, unitary groups and symplectic groups, J. Fac. Sci. Univ. of Tokyo 11 (1964), 65–111.
- [3] Toda, H.: Composition methods in homotopy groups of spheres. Ann. of Math. Studies, 49, Princeton, 1962.

Table of the result

Our result is summarized in the following table. Here $m+r^k$ means the direct sum of the (k+1) factors $\mathbf{Z}_m \oplus \mathbf{Z}_r \oplus \cdots \oplus \mathbf{Z}_r$ and ∞ means \mathbf{Z} .

n	$[\mathbf{RP}^2, S^n]$	$[\mathbb{CP}^2, S^n]$	$[\mathbf{HP}^2, S^n]$	$[\mathbf{OP}^2, S^n]$
1	0	0	0	0
2	2	0	2	6
3	0	0	2	6
4	:	∞	2	24
5		0	0	504 + 2
6		:	2	6
7			2	2 ³
8			∞	2 ³
9			0	0
10			:	2
11				0
12				0
13				24
14				2
15				2
16				∞
17				0
18				: