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Abstract

Using an exact solution with the hyperbolic-tangent profile for the electron
density in the sun, which is developed by Notzold and later modified by
Nakagawa, we have analyzed the solar neutrino problem. An interference
term in their approach is correctly taken into account. Combining the
hyperbolic-tangent profile with the BP2000, we obtain a phenomenological
fitting in the analytic form. Combining recent observed results for survival
probability P(ve—ve) by the SNO, SK, SAGE, Gallex, GNO and Homestake
Collaborations, we obtain a large mixing angle (LMA) whose figure looks like
a shoulder.

1 Introduction

One of the most interesting subjects in elementary particle physics is the solar
neutrino problem. As a possible explanation for it, the MSW mechanism seems the best
solution [1, 2, 3. Very recently the SNO Collaboration has reported that the survival
probability of v, from the sun is P(ve—v,)=0.348+0.03, and the large mixing angle
(LMA), Am*=mi—mi=0.35X10"(eV? and 6=32", is favor for the explanation of the
global measurements [4, 5, 6] (#21,72 are masses of the neutrino mass eigenstate vy, v,
respectively. Hereafter m,> m; is assumed. # is the mixing angle defined by v.=coséfw
+sinfvy; and v.= —sinfv; +cosfr..).

On the other hand in 1988 Notzold proposed an exact solution for the solar
neutrino oscillation, using the hyperbolic-tangent profile for the density of electrons
defined by N. in the sun [7]:
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Ne=No[1—tanh 77’], )

where No= V/(Rsv2Gr), Rs and Gr denote the radius of the sun Rs=6.96 X 10° km and
the Fermi coupling constant Gr=38.917 X108 (GeV » fm?®. Moreover V, » and / denote
the magnitude of the density at the center of the sun, »=R/Rs and [/=1[/Rs,
respectively. Notzold has assumed r—# +7=7—00, a priori (See Fig. 1(a)).

Later, Nakagawa has proposed a modified expression for N, as

Ne:No[lwtanh %}, (2)

where # is an adjusted parameter which reproduces the N, in better way than Eq. (1).
Nakagawa has stressed that the result by Notzold, the magnitude of Am?/E,, is
reduced about 269% in the figure of Am?/ Ey vs. sin?0, as Eq. (2) is used for the electron
density in the sun [8]. His result with the standard solar model (SSM) in 1988 [9] is
shown in Fig. 1(b) (V=1.718 X10*, /=0.155, 7o=—0.105 for SSM in 1988).

In this report we would like to consider the BP2000 [10] with Eq. (2) and the solar
neutrino problem based on Notzold-Nakagawa’s approach including the interference
term. Our phenomenological fitting is shown in Fig. 2 (V=1.740 X 10", [=0.148, »=
—0.115 for BP2000).

In the second section, their theoretical formulas a la Nakagawa are explained.
The explicit interference term is shown. In the third section, we estimate the allowed
regions (Am? and mixing angle) for survival probabilities observed by the SNO, SK,
SAGE, GNO, Gallex and Homestake Collaborations [4, 5, 6, 11,12, 13, 14, 15]. In the

final section, concluding remarks are presented.
2 Theoretical formulas with the hyperbolic-tangent for N,

To explain theoretical formulas first derived by Notzold and later modified by
Nakagawa, we briefly describe their framework. The coupled Schrodinger equations

for the solar neutrino oscillation are given as

2 2 22 2
z%,%e— = (MQZ—EMJr x/—z—GFNe>1)g + Azr% Sinfcos vy, (3)
2 2t 2 2 2
i CZ,;" = AZ% sinfcos Oy, + 2SI 0242i‘m2cos 4 Vi (4)

Introducing the following notations, ct=Rsr, Mi=Rs(mi+mi)/(4E), RsAm*/QE)=x/
B=gx, with B=EMeV)/Am*eV?) and x=1764%10°, we use the {following

abbreviations
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. Z0Cc0S20
(= T2l (5)
He xosi2n2(9 . (6)

Moreover, exchanging the variable from ». to v(#),

Ve(r):v(r)exp{—z'_/:[Mﬁ—l—% VU(r)]dr}, (7)
we have the following differential equation as
dzv .1 ’ 1 2 24,
e + Z7VU(7’) +{7VU(7)—G} + H?|v=0, (8)

where U(r)=1—tanh[(» +#)//]. Changing the variable #» to y and assuming the
factorized form for v(r),

1
y= , (9)
1+ exp< —2 I"J—;IO—>
U(r)=2(1—y), (10)
v(r)=1—y)'y* 7 y), 1

we obtain the following hyper-geometric equation

2
y(1—y) zy]; +{c—(a+b+1)y}%§~abf:0, 1
where
a=p+v+a, (13
b=pu+v+1—A4, 149
c=2y+1, (15)
=i/ G T, (19
v=i L (V=CP+ i, )
A=ily (1)
5 V.

The general solution of Eq. {12) is expressed by two independent hyper-geometrical
functions. F(a, b, c; y)- is expressed by replacing v— —w» in a, b, ¢c of F{a, b; ¢; y)+.
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fw)=CF(a, b; c; y)++ Coy ™ Fl(a, b; ¢; y)-, (19

where i and C, are the integral constants. Using an ordinary procedure with the
initial condition, v.(y =v)=1 and v.(y = y) =0, we obtain the following formula for the
survival probability
(P(Ve-ve)>=Picos’d+(1— P)sin®6
Am?

— P1— Pc)cos2 bysin2 Gcos(2.54 TL +4). @0
where
Py=Psin?,+ 1 — Po)cos? Oy, )

cosh(r/V)—coshl 7l(Ap—Ag)]

Pe= cosh[ w{(Ap+Aqg)]—coshlznl(Ap—Ag)]’ @)
€082 On= Ni Gf;/ (Il/(_l ;))%Z)Jr e @)
Ap="L5nm, )
Ag=yV?—2VApcos20+Ap?, @)
o= (26)

1+exp(—2%).

In Refs. [7] [8] the third term of the right hand side, the interference term, in Eq. Q)
is assumed to be zero because of the oscillation. We have obtained the following

formula, after integration,

Rs P Po)cos20nsin2 0

T 10.16 X 10°ALAD
3 3
><sill(i(%é&ALAp)cos[w}%%(LﬁLl)Ap}, o

where L and L, are the minimum distance from the sun to earth and the maximum

one, respectively, and

AlL=L;—L.. 28

3 Analysis of solar neutrino problem with empirical values by means of
Eq. (20)

The data on the solar neutrino, the survival probability P{v.—v.), reported by the
SNOQO, Gallex, GNO, SAGE, Homestake Collaborations are shown in Table 1.
Using empirical values in Table 1 and Eq. ) with {£,>=8MeV and <{E,) =
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Table 1: Data on the solar neutrino [6, 13, 14, 15]. <E»> is the average neutrino energy.

Exp LEW Pwe—ve)

SNO ~ 8 MeV | 0.348%0.029

SAGE ~0.8 MeV | 0.54%0.06

Eallex—FGNO ~0.8 MeV 0.56+0.07

Homestake | ~ 8 MeV 0.34+0.03

L

0.8MeV, we obtain two allowed regions (AR) which are shown in Fig. 3(a). The small
mixing angle (SMA) region is located in (tan®@, Am*)=(0.8x1073 107% and the large
mixing angle (LMA) region is located in (0.5, 107*~4x107%). Combining the global

measurement (including the day-night effect by the SNO Collaboration and by the SK
Collaboration) and our result, we obtain Fig. 3(b). The shoulder-like region nearly
coincides with the large mixing angle (LMA) with C.L.99.73%. (See Ref. [4])

As seen in Fig. 3, our results based on Eq. (2) and Eq. @0) is partially consistent with
the LMA solutions.

4 Concluding remarks

1. As seen in Fig. 2, Eq. (2) is useful to reproduce the electron density based on
BP2000.

2. Using Eq. @), we have examined the AR expressed by (A tan® §). In the present
calculation we have added the third term Eq. () to Notzold and Nakagawa’s
formula. As compared with result of Refs. [7][8], we have additional AR : The
contribution is seen in the most right curve and the bottom region with oscillations
near (Am?, tan?8)=(0.2~5, 1 X107 ¥~1x1073). The main reason is attributed to
Eq. Q). Moreover, we can compare our results with the exponential profile, for
example, see Fig. 2 of Ref. [16]. A similar allowed region (0.1<tan?4<1.0) is
observed.

3. From the empirical results in Table 1 and Eq. ), we have obtained two AR’s, the
LMA and SMA. Combining the AR’s reported by the SNO, the SK Collaborations
and our Fig. 3(a), we have obtained Fig. 3(b). This is fairly well consistent with the
LMA reported by the SNO Collaboration.

4. Moreover, we have to add the following fact: For the figure of (sin’d, Aw?/E.)
with the BP2000, the result of calculation a la Ref. [7], the magnitude of Am?/ E.,
is about 209 larger than that of present calculation using values reported by the
SNO Collaboration [4].
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Figure 1: (a) The electron number density from SSM1988 in Ref. [9], which is
fitted by Eq. (1). See Fig. 2 of Ref. [7]. (b) N is fitted by Eq. (2). See Ref. [8].
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Figure 2 : The electron number density from BP2000, which is fitted by Eq. (2).
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Figure 3 : (a) Am?® vs. tan® 0. Long dashed and solid lines are obtained from
empirical values by SNO Collaboration (P(ve—v.)=0.348 £0.03), and those
by Ga experiment (P(ve—1v.)=0.5510.06) and assuming {£,>=8MeV and
(E,»>=0.8MeV, respectively. (b) Enlarged figure of (a). The dashed circle
with C.L.=909% and dotted circle with C.L.=99.73% are given in Ref. [4].
The SMA is excluded by observations by the SNO and SK Collaboration.
AR is an abbreviation for the allowed region.
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