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Abstract. Let f : U → X be a map from a connected nilpotent space U to a
connected rational space X. The evaluation subgroup G∗(U, X; f), which is a
generalization of the Gottlieb group of X, is investigated. The key device for

the study is an explicit Sullivan model for the connected component containing
f of the function space of maps from U to X, which is derived from the general
theory of such a model due to Brown and Szczarba [5]. In particular, we show
that non Gottlieb elements are detected by analyzing a Sullivan model for the

map f and by looking at non-triviality of higher order Whitehead products in
the homotopy group of X. The Gottlieb triviality of a fibration in the sense of
Lupton and Smith [27] is also discussed from the function space model point
of view. Moreover, we proceed to consideration of the evaluation subgroup of

the fundamental group of a nilpotent space. In consequence, the first Gottlieb
group of the total space of each S1-bundle over the n-dimensional torus is
determined explicitly in the non-rational case.

1. Introduction

Let U and X be connected based spaces and f : U → X a based map. We
denote by F(U,X; f) the connected component in the function space of free maps
from U to X that contains f . Let ev : F(U,X; f) → X be the evaluation map
which sends a map g : U → X to g(u0), where u0 is the base point of U . The nth
evaluation subgroup for the triple (U,X; f), denoted Gn(U,X; f), is the subgroup
of the homotopy group πn(X) defined by

Gn(U,X; f) = ev∗(πn(F(U,X; f), f)).

In the special case where U = X and f = id the identity map on X, the nth
evaluation subgroup is referred to as the nth Gottlieb group of X and written
Gn(X). In what follows, we shall write G∗(U,X; f) for ⊕n≥0Gn(U,X; f).

The evaluation subgroups were essentially introduced by Gottlieb [12][14] and
were investigated extensively by Woo and Kim [38] [39] and by Woo and Lee [23]
[40] [41] [42]. The lack of functoriality in Gottlieb groups makes the study of the
subject more difficult. In such a situation, the G-sequence introduced in [41] is one
of relevant tools for studying the groups G∗(X) and G∗(U,X; f).
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As for rational Gottlieb groups, Félix and Halperin have proved that, for any
simply-connected space X with finite rational Lusternik-Schnirelmann category m,
the graded Gottlieb group G∗(X) ⊗ Q is concentrated in odd degrees and has di-
mension at most m ([8, Theorem III]). We stress that the consideration of Gottlieb
groups appears in their investigation of rational category. Moreover, from the lec-
ture notes [30] due to Oprea, we can know relationship between Gottlieb groups
and transformation groups as well as fixed point theory. In [35], Smith has studied
the rational evaluation subgroups by relying on the approach to the study of func-
tion spaces due to Federer [7]. Interesting examples of vanishing and non-vanishing
evaluation subgroups are given in [35, §5]. Recently, Lupton and Smith [25][26]
have considered the exactness of the G-sequence by representing the evaluation
subgroups in terms of derivations in Sullivan models and in Quillen models. Espe-
cially, in [25, Example 4.1], the non-exactness of a certain G-sequence is captured
by calculation of derivations.

The objective of this paper is to investigate the evaluation subgroup G∗(U,XQ; f),
where U is a nilpotent space and XQ is the localization of a nilpotent space X. We
try to consider the rational evaluation subgroup without drawing on the derivation
argument. In fact, the key device for the study is an explicit algebraic model for
the function space F(U,XQ; f), which we construct in this paper by invoking the
general theory of such a model due to Brown and Szczarba [5]; see Section 3.

We here explain our main results briefly. Theorems 1.1 and 1.2 describe sufficient
conditions for rational evaluation subgroups to be proper. Theorem 1.6 presents a
tractable condition for a fibration to be Gottlieb trivial in the sense of Lupton and
Smith [27]. Theorem 1.7 gives a non-trivial upper bound for the dimension of the
localization of some subquotient of the first evaluation subgroup. By Theorem 1.9,
one can determine the first Gottlieb group of the total space of each S1-bundle over
the n-dimensional torus in non-rational case with knowledge of the classifying map
of the bundle.

Unless otherwise explicitly stated, it is assumed that a space is well-based and
has the homotopy type of a CW complex with rational homology of finite type.
We further suppose that a map is based. We shall say that a space is rational if
the space has the homotopy type of the spatial realization of a Sullivan algebra;
see Section 2. Observe that the homotopy group πn(X) of a rational space X is a
vector space over Q for n > 1 and that so is the fundamental group π1(X) if the
group is abelian. These facts follow from the Sullivan-de Rham equivalence; see for
example [2, Theorems 10.1 and 12.2].

In the rest of this section, we state the results more precisely.
Suppose that X is a connected rational space. Then the function space F(U,X; f)

is also a rational space; see (2.2) and (2.3) in Section 2. The definition of the eval-
uation subgroup enables us to obtain a commutative diagram

(1.1) πn(F(U,X; f))

ev∗ ²²²²

ev∗

''OOOOOOOOOO

Gn(U,X; f) Â Ä // πn(X)

in the category of groups for n ≥ 1. This is regarded as a diagram in the category
of vector spaces for n > 1. Let H be a group and let (Γ1/Γ2)H denote the quotient
group of H by the commutator subgroup. Put G] = HomZ(G, Q) for an abelian
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group G. Then we have a commutative diagram
(
(Γ1/Γ2)πn(F(U,X; f))

)]

Gn(U,X; f)]
OO

OO

πn(X)]oooo

ev]
∗

hhRRRRRRRRRRR

in the category of vector spaces for n > 1 and for n = 1 if π1(X) is abelian. Recall
that, for any connected nilpotent space Y with a minimal model ∧Z, there exists
a natural isomorphism Zn ∼= πn(Y )] for n > 1 and for n = 1 if π1(Y ) is an abelian
group; see [2].

Let ∧V and ∧W be minimal models for X and F(U,X; f), respectively. We
denote by Q(ẽv) : V → W the linear part of the Sullivan representative ẽv : ∧V →

∧W for the evaluation map. Observe that the vector space
(
(Γ1/Γ2)πn(F(U,X; f))

)]

is a subspace of Wn; see Section 8 for details. Suppose that π1(X) is an abelian
group. Then we have an isomorphism G∗(U,X; f)] ∼= V/KerQ(ẽv) of vector spaces.
This fact implies, for example, that G∗(U,X; f) is a proper subgroup of π∗(X) if
and only if KerQ(ẽv) is nontrivial.

In [5], Brown and Szczarba have presented an explicit form of Lannes’ division
functor in the category of commutative differential graded algebras; see also [3].
By using the functor, they have constructed an algebraic model for a connected
component of a function space. Unfortunately, the model is very complicated and
not minimal in general. However the linear part δ0 of the differential of the model
for F(U,X; f), which is needed to construct the minimal model, is comparatively
tractable. Moreover an explicit model ev for the evaluation map ev : F(U,X; f) →
X is derived from the consideration in [21, Section 5].

In some cases, we can find a nonzero element in Im ev ∩ Im δ0 with knowledge
of the terms having the least wordlength in d(v) for an appropriate element v ∈ V .
It turns out then that KerQ(ẽv) 6= 0. The dual element in V ] ∼= π∗(X) to such an
element v is said to be detective; see Section 4 for the precise definition. With this
terminology, one of our main theorems is stated as follows.

Theorem 1.1. Let f : U → X be a map from a connected nilpotent space U to
a connected rational space X whose fundamental group is abelian. Suppose that
dim⊕q≥0H

q(U ; Q) < ∞ or dim⊕i≥2πi(X) < ∞ and that there exists a detec-
tive element x in π∗(X) with respect to the triple (U,X; f). Then the evaluation
subgroup Gk(U,X; f) is a proper subgroup of πk(X) for some 1 ≤ k ≤ deg x.

While the notion of the detective element is somewhat technical, it does work
well when exhibiting the properness of a given evaluation subgroup; see Example
4.6.

We can also detect geometrically an element which is not in the evaluation sub-
group. Before describing the result, we recall briefly the higher order Whitehead
product set defined by Porter in [32]. Let ιm denote the generator of Hm(Sm) which
is the image of the identity map by the Hurewicz map. Let T be the fat wedge of s
spheres Sni , 1 ≤ i ≤ s; that is, the subspace of the product Sn1×· · ·×Sns consisting
of all s-tuples with at least one coordinate at the base point. Let µ be the generator
of HN (×s

i=1S
ni ; Z), corresponding to ιn1 ⊗ · · · ⊗ ιns ∈ H∗(Sn1)⊗ · · · ⊗H∗(Sns) via

the Künneth isomorphism, where N =
∑

ni. Since the CW pair (×s
i=1S

ni , T ) is
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(N − 1)-connected, we have a sequence

HN (×s
i=1S

ni)
j∗−−−−→HN (×s

i=1S
ni , T ) h←−−−−∼=

πN (×s
i=1S

ni , T ) ∂−−−−→πN−1(T )

and an element w = ∂h−1j∗(µ), where h is the Hurewicz map and ∂ is the boundary
map. In what follows, we do not distinguish between a map and the homotopy class
which it represents. Choose elements xi ∈ πni(X) for 1 ≤ i ≤ s. These elements
define the map g : ∨s

i=1S
ni → X whose restriction to each Sni is the map xi. Then

the sth order Whitehead product set [x1, ..., xs] ⊂ πN−1(X) (possibly empty) is
defined by

[x1, ..., xs] = {f∗(w) | f : T → X an extension of g}.
We shall say that the set [x1, ..., xs] vanishes if it contains only zero.
As a consequence of a geometric property of higher-order Whitehead products

in rational spaces, studied in [1], we obtain the following test for non-Gottlieb
elements.

Theorem 1.2. Let U be a connected space and X a simply-connected rational
space. Let f : U → X be a map for which the induced map f∗ : π∗(U) → π∗(X) is
an epimorphism. Assume that all Whitehead products of order less than r vanish
in π∗(U). If there exist elements x1, ..., xr in π∗(X) whose rth order Whitehead
product [x1, ..., xr] contains a nonzero element, then xk /∈ G∗(U,X; f) for any k ≤ r.

Remark 1.3. The result [1, Corollary 6.5] asserts that, if all Whitehead products
of order < r vanish in π∗(X) for a simply-connected rational space X, then any
rth order Whitehead product sets in π∗(X) is non-empty and consists of a single
element. Therefore the Whitehead product [x1, ..., xr] in Theorem 1.2 contains only
one element.

Suppose that x1 is a Gottlieb element in π∗(X) for a connected space X which
is not necessarily rational. The ordinary Whitehead product [x1, x2] is zero for
any x2 ∈ π∗(X) by [14, Proposition 2.3]. Thus Theorem 1.2 is regarded as a
generalization of this fact in the context of rational homotopy theory.

It is worthwhile to deal with relationship between detective elements and higher
order Whitehead product sets. With the aid of results in [1], we shall show that a
nonzero element in a higher order Whitehead product set is detective; see Theorem
6.1.

As described below, the sufficient conditions in Theorems 1.1 and 1.2 give crite-
rions for a map not to be cyclic.

For maps f : U → X and g : V → X, we write g ⊥ f if the map g∨f : V ∨U → X
is extendable to V × U . A map f : U → X is called a cyclic map if idX ⊥ f . For
example, when a topological group G acts on a space X with base point, the orbit
map G → X at the base point is a cyclic map. As is discussed in the last paragraph
on page 730 of [14], we see that Gn(U,X; f) = {[g] ∈ πn(X) | g ⊥ f}. It is readily
seen that π∗(X) = G∗(U,X; f) if f is a cyclic map. Observe that if f is a cyclic
map, then so is eX ◦f , where eX : X → XQ is the localization map. Thus we have
the following corollary.

Corollary 1.4. Let f : U → X be a map between a connected nilpotent spaces
and eX : X → XQ the localization map. If the triple (U,XQ; eX ◦f) satisfies the
conditions in Theorem 1.1 or 1.2, then f is not a cyclic map.

We fix some notations and terminology in order to describe further our results.
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Let f : X → Y be a map between nilpotent spaces. Let ϕ : (∧V, d) → APL(Y )
be a minimal model for Y , where APL(Y ) denotes the differential graded algebra of
rational polynomial forms on Y . A quasi-isomorphism m : (∧V ⊗∧W, d̂) → APL(X)
is called a Sullivan model for f if d̂|∧V = d, m|∧V = APL(f)ϕ and there exists a
well-ordered homogeneous basis {xα}α∈I of W such that d̂(1⊗xα) ∈ ∧V ⊗∧(Wα).
Here ∧(Wα) denotes the subalgebra generated by the xβ with β < α. We further
assume, unless otherwise specified, that the model is minimal in the sense that
deg xβ < deg xα implies β < α ; see [16, 1.1 Definition] and [16, Theorems 6.1
and 6.2] for the existence and the uniqueness of a minimal Sullivan model for a
map f . The inclusion j : (∧V, d) // // (∧V ⊗ ∧W, d̂) is also referred to as a Sullivan

model for f . Observe that the DGA (∧V ⊗ ∧W, d̂) is a Sullivan algebra; see [9,
Proposition 15.5]. For a Sullivan algebra A = (∧V, d), let d0 denote the linear part
of the differential d and put

πn(A) = Hn(V, d0).

We define the ψ-homotopy space of X, denoted π∗
ψ(X), to be the vector space π∗(A)

for which A is a Sullivan model for X; see [16, Chapter 8]. Observe that π∗
ψ gives

rise to a functor from the category of connected spaces with Sullivan models to
that of graded vector spaces over Q. Moreover there exists a natural isomorphism
π∗

ψ(X) ∼= π∗(X)] for ∗ > 1 and for ∗ ≥ 1 if π1(X) is abelian; see [2], [16]. For a
free algebra ∧V , let ∧≥lV denote the ideal generated by elements with word length
greater than or equal to l.

We describe an important result concerning a decomposition of an evaluation
subgroup. In [24], Woo and Lee show that, for any based spaces F and Y ,

G∗(F, F × Y ; i) ∼= G∗(F ) ⊕ π∗(Y ),

where i : F → F ×Y denotes the inclusion into the first factor. This has motivated
us to consider its generalization from the rational homotopy theory point of view.

We here introduce a class of maps.

Definition 1.5. A map p : X → Y is separable if there exists a Sullivan model
(∧V, d) → (∧V ⊗ ∧W, d̂) for p such that

d̂(w) ∈ ∧≥2V ⊗ ∧W + Q ⊗ ∧≥2W

for any w ∈ W . A fibration p : X → Y is said to be separable if the projection p is
separable.

We establish the following theorem.

Theorem 1.6. Let F
i→ X

p→ Y be a separable fibration of connected rational
spaces with dim⊕q≥0H

q(F ; Q) < ∞ or dim⊕i≥2πi(X) < ∞. Suppose that F
is simply-connected and π1(Y ) acts on Hi(F ; Q) nilpotently for any i. Then the
sequence

0 → Gn(F )
i]→ Gn(F, X; i)

p]→ πn(Y ) → 0

is exact for n > 1.

Very recently, Lupton and Smith [27] have proved a similar result to Theorem
1.6. Let F

i→ X
p→ Y be a fibration of simply-connected CW complexes. In the
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remarkable result [27, Theorem 5.3], a sufficient condition for the sequence

(1.2) 0 → G∗(F ) ⊗ Q
i]⊗1→ G∗(F, X; i) ⊗ Q

p]⊗1→ π∗(Y ) ⊗ Q → 0

to be exact is described in terms of the classifying map of the fibration in the sense
of Stasheff [37]. It is important to mention that Theorem 1.6 follows from [27,
Theorems 4.2 and 5.3] provided the given fibration is the localization of a fibration
F → X → Y of simply-connected CW complexes of finite type with fibre F finite.
The fibration which yields the short exact sequence (1.2) is said to be Gottlieb
trivial [27]. Theorem 1.6 asserts that the Gottlieb triviality of a fibration follows
from the separability.

We turn our attention to the first evaluation subgroup of π1(X) for a nilpotent
space X. When considering the subgroup, a detective element can be found with
the knowledge of the minimal model for X, in particular, of the quadratic part of
the differential if π1(X) is not abelian. This fact enables us to deduce Theorem 1.7
below.

Let G be a nilpotent group with the lower central series

G = Γ1G ⊃ Γ2G ⊃ · · · ⊃ ΓjG ⊃ · · · ,

where, for j ≥ 2, ΓjG = [G, Γj−1G] stands for the subgroup of G generated by
the commutators {xyx−1y−1 | x ∈ G, y ∈ Γj−1G}. The nilpotency class of G,
denoted nil(G), is defined to be the largest integer c such that ΓcG 6= {1}. We
write (Γq/Γq+1)G for the subquotient ΓqG/Γq+1G.

Theorem 1.7. Let f : U → X be a map between a connected nilpotent spaces.
Suppose that (i) π1

ψ(f) : π1
ψ(X) → π1

ψ(U) is a monomorphism and that (ii) U is a
finite CW complex or X is a rational space with dim⊕i≥2πi(X) < ∞.
(1) If (Γk/Γk+1)π1(X)] 6= 0, then for any i < k,

dim
(
ΓiG1(U,X; f)

/
Γi+1π1(X)∩ΓiG1(U,X; f)

)
⊗Q ≤ dim(Γi/Γi+1)π1(X)⊗Q−1.

(2) If ([π1(X), π1(X)]/Γ3π1(X))] 6= 0, then

dim
(
G1(U,X; f)

/
[π1(X), π1(X)] ∩ G1(U,X; f)

)
⊗ Q ≤ dimH1(X; Q) − 2.

We see that the subgroup ΓiG1(U,X; f)
/
Γi+1π1(X)∩ΓiG1(U,X; f) of the quo-

tient group (Γi/Γi+1)π1(X) is proper for any i ≥ 1 under the assumption in Theo-
rem 1.7.

Corollary 1.8. If G1(U,X; f) is abelian and
(
[π1(X), π1(X)]/Γ3π(X)

)]

6= 0, then

dim G1(U,X; f)⊗Q ≤ dim([π1(X), π1(X)]∩G1(U,X; f))⊗Q + dim H1(X; Q)− 2.

If g : S1 → X is any map such that [g] ∈ G1(U,X; f), then g ⊥ f . Hence,
the result [29, Proposition 3.4 (1)] applies to an extension µ : S1 × U → X of
g∨f : S1∨U → X. It follows that [g]·f∗(α) = g∗([idS1 ])·f∗(α) = f∗(α)·g∗([idS1 ]) =
f∗(α) · [g] in π1(X) for any α ∈ π1(U). Observe that G1(U,X; f) is contained in
the center of the fundamental group π1(X) if the induced map f∗ : π1(U) → π1(X)
is surjective. In particular the Gottlieb group G1(X) is abelian.

We further give a computational example (Theorem 1.9 below) whose proof
illustrates how the elaborate machinery in this paper is relevant in computing Got-
tlieb groups. Consider the S1-bundle S1 → Xf → Tn over the n-dimensional
torus Tn with the classifying map f which is represented by ρf =

∑
i<j cijtitj
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in H2(Tn; Z) ∼= [Tn,K(Z, 2)]. Here {ti}1≤i≤n is a basis of H1(Tn; Z). Define an
(n × n)-matrix Af by Af =

(
c′ij

)
, where c′ij = cij for i < j, c′ij = −cji for i > j

and cii = 0. We regard Af as a matrix with entries in Q. Then the rank of Af is
denoted by rankAf . We establish the following theorem.

Theorem 1.9. G1(Xf ) ∼= Z⊕(1+n−rankAf ).

Since the space Xf is aspherical, it follows from [12, Corollary I.13] that G1(Xf )
coincides with the center of π1(Xf ). While we have the central extension

0 → Z → π1(Xf ) → Z⊕n → 0

from the homotopy exact sequence of the fibration S1 → Xf → Tn, in general, it
is not easy to determine the center of π1(Xf ) by looking at the extension.

The rest of this paper is organized as follows. In Section 2, we recall the rational
model for a function space constructed by Brown and Szczarba. We present an ex-
plicit model for a connected component of a function space in Section 3. In Section
4, after introducing the notion of a detective element, we prove Theorem 1.1 by
applying the model in Section 3; see Theorem 4.2. The main goal of Section 5 is
to proving Theorem 1.2. In Section 6, we deal with the relationship between detec-
tive elements and higher order Whitehead products mentioned above. In Section
7, Theorem 1.6 is proved. We also give examples of separable and non-separable
fibrations. Section 8 is devoted to proving Theorems 1.7 and 1.9. Moreover the
first rational Gottlieb group of a non-aspherical space is computed; see Example
8.5.

We conclude this section with remarks on models for a function space. One
might expect Haefliger’s model [15] for the connected component of a function
space to work well in considering the evaluation subgroups or, more generally, the
homotopy type of F(U,X; f). However it seems that the differential of the model
is complicated in general because of the inductive argument in defining it. On
the other hand, the model due to Brown and Szczarba has the advantage that its
differential is expressed with an explicit formula; see (2.1) in Section 2. This is the
reason why we draw on the latter in our study on evaluation subgroups. We also
wish to mention that the two models above coincide before minimization, if the
function space considered is connected; see [21, Theorem 1.1].

We are convinced that both our explicit model and derivations on Sullivan models
used in [25], [26] and [27] are useful tools for the study of rational evaluation
subgroups.

2. An algebraic model for a path component of a function space

In this section, we summarize how to construct the Brown and Szczarba models
for a function space and its connected component. Moreover, some fundamental
properties of the models are described.

We emphasize that detailed knowledge of the model, in particular of the notation
explained here is absolutely crucial to understanding the proofs later in the paper.

For a graded vector space V over Q, the free algebra generated by V is denoted
by ∧V . The degree of a homogeneous element v ∈ V is denoted by deg v or |v|.
We shall use the terminology for algebraic models as used in [9]. Let (A, dA) be
a connected differential free graded algebra, say A = ∧V for some graded vector
space V . Let (B, dB) be a connected differential graded algebra (DGA) of finite
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type and B∗ denote the differential graded coalgebra defined by Bq = Hom(B−q, Q)
for q ≤ 0 together with the coproduct D and the differential dB∗ which are dual to
the multiplication of B and to the differential dB , respectively. Assume that B is
of finite type; that is, the vector space Bq is finite dimensional for all q. Let I be
the ideal of the free algebra ∧(∧V ⊗B∗) generated by 1⊗ 1− 1 and all elements of
the form

a1a2 ⊗ e −
∑

i

(−1)|a2||e′
i|(a1 ⊗ e′i)(a2 ⊗ e′′i ),

where a1, a2 ∈ ∧V , e ∈ B∗ and D(e) =
∑

i e′i ⊗ e′′i . Observe that ∧(∧V ⊗ B∗) is a
DGA with the differential d := dA ⊗ 1 ± 1 ⊗ dB∗.

Theorem 2.1. [5, Theorems 3.3 and 3.5] (i) (dA ⊗ 1 ± 1 ⊗ dB∗)(I) ⊂ I.
(ii) The composite map

ζ : ∧(V ⊗ B∗) ↪→ ∧(∧V ⊗ B∗) → ∧(∧V ⊗ B∗)/I

is an isomorphism of graded algebras.

This theorem enables us to define a differential δ on ∧(V ⊗B∗) by ζ−1d̃ζ, where
d̃ is the differential on ∧(∧V ⊗ B∗)/I induced by d. Let D(m−1) : B∗ → B⊗m

∗
be the iterated coproduct on B∗. For an element v ∈ V and a cycle e ∈ B∗, if
d(v) = v1 · · · vm with vi ∈ V and D(m−1)(e) =

∑
j ej1 ⊗ · · · ⊗ ejm , then

(2.1) δ(v ⊗ e) =
∑

j ±(v1 ⊗ ej1) · · · (vm ⊗ ejm),

where the sign is determined by the Koszul rule that in a graded algebra ab =
(−1)deg a deg bba. It follows from [5, Lemma 5.1] that if (∧V, d) is a Sullivan algebra,
then so is (∧(V ⊗ B∗), δ).

Let ∆[q] be the simplicial set consisting of non-decreasing maps to the ordered
set [q] = {0, 1, ..., q}. As usual we can write

∆[q]p = {(i0, i1, ..., ip) | 0 ≤ i0 ≤ · · · ≤ ip ≤ q}.
Let ∆S be the category of simplicial sets. For K, L ∈ ∆S, let Simpl(K, L) stand
for the set of simplicial maps from K to L. The function space F(K, L) ∈ ∆S is
defined by

F(K, L)q = Simpl(K × ∆[q], L).
Let APL be the simplicial commutative cochain algebra of polynomial differential

forms with coefficients in Q; see [2] and [9, section 10]. Let A be the category of
DGA’s over Q. For A, B ∈ A, let DGA(A,B) denote the set of DGA maps from A
to B. Following Bousfield and Gugenheim [2], we define functors

∆ : A → ∆S and Ω : ∆S → A
by ∆(A) = DGA(A,APL) and by Ω(K) = Simpl(K, APL), respectively. For any
objects A and B in A, we define the function space F(A,B) ∈ ∆S by

F(A,B)q = DGA(A, (APL)q ⊗ B).

The singular simplicial set is denoted by ∆U for any topological space U and
|K| denotes the geometric realization of a simplicial set K. We refer to the space
|∆(A)| as the Sullivan realization of A. Observe that the differential graded algebra
APL(U) of rational polynomial differential forms on U is then given by APL(U) =
Ω∆U . For any K, L ∈ ∆S, we define a map of simplicial sets

α : F(K,L) → ∆F(|K|, |L|)
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by α(f) = |f | : |K ×∆[q]| → |L| for f ∈ F(K,L)q. For any space U , let s : |∆U | →
U denote the homotopy equivalence defined by s(σ, f) = f(σ); see, for example, [6,
(12.10)]. There exists a sequence of homotopy equivalences

(2.2) F(U,X) ' F(|∆U |, |∆X|) s←−−−−
'

|∆F(|∆U |, |∆X|)| |α|←−−−−
'

|F(∆U,∆X)|
for any topological spaces U and X; see [5, Theorem 2.1].

Let m : ∧V = A
'−→ Ω∆X be the minimal model for ∆X and β : B

'−→ Ω∆U a
quasi-isomorphism in which B is of finite type but not necessarily free as a graded
algebra. For any simplicial set K, we can define a bijection

η : DGA(A,Ω(K)) −−−−→∼=
Simpl(K, ∆(A))

by η : φ 7→ f ; f(σ)(a) = φ(a)(σ), where a ∈ A and σ ∈ Kn. The map m :
A

'−→ Ω∆X induces a Q-localization h : ∆X → ∆(A) via the bijection η if X is a
connected nilpotent space; see [2], [9, Theorem 17.12].

Remark 2.2. Suppose that U is a connected finite CW complex and X is a connected
nilpotent space. Then it follows from [19, Theorem 3.11] that the map h induces a
Q-localization

h∗ : F(∆U,∆X) −−−−→F(∆U,∆A).

Let {bi} be a basis for B and {ei} its dual basis for B∗. For differential graded
algebras C and D, let DGM(C,D) denote the set of morphisms from C to D in
the category of differential graded Q-vector spaces. Define the map Ψ : DGM(A ⊗
B∗, APL) → DGM(A, APL ⊗ B) in ∆S by

Ψ(w)(a) =
∑

i

(−1)µ(|bi|)w(a ⊗ ei) ⊗ bi,

where µ(n) = [(n + 1)/2], the greatest integer in (n + 1)/2. Then the map in-
duces a simplicial isomorphism Ψ : ∆(∧(A ⊗ B∗)/I, d̃) → F(A,B) ([5, Corollary
3.4]). Moreover, we have a sequence consisting of the simplicial isomorphism Ψ and
homotopy equivalences

(2.3) F(∆U,∆A)
eη←−
'

F(A,Ω∆U)
β∗←−
'

F(A,B) Ψ←−∼= ∆(∧(A ⊗ B∗)/I, d̃).

Observe that the homotopy equivalence η̃ is induced by the quasi-isomorphism
Ω∆U ⊗ (APL)q

∼= Ω∆U ⊗ Ω(∆[q]) → Ω(∆U × ∆[q]) and the bijection η; see [4,
Theorem 1.29]. For a simplicial set K, define ξK : K → ∆|K| by ξK(σ) = tσ :
∆n → {σ} × ∆n → |K|. We have a sequence of DGA maps

Ω∆|∆(∧(A ⊗ B∗)/I, d̃))|
Ω(ξK) // Ω∆(∧(A ⊗ B∗)/I, d̃) Ω∆(∧(V ⊗ B∗), δ)

Ω∆ζoo

(∧(V ⊗ B∗), δ)

η−1(id)

OO

in which Ω(ξK) and Ω∆ζ are quasi-isomorphism and η−1(id) denotes the adjunction
map to the identity map id on the simplicial set ∆((∧(V ⊗B∗), δ)). Applying the re-
alization functor | | and the functor APL( ) to the sequence (2.3), and by combin-
ing the resultant sequence with the above sequence, we obtain quasi-isomorphisms
which connect APL(F(U,X)) = Ω∆(F(U,X)) with Ω∆(∧(V ⊗ B∗), δ).

A minimal model E = ∧W of ∧(V ⊗B∗) is constructed as follows: Let {ak, bk, cj}k,j

be a basis for B∗ such that dB∗(ak) = bk and dB∗(cj) = 0. Without loss of
generality, we can assume that c0 = 1. Choose a basis {vi}i≥1 for V so that
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deg vi ≤ deg vi+1 and d(vi+1) ∈ ∧Vi, where Vi is the subspace spanned by the
elements v1, ..., vi. The result [5, Lemma 5.1] states that there exist free algebra
generators wij , uik and vik such that

(2.4) wi0 = vi ⊗ 1 and wij = vi ⊗ cj + xij , where xij ∈ ∧(Vi−1 ⊗ B∗),
(2.5) δwij is decomposable and in ∧({wsl; s < i}),
(2.6) uik = vi ⊗ ak and δuik = vik.

We then have a decomposition

∧(V ⊗ B∗) = ∧(wij)i,j ⊗ ∧(uik, vik)i,k

in the category of DGA’s. It follows that the inclusion

(2.7) γ : E := (∧(wij), δ) ↪→ (∧(V ⊗ B∗), δ)

is a homotopy equivalence whose inverse is the projection

(2.8) ρ : (∧(V ⊗ B∗), δ) → E;

see [5, Lemma 5.2] for example.
It follows from (2.4) that the vector space generated by the elements wij is

isomorphic to V ⊗ H∗(B∗) as a vector space. Thus we have E ∼= ∧(V ⊗ H∗(U)).
In consequence, we see that ∆(E) is homotopy equivalent to ∆(∧(V ⊗B∗), δ), and
hence to the function space F(∆U,∆A).

In what follows, we assume that

(2.9) dim⊕q≥0H
q(U ; Q) < ∞ or dim⊕i≥2πi(X) ⊗ Q < ∞.

We shall describe a model for a connected component of a function space. Let K
be a simplicial set and u an element in K0. We say that an element x ∈ Ks has
a vertex u if di1 · · · disx = u for any i1, ..., is. Let ∆(E)u denote the connected
component of u ∈ ∆(E)0; that is, the simplicial subset of ∆(E) consisting of all
elements all of whose vertices are at u. Let Mu be the ideal of E generated by the
set

{ω | deg ω < 0} ∪ {δω | deg ω = 0} ∪ {ω − u(ω) | deg ω = 0}.

Theorem 2.3. [5, Theorem 6.1]. The ideal Mu is closed under the differen-
tial δ and the quotient map π : E → E/Mu induces a homotopy equivalence
∆(π) : ∆(E/Mu) → ∆(E)u. Moreover (E/Mu, δ) is a Sullivan algebra, which
is not necessarily minimal, and is isomorphic to ∧(W̃ ), where W̃ q = 0 for q < 1,
W̃ 1 ⊂ W 1 and W̃ q = W q for q > 1.

By forming the quotient E/Mu, one eliminates all elements of negative degree.
Moreover an element ω of degree 0 becomes a cycle, identified with the scalar u(ω).

We choose an element u ∈ ∆(E)0. Let ε : B → Q be the augmentation of B.
The sequence of simplicial sets and simplicial maps

(2.10) ∆(E/Mu)
∆(π)

'
//

∆(π)

::
∆(E)u

Â Ä // ∆(E)
∆(ρ)

'
// ∆(∧(A ⊗ B∗)/I)

∆(1⊗ε])// ∆(∧V )
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gives rise to a commutative diagram

Ω∆(E/Mu) Ω∆(E)u

Ω∆(π)

'
oo Ω∆(E)oo

Ω∆(π)

ee
Ω∆(∧(A ⊗ B∗)/I)

Ω∆(ρ)

'
oo Ω∆(∧V )

Ω∆(1⊗ε])oo

E/Mu

η−1(id)'
OO

E

η−1(id)

OO

π
oo ∧(A ⊗ B∗)/I

η−1(id)

OO

ρ
oo ∧V.

η−1(id)'
OO

1⊗ε]

oo

It follows from the hypothesis (2.9) that E/Mu is of finite type and hence so is the
homology of E/Mu. Therefore the result [2, 10.1 Theorem] yields that the adjoint
η−1(id) : E/Mu → Ω∆(E/Mu) is a quasi-isomorphism.

We can regard the map ∆(1 ⊗ ε]) as the morphism F(∆(j), 1) : F(∆U,∆A) →
F(∆(∗), ∆A) of simplicial sets induced by the natural inclusion j : ∗ → U up to
the homotopy equivalences in (2.3); see [21, Appendix]. Moreover the realization
of F(∆(j), 1) is nothing but the evaluation map ev : F(U, |∆A|) → |∆A|. Let
δ0 denote the linear part of the differential δ of ∧(W̃ ) = E/Mu. Write W̃ =
C⊕δ0C⊕H(W̃ , δ0) with an appropriate subspace C of W̃ and put W = H(W̃ , δ0).
As usual, we can construct a minimal model n : ∧W → E/Mu = ∧(C ⊕ δC ⊕ W )
together with the retraction r : E/Mu → ∧(W ), which is defined by extending the
projection C ⊕ δC ⊕ W → W . It is readily seen that

rπρ(1 ⊗ ε]) : ∧V → ∧(A ⊗ B∗)/I → E → E/Mu → ∧W

is a Sullivan representative for the evaluation map ev : F(U,XQ; f) → XQ, where
XQ = |∆(A)| and f is the map corresponding to the element (0, η̃β∗Ψ∆(ρ)(u)) ∈
|F(∆U,∆(A))| by the homotopy equivalence s ◦ |α|, see (2.2).

Remark 2.4. Let ũ be a 0-simplex in ∆(∧(A ⊗ B∗)/I) and put u = ∆(γ)(ũ).
Since ∆(ρ)∆(γ) ' id, it follows that there exists a path connecting f = (s ◦
|α|)(0, η̃β∗Ψ∆(ρ)(u)) with g = (s ◦ |α|)(0, η̃β∗Ψ(ũ)). Hence we have F(U,XQ; f) =
F(U,XQ; g).

The following proposition clarifies a property of the minimal model (∧W, δ) for
the function space F(U,XQ; f), which is deduced from knowledge of the differential
of a minimal model for X independently of any property of a model for U .

Proposition 2.5. Suppose that linearly independent elements u1, ..., us in V do
not occur in any terms of the images of the differential d : V → ∧V as factors. Then
the elements u1⊗1, ..., us⊗1 are linearly independent in W = H(W̃ , δ0) ⊂ E/Mu.

Proof. Let z be a non-trivial linear combination of elements u1, ..., us. It is imme-
diate that δ0(z⊗1) = 0 since dz is decomposable. In order to prove the proposition,
it suffices to show that z ⊗ 1 does not occur in any terms of the images of δ0 as a
factor. For that purpose, we choose elements wij (j > 0) satisfying (2.4) and (2.5)
as follows: Let {vi}i be a basis which contains the element z. We argue by induc-
tion on lower degree i of the base elements vi of V . By assumption, the element
z does not occur in any term of the images of d : V → ∧V . Thus we have a sub
DGA of the form

(∧(vk ⊗ e; k < i, e ∈ {am, bm, cn}, vk ⊗ e 6= z ⊗ 1), δ)
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of (∧(Vi−1 ⊗ B∗), δ), where {am, bm, cn} is a basis for B∗ mentioned above. Then
we see that

[δ(vi ⊗ cj)] ∈ H(∧(vk ⊗ e; k < i, e ∈ {am, bm, cn}, vk ⊗ e 6= z ⊗ 1), δ)
∼= H(∧(wln; l < i, wln 6= z ⊗ 1) ⊗ ∧(ulm, vlm; l < i))
∼= H(∧(wln; l < i, wln 6= z ⊗ 1)).

It follows that there exists xij ∈ ∧(vk⊗e; k < i, vk⊗e 6= z⊗1) such that δ(vi⊗cj)+
δxij ∈ ∧(wln; l < i, wln 6= z ⊗ 1). It is evident that the element wij = vi ⊗ cj + xij

satisfies the conditions (2.4) and (2.5). We will prove this proposition with the
elements wij (j > 0) and wi0, which generate the algebra E mentioned above.

Suppose that δ(πy) = z ⊗ 1 + w for some y ∈ E ⊂ ∧(A ⊗ B∗)/I, where w is an
element of E/Mu which does not have a term containing z ⊗ 1 as a factor. Then
we write

w + z ⊗ 1 = πδ(
∑

il,jl

wi1j1 · · ·wisjs),

which is a contradiction because each πδwiljl
does not have a term containing z⊗1

as a summand. This completes the proof. ¤

Remark 2.6. Let z ∈ V be a non-zero element and {vi}i a basis of V which contains
z. The proof of Proposition 2.5 yields that, if z ⊗ 1 ∈ Imδ0, then there exists an
element vl ∈ {vi}i such that δ(vl ⊗ e) has a term containing z ⊗ 1 as a summand
for some e ∈ B∗. This implies that some term of dvl contains the element z as a
factor.

3. An explicit model for F(U,X; f)

In this section, we assume that U and X are a connected nilpotent space and a
connected rational space, respectively, and that the rational homologies of U and
X are of finite type. Moreover it is assumed that the condition (2.9) holds for U
and X.

Let f : U → X be a map and (∧V, d) a minimal model for X. We take a
Sullivan model i : (∧V, d) ½ (∧V ⊗ ∧Z, d̂) for f . Consider a minimal model
ϕ : ∧W

'→ ∧V ⊗ ∧Z and a lift q : ∧V → ∧W of the model i (see [9, Proposition
14.6]). We then have a diagram

∧W
ϕ

'
// ∧V ⊗ ∧Z

β

'
// Ω∆U

∧V

q

eeLLLLLLLL
i

OO

'
// Ω∆X

Ω∆(f)

OO

in which the right square is commutative and the left triangle is commutative up
to homotopy. Observe that the composition θ := βϕ : ∧W → Ω∆U is a minimal
model for U .

In order to construct an explicit model for F(U,X; f) using the model i for the
given map f , we have to verify the finiteness of ∧V ⊗ ∧Z.

Lemma 3.1. In the minimal Sullivan model for f mentioned above, the algebra
∧V ⊗ ∧Z is of finite type.

Proof. We observe that ∧V and ∧W are of finite type. Since d̂0 sends Z to V , it
follows that π∗(∧W ) ∼= π∗(∧V ⊗∧Z) = (V/d̂0(Z))⊕ kerd̂0. The minimality of ∧W
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implies that π∗(∧W ) = W . We write Z = kerd̂0 ⊕ T with a subspace T for which
d̂0 : T → d̂0(Z) is an isomorphism. This completes the proof. ¤

Lemma 3.2. In the homotopy set [U,X], f = |∆(i)η(β)|.

Proof. Since X is regarded as the realization |∆A|, we see that f = |∆(q)η(θ)| in
[U,X]. The naturality of the map η allows us to conclude that ∆(q)η(θ) = η(θq) =
η(βi) = ∆(i)η(β). Observe that all equalities are of homotopy classes. ¤

Put B = ∧V ⊗ ∧Z. With the notation in the previous section, define ũ ∈
DGM(∧V ⊗ B∗, (APL)0) by

(3.1) ũ(a ⊗ e) = (−1)µ(|a|)e(i(a)),

where a ∈ ∧V and e ∈ B∗. Then we see that Ψ(ũ) = i ∈ F(∧V, B)0. The result [5,
Theorem 3.3] enables us to conclude that ũ is a 0-simplex of ∆(∧(∧V ⊗B∗)/I); that
is ũ is a morphism of algebras from ∧(∧V ⊗ B∗)/I into (APL)0. By the straight-
forward calculation, we can verify that η̃β∗Ψ(ũ) = ∆(i)η(β) ∈ F(∆U,∆(∧V ))0.
Moreover it follows from Lemma 3.2 that (s ◦ |α|)(0, ∆(i)η(β)) = |∆(i)η(β)| =
f ∈ F(U, |∆(∧V )|). Recall the inclusion γ : (E, δ) → (∧(V ⊗ B∗), δ) which is a
homotopy equivalence; see (2.7). We establish the following theorem.

Theorem 3.3. Under the hypothesis (2.9), the differential graded algebra E/Mu

is a Sullivan model for the function space F(U,X; f), where u = ∆(γ)ũ. Moreover
the map

ι : (∧V, d) → (E/Mu, δ)

defined by ι(v) = v ⊗ 1 is a model for the evaluation map ev : F(U,X; f) → X.

Proof. The result follows from Theorem 2.3, the ensuing discussion and Remark
2.4. ¤

For any 0-simplex u ∈ ∆(E)0, a model of the connected component of the
function space F(|∆(∧V )|, |∆U |) containing the map |η̃β∗Ψ∆(ρ)u| : |∆(∧V )| →
|∆U |, which corresponds to u, is given in [5]; see (2.3) and (2.10) for notations.
We emphasize that Theorem 3.3 gives not only an explicit model for the connected
component F(U,X; f) containing a given map f , but also a rational model for the
evaluation map in terms of the Brown-Szczarba model.

By using the models in Theorem 3.3 for the function space F(U,X; f) and for
the evaluation map, we will prove Theorem 1.1 in the next section.

Remark 3.4. We choose the Sullivan representative q : ∧V → ∧W for f instead of
the Sullivan model i. Observe that ∧V and ∧W are of finite type because U and
X are nilpotent. By the same argument as above, we can construct a model of the
form E/Mu for F(U,X; f) by choosing ∧W as a model for U instead of ∧V ⊗∧Z.
In this case, the 0-simplex ũ ∈ ∆(∧(∧V ⊗ B∗)/I), which corresponds to f under
homotopy equivalences in (2.2) and (2.3), is defined by

ũq(a ⊗ e) = (−1)µ(|a|)e(q(a)).

It turns out that Theorem 3.3 remains valid if B = ∧W and the 0-simplex u is
replaced by ∆(γ)ũq.

It seems that this model for computing the evaluation subgroup G∗(U,X; f)
works well when a Sullivan representative of f is comparatively tractable.
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The following lemma is useful for determining whether an element of the rational
homotopy group of a space is in an evaluation subgroup; see Example 3.6 below.

Lemma 3.5. Let ι : ∧V → E/Mu = ∧W̃ be the model for ev in Theorem 3.3
or Remark 3.4 and n : ∧W → E/Mu the minimal model with the retraction r

described before Remark 2.4, where W = H∗(W̃ , δ0). Put ẽv = r ◦ ι and let Q(ẽv)
be the linear part of ẽv. Then Q(ẽv)(v) = 0 for an element v ∈ V if and only if
ι(v) is in Im{δ : W̃ → E/Mu} modulo decomposable elements, where δ denotes the
differential on E/Mu.

∧W
n

'
// E/Mu = ∧W̃

r

xx

∧V
fev

bbDDDDDDD ι

88qqqqqqqq

Proof. Observe that the retraction r is defined by extending the projection C⊕δC⊕
H∗(W̃ , δ0) → W . Let π′ : ∧W → W ∼= ∧W/(W · W ) be the projection. Suppose
that, for an element v ∈ V , Q(ẽv)(v) = 0. Since v ⊗ 1 ∈ Ker δ0, it follows that
v ⊗ 1 ∈ δC ⊕W modulo decomposable elements. Therefore we see that v ⊗ 1 ∈ δC
modulo decomposable elements since Q(ẽv)(v) = π′r(v ⊗ 1).

If δ(α) ≡ v ⊗ 1 for some α ∈ C ⊕ δC ⊕ W ; that is, δ(α) = v ⊗ 1 modulo
decomposable elements, then there exists an element α′ ∈ C such that δ(α′) ≡ v⊗1.
We have Q(ẽv)(v) = 0. ¤

Example 3.6. Let k be an positive integer. We define a DGA (Ak, d) by Ak =
∧Vk = ∧(v, wk) and d(wk) = vk+1. Let q : Ak → Al be a DGA map, where k ≥ l.
Then it is readily seen that q(v) = cv for some c ∈ Q and q(wk) = ck+1vk−lwl.
Consider the Sullivan model (E/Mu, δ) for F(|∆(Al)|, |∆(Ak)|; |∆q|) described in
Remark 3.4. Recall that u(ω) = ω in E/Mu for all ω of degree 0. Since v ⊗ v∗ =
ũ(v ⊗ v∗) = (−1)µ(|v|)v∗(q(v)) and v ⊗ (vm)∗ = 0 for m > 1, we see that

δ(wk ⊗ (vs)∗) = d(wk) ⊗ (vs)∗ − wk ⊗ d∗((vs)∗)

= vk+1 · 1
s!

(D(k)(v∗))s (by (2.1))

=
(

(−1)µ(|v|)v∗(q(v))
)s (

k + 1
s

)
(v ⊗ 1∗)k+1−s

= (−1)sµ(|v|)cs

(
k + 1

s

)
(v ⊗ 1∗)k+1−s,

where s < k + 1. Observe that s!(vs)∗ = (v∗)s in the Hopf algebra A]
k = ∧(V ]

k ).
In particular, we have δ(wk ⊗ (vk)∗) = (−1)kµ(|v|)ck(k + 1)v ⊗ 1∗. Let Xk be the
spatial realization |∆Ak| of Ak and put f = |∆q|. As is mentioned before Remark
2.4, the Sullivan model (E/Mu, δ) has a minimal model (∧W, δ). Recall that

G∗(Xl, Xk; f)] ∼= Vk/Ker Q(ẽv),

where ẽv : Ak → ∧W is the Sullivan representative of the evaluation map ev :
F(Xl, Xk; f) → Xk as in Lemma 3.5. By virtue of Proposition 2.5, we see that wk

is not in Ker Q(ẽv). Moreover the computation above and Lemma 3.5 allow us to
conclude that v is in Ker Q(ẽv) if c 6= 0. Thus we have G∗(Xl, Xk; f) = G∗(Xk) if
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q 6= 0 and G∗(Xl, Xk; f) = π∗(Xk) if q = 0. This computation also implies that the
Gottlieb group G∗(Xk) is a proper subgroup of π∗(Xk) if q 6= 0. Especially, we see
that Gl(CPn)⊗ Q = πl(CPn)⊗ Q if and only if l 6= 2 and that G2(CPn)⊗ Q = 0.
Observe that G∗(X) ⊗ Q ∼= G∗(XQ) for a simply connected finite CW complex X;
see [22, Corollary 2.5] and [35, Corollary 2.5].

We here describe a result which follows immediately from Proposition 2.5 and
Lemma 3.5. Recall that a simply connected space is X elliptic if dimH∗(X; Q) < ∞
and dimπ∗(X) ⊗ Q < ∞; see [9, §32].

Theorem 3.7. (cf. [35, Theorem 4.1]) Let U be a connected nilpotent space and
X a rationally nontrivial simply-connected space with only finitely many rational
homotopy groups. Then for any f : U → XQ, G∗(U,XQ; f) 6= 0. In particular,
G∗(XQ) 6= 0 if X is rationally nontrivial and elliptic.

Proof. Let (∧V, d) be a minimal model for X. We choose a nonzero element v ∈
V = π∗(X)] so that πi(X) = 0 for i > deg v. It is evident that v does not occur in
any term of the differential d as a factor. It follows from Proposition 2.5 that ι(v) =
v ⊗ 1 6= 0 in W . Lemma 3.5 yields that Q(ẽv)(v) 6= 0. Therefore v is a non-zero
element in V/Ker Q(ẽv) ∼= G∗(U,XQ; f)]. Observe that πN (XQ) = GN (U,XQ; f),
where N = deg v. ¤

Remark 3.8. Let U be a finite connected CW complex and X a connected nilpotent
CW complex of finite type. Then a Q-localization h : X → XQ induces a map
h∗ : F(U,X; f) → F(U,XQ; hf), which is a Q-localization, for any map f : U → X;
see Remark 2.2. Therefore we have

ev∗(π∗(F(U,X; f))) ⊗ Q = ev∗ ⊗ 1(π∗(F(U,X; f)) ⊗ Q) ∼= ev∗(π∗(F(U,XQ; hf))).

Theorem 3.7 therefore implies the result [35, Theorem 4.1], which was proved by
analyzing the construction of the Federer spectral sequence. Smith [36] was also
aware of such a generalization.

4. A detective element and its applications

Let f : U → X be a map from a connected nilpotent space U to a connected
rational space X. We begin by defining detective elements in the ψ-homotopy
space π∗

ψ(X) with respect to the triple (U,X; f). Consider a minimal Sullivan
model i : (∧V, d) ½ (∧V ⊗ ∧Z, d̂ ) = (B, d̂ ) for the given map f : U → X. By
definition, the free algebra (∧V ⊗ ∧Z, d̂ ) satisfies the condition that

(4.1) d̂(z) ∈ ∧≥1V ⊗ ∧Z + ∧V ⊗ ∧≥2Z

for any z ∈ Z.

Definition 4.1. An element v ∈ πk
ψ(X) for some k is detective with respect to the

triple (U,X; f) if the following conditions (P1) and (P2) hold for an appropriate
ordered basis {ui}i∈I for V such that deg ui ≤ deg ui+1 and d(ui+1) ∈ ∧Vi for
i ∈ I.
(P1): We write

d(v) =
∑

(l1,...,lr)∈L

ql1···lrul1 · · ·ulr + w,
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where L is a subset of Ir, ql1···lr are nonzero rational numbers and w ∈ ∧≥r+1V .
Then there exists an r-tuple (i1, ..., ir) ∈ L such that an element

αis := i(ui1 · · ·uis−1uis+1 · · ·uir ) ∈ ∧V ⊗ ∧Z

for some is does not occur in any image of the differential d̂ as a term. This
condition means that 〈d̂h, (αis)∗〉 = 0 for any h ∈ ∧V ⊗ ∧Z. Here (αis)∗ denotes
the dual element to αis and 〈 , 〉 : ∧V ⊗ ∧Z ⊗ (∧V ⊗ ∧Z)] → Q is the pairing.
(P2): Suppose that (P1) holds. Let Sv be the set of basis elements ulj that appear
in some term ul1 · · ·ulr with (l1, ..., lr) ∈ L as a factor and let (i1, ..., ir) be the
r-tuple mentioned in (P1). Then for any uj ∈ Sv and k with 1 ≤ k ≤ r and k 6= s,

ũ(uj ⊗ (uik
)∗) = ũγρ(uj ⊗ (uik

)∗)

if deg uj ⊗ (uik
)∗ = 0, where ũ : ∧(V ⊗ B∗) → Q, ρ : ∧(V ⊗ B∗) → E and

γ : E → ∧(V ⊗ B∗) are DGA maps described in Sections 2 and 3 (see (2.7), (2.8)
and (3.1)).

Suppose that π∗(X) is a graded abelian group. We say that an element x in
π∗(X) is detective with respect to (U,X; f) if the dual element x∗ in π∗(X)] ∼= π∗

ψ(X)
is detective.

Minimal Sullivan models for a given map are unique up to isomorphism; see [9,
Theorem 14.12]. This implies that the definition of a detective element does not
depend on the choice of the minimal model i for f .

Let x ∈ π∗(X) be a detective element. We denote by I(x) the subset of integers
consisting of the degrees of the uis in Definition 4.1. By definition, it is evident
that k ≤ deg x for any k ∈ I(x). Moreover, we see that, for any k ∈ I(x), k < deg x
if X is simply-connected.

The notion of a detective element for a given map f : U → X is quite subtle. As
is seen below, the algebraic conditions (P1) and (P2) can be derived from suitable
geometrical properties of X, U and the map f ; see Proposition 4.5 and the proof
of Theorem 6.1.

The following result yields Theorem 1.1.

Theorem 4.2. Let f : U → X be a map from a nilpotent connected space U to
a connected rational space X whose fundamental group is abelian. Assume that
the condition (2.9) holds and that there exists a detective element x in π∗(X) with
respect to (U,X; f). Then the evaluation subgroup Gk(U,X; f) is a proper subgroup
of πk(X) for all k ∈ I(x).

Before proving Theorem 4.2, we prove a lemma.

Lemma 4.3. Suppose that v is a detective element in π∗
ψ(X) and {ui}i∈I is a

basis for V which satisfies the conditions (P1) and (P2). Let M
eu be the ideal of

∧(V ⊗ B∗) generated by the set

{ω | deg ω < 0} ∪ {δw | deg ω = 0 or − 1}

∪{uj ⊗ (uik
)∗ − ũ(uj ⊗ (uik

)∗) | uj ∈ Sv, k 6= s,deg uj ⊗ (uik
)∗ = 0}.

Then M
eu is closed under differentation and ρ(M

eu) ⊂ Mu; see (2.8).

Proof. We first observe that δũ(uj⊗(uik
)∗) = ũδ(uj⊗(uik

)∗) = 0 if deg uj⊗(uik
)∗ =

0. Thus we have δ(M
eu) ⊂ M

eu. In order to prove Lemma 4.3, it suffices to show
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that, if deg uj ⊗ (uik
)∗ = 0, then

ρ(uj ⊗ (uik
)∗ − ũ(uj ⊗ (uik

)∗)) = ρ(uj ⊗ (uik
)∗) − uρ(uj ⊗ (uik

)∗).

We see that

ρũ(uj ⊗ (uik
)∗) = ũ(uj ⊗ (uik

)∗)ρ(1)
= ũ(uj ⊗ (uik

)∗)
= ũγρ(uj ⊗ (uik

)∗).

The last equality follows from the condition (P2). Since u = ũγ by definition, we
have the result. ¤

Proof of Theorem 4.2. We take a minimal Sullivan model i : A = (∧V, d) ½ B =
(∧V ⊗ ∧Z, d̂ ) for f . Consider the DGA ∧(A ⊗ B∗)/I described in Section 3. Let
v be the dual element to x. By assumption, the conditions (P1) and (P2) hold for
v. Without loss of generality, we can assume that 〈d̂β, (ui2 · · ·uir )∗〉 = 0 for any
β ∈ ∧V ⊗ ∧Z. Thus we see that d̂∗((ui2 · · ·uir )∗) = 0. Lemma 4.3 allows us to
obtain the commutative diagram

E

π
²²²²

∧(V ⊗ B∗)
ρoo

eπ²²²²
E/Mu ∧(V ⊗ B∗)/M

eu
eρ

oo

in the category of DGA’s, where π̃ is the natural projection and ρ̃ is a DGA map
induced by ρ.

Choose the element of the form v ⊗ (ui2 · · ·uir )∗ in ∧(A ⊗ B∗)/I ∼= ∧(V ⊗ B∗).
From (2.1), we see that

δπρ(v ⊗ (ui2 · · ·uir )∗) = πρδ(v ⊗ (ui2 · · ·uir )∗)

= ρ̃π̃
( ∑

(l1,...,lr)∈L

ql1···lrul1 · · ·ulr ⊗ (ui2 · · ·uir )∗

+w ⊗ (ui2 · · ·uir )∗
)

= q′i1···ir
(ui1 ⊗ 1∗) +

∑

j1

q′j1i2···ir
(uj1 ⊗ 1∗) + γ,

where γ is a decomposable element, ui1 6= uj1 for any j1, q′i1···ir
= mqi1···ir and

q′j1i2···ir
= nqj1i2···ir for appropriate nonzero rational numbers m and n. It follows

from Lemma 3.5 that Q(ẽv)(q′i1···ir
ui1 +

∑
j1

q′j1i2···ir
uj1) = 0. We have the result.

¤
We here give a sufficient condition for (P2).

Lemma 4.4. Let (∧V, d) be a minimal model for X and {vi}i∈I an ordered basis
for V such that deg vi ≤ deg vi+1 and d(vi+1) ∈ ∧Vi. Suppose that the induced map
π∗

ψ(f) : πi
ψ(X) → πi

ψ(U) between the ψ-homotopy spaces is a monomorphism for i
less than or equal to some integer k. Then for any element vi ⊗ e ∈ V ⊗ B∗ with
deg vi ⊗ e = 0,

ũ(vi ⊗ e) = ũγρ(vi ⊗ e),

if deg vi ≤ k.
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Proposition 4.5. Let v be an element of π∗
ψ(X) which satisfies the condition (P1).

If the induced map π∗
ψ(f) : πi

ψ(X) → πi
ψ(U) is a monomorphism for i ≤ deg v, then

the condition (P2) holds.

Proof. Under the notation of the condition (P2), we see that deg uj ≤ deg x. The
result follows from Lemma 4.4. ¤

Proof of Lemma 4.4. We write B = C ⊕ d̂C ⊕ H for which d̂ : C → d̂C is an
isomorphism and d̂H = 0. Let {b′k, d̂b′k, c′j}k,j be a basis for B which satisfies
the condition that b′k ∈ C and c′j ∈ H. Let {bk}k, {ak}k and {cj}j be dual
bases of {b′k}k, {d̂b′k}k and {c′j}j , respectively. Thus {bk, ak, cj}k,j is a basis for
B∗ = C∗ ⊕ (d̂C)∗ ⊕ H∗ = d̂∗(d̂C)∗ ⊕ (d̂C)∗ ⊕ H∗. Observe that d̂∗ak = bk.

We will prove Lemma 4.4 by induction on i ∈ I. Suppose that ũ(vl ⊗ e) =
ũγρ(vl ⊗ e) for any element vl ⊗ e ∈ V ⊗ B∗ with deg vl ⊗ e = 0 and l < i. We
prove now that ũ(vi ⊗ e) = ũγρ(vi ⊗ e) when deg vi ⊗ e = 0, first for e = bk, then
for e = ak and finally for e = cj .

Consider an element of the form vi ⊗ bk of degree zero. Since (−1)|vi|vi ⊗ bk =
δ(vi ⊗ ak) − dvi ⊗ ak, it follows that

(−1)|vi|ũ(vi ⊗ bk) = δũ(vi ⊗ ak) − ũ(dvi ⊗ ak) = −ũ(dvi ⊗ ak).

On the other hand,

(−1)|vi|ũγρ(vi ⊗ bk) = ũγρ(δ(vi ⊗ ak)) − ũγρ(dvi ⊗ ak) = −ũ(dvi ⊗ ak)

by the induction hypothesis. This yields that ũ(vi ⊗ bk) = ũγρ(vi ⊗ bk).
We write d̂b′k = cvi + q, where vi and q are linearly independent. Thus ak =

(db′k)∗ = c(vi)∗ + q∗. Assume that ũ(vi ⊗ ak) 6= 0. The definition of ũ implies
that 0 6= 〈vi, ak〉 = 〈vi, c(vi)∗ + q∗〉 = c. Moreover d̂0(b′k) ∈ V . These facts enable
us to deduce that π∗

ψ(f) : π
|vi|
ψ (X) → π

|vi|
ψ (U) is not a monomorphism, which is a

contradiction. We conclude that ũ(vi ⊗ ak) = 0 = ũγρ(vi ⊗ ak).
Consider an element vi ⊗ cj with deg vi ⊗ cj = 0. Using the generator wij of

∧(V ⊗ B∗) described in Section 2, we write vi ⊗ cj = wij − xij , where xij is an
element in ∧(Vi−1 ⊗ B∗). Since γρ(wij) = wij , it follows that

ũ(vi ⊗ cj) = ũ(wij) − ũ(xij)
= ũγρ(wij) − ũγρ(xij)
= ũγρ(vi ⊗ cj).

It turns out that ũ(vi ⊗ e) = ũγρ(vi ⊗ e) for any element vi ⊗ e ∈ V ⊗ B∗ with
degree zero.

The first step of the induction is obtained by the same argument as above; that
is, ũ(v1 ⊗ e) = ũγρ(v1 ⊗ e) if deg v1 ⊗ e = 0. This completes the proof. ¤

Example 4.6. Let SU(3) → P
p→ S3×S3 be the principal bundle with the classifying

map S3 × S3 π→ S3 × S3/S3 ∨ S3 ∼= S6 j→ BSU(3), where π is the projection and
j is a generator of π6(BSU(3)) ⊗ Q. Then the bundle has a model of the form

(∧(x3, x5), 0) (∧(u, v) ⊗ ∧(x3, x5), d)oooo (∧(u, v), 0)oooo

in which deg xi = i, deg u = deg v = 3, d(u) = d(v) = d(x3) = 0 and d(x5) = uv;
see [9, Example 4, page 220]. Let q : S3 × S3 → S3 denote the projection on the
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second factor. We obtain the bundle

SU(3) × S3 i→ P
qp→ S3,

which admits a model (∧(x3, x5, u), 0) (∧(u, v) ⊗ ∧(x3, x5), d)πoooo (∧(v), 0)oooo

with d(x5) = uv. Observe that the projection π is a Sullivan representative for the
inclusion i. The map π has a Sullivan model of the form

j : (∧(u, v) ⊗ ∧(x3, x5), d) // // (∧(u, v) ⊗ ∧(x3, x5) ⊗ ∧(w), d̂) =: (A, d̂),

in which the differential d̂ is defined by d̂(w) = v. To see this, we define a morphism
of DGA’s ϕ : (A, d̂) → (∧(x3, x5, u), 0) by ϕ(w) = ϕ(v) = 0, ϕ(u) = u and ϕ(xi) =
xi for i = 3, 5. It is readily seen that ϕ is a quasi-isomorphism with π = ϕ ◦ j. This
implies that j is a Sullivan model for the map i.

By using the Sullivan model j, we see that the dual element x5∗ ∈ π5(PQ) is
detective with respect to the triple ((SU(3) × S3), PQ; eP ◦i). In fact, d̂(x5) = uv

and the element u does not occur in any image of d̂ as a term. Thus the condition
(P1) holds. Moreover we can choose the set of generators {wij} of E as in Section
2 extending linearly independent elements v ⊗ u∗, u ⊗ u∗ and w ⊗ u∗. Therefore
ũ(z ⊗ u∗) = ũγρ(z ⊗ u∗) for z = v, u and w and hence the condition (P2) holds.

Theorem 1.1 yields that G∗((SU(3) × S3), PQ; eP ◦ i) is a proper subgroup of
π∗(PQ) and hence the map i is not cyclic by Corollary 1.4. It turns out that there
is no action on P of the group SU(3) × S3 for which i is an orbit map.

Remark 4.7. In Example 4.6 since d̂(w) = v, it follows that π∗
ψ(j) : π3

ψ(P ) →
π3

ψ(SU(3)×S3) is not a monomorphism. Thus Proposition 4.5 is not applicable to
show that x is detective because deg x5 = 5.

We close this section with another application of a detective element which is
related to characterization of Hopf spaces.

We see that Gn(X) ⊂ Gn(U,X; f) ⊂ πn(X) for any map f : U → X by [14,
Proposition 1.2]. Moreover, G∗(X) = π∗(X) if X is a Hopf space by [14, Proposition
2.2]. It follows that G∗(U,X; f) = π∗(X) for any map f : U → X if X is a Hopf
space.

The converse holds in some special cases. For example, it is shown by Haslam
in [18] that if X is a simply-connected finite CW complex with G∗(XQ) = π∗(XQ),
then XQ is a Hopf space. We describe a necessary and sufficient condition for a
rational space to be a Hopf space in terms of an evaluation subgroup. To this end,
we need a definition.

A map f : U → X is said to have a rational section if a minimal Sullivan model
m : ∧V → ∧V ⊗ ∧Z for f admits a left inverse; that is, there exists a DGA map
p : ∧V ⊗ ∧Z → ∧V such that p ◦ m = 1∧V . Suppose that U is connected and X
is simply-connected. Then we observe that f : U → X has a rational section if the
map f has a right homotopy inverse g : X → U .

Theorem 4.8. Let U , X and f : U → X be as in Theorem 4.2. Suppose further
that f : U → X has a rational section. Then X is a Hopf space if and only if
G∗(U,X; f) = π∗(X).

Proof. It suffices to prove the “if” part. Let m : (∧V, d) ½ (∧V ⊗ ∧Z, d̂ ) be a
minimal Sullivan model for f . By assumption, the map m admits a left inverse



20 YOSHIHIRO HIRATO, KATSUHIKO KURIBAYASHI AND NOBUYUKI ODA

p : (∧V ⊗ ∧Z, d̂ ) → (∧V, d). Let {z̃j}j∈J be a basis for Z. We can regard the set
{zj}j∈J consisting of elements zj = z̃j−mpz̃j as another basis of Z. It is immediate
that pzj = 0.

Assume that X is not a Hopf space, so that the differential d of the model
(∧V, d) is not strictly zero. We shall prove that the lowest-degree non-cycle v in V
is detective.

Let {ui} be an ordered basis of V such that deg ui ≤ deg ui+1 and d(ui+1) ∈ ∧Vi.
Write dv =

∑
qi1...irui1 · · ·uir + w, where w ∈ ∧≥r+1V and the qi1...ir are nonzero

rational numbers. Letting ν be the element m(ui2 · · ·uir ), suppose that 〈d̂h, ν∗〉 6= 0
for some h ∈ ∧V ⊗∧Z. If h is in the image of m, then d̂h = 0 since deg h < deg v.
Thus it follows that h is in the ideal J of ∧V ⊗∧Z generated by {zj}j∈J . We write

d̂h = sν +
∑

ηk + Φ,

where s is a nonzero rational number, ηk ∈ ∧V and Φ ∈ J . We assume further that
ν and ηk’s are linearly independent. Then it is readily seen that pd̂h = dph = 0.
Therefore, we have 0 = p(sν +

∑
ηk +Φ) = sν +

∑
ηk, which is a contradiction. We

can conclude that 〈d̂h, ν∗〉 = 0. It follows from Proposition 4.5 that the condition
(P2) holds. This implies that the dual element of v is detective with respect to
(U,X; f). By virtue of Theorem 1.1, we have the result. ¤

Remark 4.9. Suppose that a based map f : U → X has a right homotopy inverse in
the category of based spaces. Then we see that G∗(U,X; f) = G∗(X). In fact, if g :
X → U is a right homotopy inverse of f , then the induced map f∗ : F(X, X; idX) →
F(U,X; f) has the left homotopy inverse g∗ : F(U,X; f) → F(X, X; idX); that is,
g∗ ◦ f∗ is homotopic to the identity map on F(X,X) the function space of all
continuous maps from X to itself. Thus we have the following digram.

π∗(F(X, X), f ◦ g))

ev1∗ ++VVVVVVVVVVVVVV
π∗(F(X, X), id)

ev2∗
²²

((f◦g)∗))∗

∼=
oo (f∗)∗ // π∗(F(U,X; f), f)

ev3∗tthhhhhhhhhhhhhh

(g∗)∗

uu

π∗(X)

in which three inner triangles and the outer triangle are commutative. Here each
evi denotes the evaluation map. The commutativity of the diagram enables us
to conclude that G∗(X) = Im ev2∗ = Im ev3∗ = G∗(U,X; f). If moreover X is
a finite simpy-connected CW complex, then Theorem 4.8 follows from Haslam’s
result. We stress that such a finiteness condition on X, the simply-conectedness
and the existence of a geometrical section of the map f are not required in Theorem
4.8.

Recall that X is a G-space if Gn(X) = πn(X) for any n ≥ 1. In [33], Siegel has
constructed a non simply-connected space which is a G-space but not a Hopf space.
By generalizing the construction, we here give a non simply-connected homogeneous
space M which is a rational Hopf space; that is, the localization MQ is a Hopf space,
but not a Hopf space itself.

Let G be a compact simply-connected Lie group and T an l-dimensional torus
subgroup of G. Let ι : T → G be the inclusion. Define a embedding j : T → G× T
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by
j(eiθ1 , ..., eiθl) = (ι((eim1θ1 , ..., eimlθl)), ein1θ1 , ..., einlθl),

where m1, ..., ml, n1, ..., nl are non-zero integers and mk is prime to nk for any
1 ≤ k ≤ l.

By applying Theorem 4.8, we have the following proposition.

Proposition 4.10. The homogeneous space M := G × T/j(T ) is a non simply-
connected G-space and a rational Hopf space.

Proof. Since the induced map j∗ : πn(T ) → πn(G × T ) is injective for all n ≥ 1,
it follows from [33, Theorem 2.3] that M is a G-space. Observe that π1(M) is
a nontrivial abelian group and that the localization e : M → MQ induces an
monomorphism e∗ : Gn(M) ⊗ Q → Gn(MQ); see [30, Theorem 4.1]. We see that
Gn(MQ) = πn(MQ) for any n because Gn(M) = πn(M) for any n. Theorem 4.8
yields that MQ is a Hopf space. ¤

Proposition 4.11. Suppose that, for a prime number p, the integral homology of
G is p-torsion free and dim G

2 + 1 < p. Assume further that at least one of the
integers n1, ..., nl is divisible by p. Then M is not a Hopf space.

Proof. Consider the fibration of the form M → BT
Bj→ B(G × T ). This gives rise

to the Eilenberg-Moore spectral sequence {Er, dr} converging to H∗(M ; Z/p) as an
algebra with

E∗,∗
2

∼= Tor∗,∗
H∗(BG;Z/p)⊗H∗(BT ;Z/p)(H

∗(BT ; Z/p), Z/p)

as a bigraded algebra. Observe that the H∗(BG; Z/p) ⊗ H∗(BT ; Z/p)-action on
H∗(BT ; Z/p) is given by the composite map

H∗(BG; Z/p) ⊗ H∗(BT ; Z/p) ⊗ H∗(BT ; Z/p)
(Bj)∗⊗1

²²
H∗(BT ; Z/p) ⊗ H∗(BT ; Z/p) c // H∗(BT ; Z/p),

where c denotes the cup product of H∗(BT ; Z/p). Since H∗(G) is p-torsion free, the
cohomology H∗(BG; Z/p) is isomorphic to a polynomial algebra, say, Z/p[x1, ..., xn].
We can write H∗(BT ; Z/p) ∼= Z/p[t1, ..., tl] for which deg tk = 2 for any 1 ≤ k ≤ l. It
follows from the definition of the embedding j that (Bj)∗(tk) = nktk for 1 ≤ k ≤ l.
Without loss of generality, we assume that n1 is divisible by p. This implies that t1
is one of the generators of the algebra E0,∗

2 in E0,2
2 . The result [28, 8.2. Theorem]

enables us to conclude that the spectral sequence {Er, dr} collapses at the E2-term.
The edge homomorphism

E0,∗
2 → E0,∗

∞
∼= E0,∗

0 ⊂ H∗(M ; Z/p)

is a morphism of algebras in general; see [34, Proposition 4.2]. Hence E0,∗
2 is

regarded as a subalgebra of H∗(M ; Z/p). Since M is a manifold of dimension
dim G, we can choose the least integer s such that ts1 = 0 in H∗(M ; Z/p). It follows
that 2(s − 1) ≤ dimG and hence s ≤ dim G

2 + 1 < p by assumption.
Suppose that M is a Hopf space with a product h : M × M → M . We have

0 = h∗(ts1) = h∗(t1)s = (t1 ⊗ 1 + 1 ⊗ t1)s = · · · + sCkts−k
1 ⊗ tk1 + · · · 6= 0,

which is a contradiction. ¤
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Remark 4.12. The homogeneous space of the form SO(3) × S1/j(S1) constructed
with an appropriate embedding j : S1 → SO(3) × S1 in [33, 2.4 Example] satisfies
the conditions in Proposition 4.11 for p = 3. In fact H∗(SO(3)) is 3-torsion free
and dimSO(3) = 3.

5. Non Gottlieb elements detected by Whitehead products

The following result is the key to proving Theorem 1.2.

Theorem 5.1. Let f : U → X be a map between connected spaces U and X which
are not necessarily rational. If for elements g1, ..., gn−1 in π∗(U), the (n−1)th order
Whitehead product [g1, ..., gn−1] contains zero, then so does [f∗(g1), ..., f∗(gn−1), x]
for any x ∈ G∗(U,X; f).

Remark 5.2. With the same notation as above, suppose that [gi1 , gi2 , ..., gik
] = {0}

for any subset {gi1 , ..., gik
} of {g1, ..., gn−1} with i1 < i2 < · · · < ik and k < n − 1.

Then [g1, ..., gn−1] is non-empty. This follows from [32, Theorem (2.7)]; see also the
comment after [32, Theorem (2.7)].

Proof of Theorem 5.1. The usual argument on composing a Gottlieb element with
an element in the homotopy group is applicable to our case; see, for example, [13]
[9, Proposition 28.7]. We put ki = deg gi and kn = deg x. Let Tm denote the fat
wedge, which is a subspace of Pm = Sk1×· · ·×Skm . Since [g1, ..., gn−1] is non-empty
and contains zero, it follows from [32, Theorem (2.4)] that the map g1 ∨ · · · ∨ gn−1

extends to a map ϕ : Pn−1 → U . The element f∨x : U∨Skn → X has an extension
ψ : U × Skn → X because x ∈ G∗(U,X; f). Therefore we see that the composition
ψ ◦ (ϕ × 1) : Pn → X is an extension of the map (f ∨ x) ◦ (g1 ∨ · · · ∨ gn−1 ∨ 1) =
f∗(g1) ∨ · · · ∨ f∗(gn−1) ∨ x. ¤

Let σ be a permutation of the set {1, ..., r} of r integers. We define a map
σ∗ : ×r

i=1S
ni → ×r

i=1S
nσ(i) by permuting the coordinate by σ. For the gener-

ators µ ∈ H∗(×r
i=1S

ni) and µ′ ∈ H∗(×r
i=1S

nσ(i)) mentioned in Introduction, we
see that (−1)ε(σ)µ′ = σ∗(µ). Here ε(σ) is the integer defined by the formula
u1 · · ·ur = (−1)ε(σ)uσ(1) · · ·uσ(r) in the graded commutative free algebra gener-
ated by elements u1, ..., ur with deg ui = deg xi. The definition of the higher
order Whitehead product enables us to conclude that, if x ∈ [x1, ..., xr], then
(−1)ε(σ)x ∈ [xσ(1), ..., xσ(r)]. Thus in order to prove Theorem 1.2, it suffices to
show that [x1, ..., xr−1, xr] = {0} for any x1, ..., xr−1 in π∗(X) if xr ∈ G∗(U,X; f)
under the assumption in the theorem.

Proof of Theorem 1.2. We first consider the Whitehead products in X. It follows
from the assumption on the Whitehead products in U and [32, Theorem (2.1)(d)]
that all Whitehead products of order < r in X contain zero. By applying [1,
Corollary 6.5] repeatedly, we see that all of those actually vanish; see Remark 1.3.

Let x1, ..., xr be elements in π∗(X). Suppose that xr ∈ G∗(U,X; f). By assump-
tion, we can choose elements gi ∈ π∗(U) (1 ≤ i ≤ r − 1) so that f∗(gi) = xi. Theo-
rem 5.1 allows us to conclude that [x1, ..., xr] contains zero since [g1, ..., gr−1] = {0}.
By applying [1, Corollary 6.5] again, we see that [x1, ..., xr] = {0}. This completes
the proof. ¤

By using Theorem 5.1 in the case n = 2, we can recover the result [35, Theorem
4.2] concerning the vanishing of an evaluation subgroup. The proof of the following
proposition is left to the reader.
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Proposition 5.3. (cf. [35, Theorem 4.2]) Let U and X be connected based spaces
and f : U → X a based map. If there exist nonzero elements xi in π∗(U) such that
∩i(Ker adf∗(xi)) = 0, then G∗(U,X; f) = 0. Here adf∗(xi) : π∗(X) → π∗(X) is
the homomorphism defined by adf∗(xi)(z) = [f∗(xi), z].

We end this section with some results on rational higher order Whitehead prod-
ucts.

Proposition 5.4. Assume that n ≥ 3, m ≥ 2 and mi ≥ 2 for all 1 ≤ i ≤ n. Let
xi be an element of πmi(S

m
Q ) for i = 1, 2, ..., n. Then

(1) If m is odd, then [x1, ..., xn] is non-empty and [x1, ..., xn] = {0}.
(2) If m is even and [x1, ..., xn] is non-empty, then [x1, ..., xn] contains zero.

Proof. If m is odd, then Sm
Q is a Hopf space. Hence we have the result (1) by [32,

Theorem (2.4)]. Suppose that m is even. For dimensional reasons, it suffices to
consider the case where deg x1 = m and deg x1 +deg x2 + · · ·+deg xn−1 = 2m−1.
It is readily seen that each xj = 0 for j > 1. Since 0 ∈ Gi(Sm

Q ) for any i, by
applying Theorem 5.1 repeatedly to the case where f = id : Sm

Q → Sm
Q , we have

[x1, ..., xn] 3 0. ¤
Corollary 5.5. Let X be a rational space. If n ≥ 3 and m is odd, then for any
element x ∈ πm(X), the nth order Whitehead product [x, x, ..., x] is well-defined and
contains zero.

Proof. Let jm : Sm → Sm
Q be the rationalization map. We see that x = xQ ◦ jm,

where xQ denotes the Q-localization of x. Proposition 5.4 and [32, Theorem (2.1)
(d)] imply that

{0} = xQ ◦ [jm, jm, · · · , jm] ⊂ [xQ ◦ jm, xQ ◦ jm, · · · , xQ ◦ jm] = [x, x, · · · , x].

¤
Corollary 5.6. Assume that n ≥ 3 and mi ≥ m ≥ 2. If xi : Smi → Sm (i =
1, 2, · · · , n), then [x1, · · · , xn] is of finite order if it is well-defined.

Proof. Let jm : Sm → Sm
Q be the rationalization map. For dimensional reasons, it

follows from Proposition 5.4 that jm◦[x1, · · · , xn] ⊂ [jm◦x1, · · · , jm◦xn] = {0}. ¤

6. A geometric interpretation of a detective element

In this section, we prove the following theorem.

Theorem 6.1. Let U and X be simply-connected rational spaces and let f be as
in Theorem 1.2. Assume that all Whitehead products of order less than r vanish
in π∗(U). Then a nonzero element x in [x1, ..., xr] for some elements xi, if any, is
detective with respect to (U,X; f). Moreover, deg xi ∈ I(x) for any i.

We begin by recalling the result in [1] concerning rational higher order Whitehead
products. Fix positive integers n1, ..., nr. Then we define a function K from the
set M(r, Q) of r × r-matrices to Q by

K((aij)) =
∑

σ∈Σr

(−1)ε(σ)a1σ(1) · · · arσ(r).

Here Σr denotes the symmetric group and the integer ε(σ) is characterized by the
formula u1 · · ·ur = (−1)ε(σ)uσ(1) · · ·uσ(r) for elements u1, ..., ur with deg ui = ni in
a graded commutative algebra.
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Let (∧V, d) be the minimal model for a simply-connected space X. We fix a
basis {ui} of V and elements xi ∈ πni(X). Define a function K̃ : ∧≥rV → Q as
follows: For an element u ∈ ∧≥rV , we write

u =
∑

i1≤···≤ir

qi1···irui1 · · ·uir + w,

where w ∈ ∧≥r+1V and qi1···ir ∈ Q. Then K̃ is defined by

K̃(u) =
∑

i1≤···≤ir

qi1···ir
K(Ai1···ir

),

where Ai1···ir
is the r× r matrix whose (p, q)-entry is the Sullivan pairing 〈uip

, xq〉.

Theorem 6.2. ([1, Theorem 5.4]) Let X be a simply-connected rational space with
a minimal model (∧V, d). Suppose that the higher order Whitehead product set
[x1, ..., xr] ⊂ πN−1(X) is non-empty and that v ∈ V is an element of degree N − 1
with dv ∈ ∧≥rV . Then, for each x ∈ [x1, ..., xr],

〈v, x〉 = (−1)εK̃(d(v)),

where ε =
∑

i<j ninj.

We are ready to prove the main theorem in this section.

Proof of Theorem 6.1. Let i : (∧V, d) ½ (∧V ⊗ ∧Z, d̂ ) be the minimal model for
f . Since the induced map f∗ : π∗(U) → π∗(X) is surjective, it follows that the map
∧V → H(∧V ⊗ ∧Z, d̂0) induced by i is injective, where d̂0 is the linear part of d̂.
This implies that (∧V ⊗ ∧Z, d̂) is a minimal model for U ([17, 4.12 Proposition]).

We choose a nonzero element x ∈ [x1, ..., xr]. Since all Whitehead products of
order < r vanish in π∗(X), it follows from [1, Proposition 6.4] that d(x∗) is in
∧≥rV . With a basis {ui} of V , we write d(x∗) =

∑
i1≤···≤ir

qi1···irui1 · · ·uir + w,

where w ∈ ∧≥r+1V and qi1···ir are nonzero in Q. Suppose that there exists an
element xi such that deg xi 6= deg ujl

for any jl. Then all the numbers 〈ujl
, xi〉 in

ith column of the matrix Aj1...jr are zero for any j1, ..., jr. From Theorem 6.2, we
have 1 = 〈x∗, x〉 = (−1)εK̃(d(x∗)) = 0, which is a contradiction. Thus we see that
for any xi there exists an element uil

with degree equal to deg xi, which occurs in
a term of d(x∗) as a factor. Without loss of generality, we can assume that

d(x∗) =
∑

i1≤···≤ir

qi1···irui1 · · ·uir ,

modulo ∧≥r+1V with deg ui1 = deg xi for some i1. It follows from [1, Propo-
sition 6.4] that d̂h ∈ ∧≥r(V ⊕ Z) for any h ∈ ∧V ⊗ ∧Z = ∧(V ⊕ Z) and hence
〈h, d̂∗(ui2 · · ·uir )∗〉 = 〈d̂h, (ui2 · · ·uir )∗〉 = 0. This fact yields that d̂∗(ui2 · · ·uir )∗ =
0. Proposition 4.5 allows us to conclude that the element x is detective with respect
to (U,X; f). By definition, we see that deg xi ∈ I(x). This completes the proof.

¤

7. Proof of Theorem 1.6 and examples

We begin with the G-sequence introduced by Woo and Lee in [41]. Let X be
a space with basepoint x0 and U a subspace of X. Let i : U → X denote the
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inclusion map. Then the evaluation map ev : (F(U,X; i),F(U,U ; idU )) → (X, U)
at x0 gives rise to the homomorphism

ev]∗ : π∗(F(U,X; i),F(U,U ; idU )) → π∗(X, U).

The image of ev]n is denoted by GRel
n (U,X; i). The G-sequence

· · · → Gn(U)
i]→ Gn(U,X; i)

j]→ GRel
n (U,X; i) ∂→ Gn−1(U) → · · ·

is given as a subsequence of the homotopy exact sequence

· · · → πn(U)
i]→ πn(X)

j]→ πn(X, U) ∂→ πn−1(U) → · · · .

We observe that the G-sequence is not exact in general; see [23] and [25] for this fact.
Note that G∗(U,X; i) and GRel

∗ (U,X; i) are denoted by G∗(X,U) and GRel
∗ (X, U),

respectively in [41]. If F
i→ X

p→ Y is a fibration, then we have a commutative
diagram

Gn(F )
i] // Gn(F, X; i)

j] //

p] ((PPPPPPPPPP GRel
n (F,X; i)

p]

²²

Â Ä // πn(X,F )
∼=

p]wwoooooooooo

πn(Y )

for any n ≥ 2. The exactness at Gn(F, X; i) of the G-sequence is therefore equiva-
lent to that of the sequence

(7.1) Gn(F )
i]→ Gn(F,X; i)

p]→ πn(Y ).

After proving Theorem 1.6, we will illustrate non-exactness of the sequence (7.1);
see Example 7.5.

In order to prove Theorem 1.6, we need the following result due to Ghorbal [11].

Proposition 7.1. [10, Proposition 3.5] Let f : X → Y be a map of rational
spaces that admits a minimal model of the form γ : (∧(V ⊕ W ), d) → (∧W,d)
such that γ(V ) = 0, γ(w) = w for w ∈ W , d(V ) ⊂ ∧≥2V ⊗ ∧W and d(W ) ⊂
∧W +∧≥2V ⊗∧W . Then f is a homotopy monomorphism in the nilpotent category;
that is, the induced map of homotopy sets f∗ : [A, X] → [A, Y ] is injective whenever
A is a nilpotent space.

Proof of Theorem 1.6. By assumption, the projection p admits a Sullivan model
p̃ : (∧VY , d) → (∧VY ⊗ ∧V, d̂) such that d̂(v) ∈ ∧≥2VY ⊗ ∧V + Q ⊗ ∧≥2V for
any v ∈ V . From [16, Theorem 20.3], we see that the DGA (∧V, d) = Q ⊗(∧YY ,d)

⊗(∧VY ⊗ ∧V, d̂) is a minimal model for the fibre F . Moreover it follows that the
projection ĩ : ∧(VY ⊕ V ) → ∧V is a Sullivan representative of i : F→X. By virtue
of Remark 3.4, the 0-simplex ũ

ei ∈ ∆(∧((VY ⊕V )⊗(∧V )∗)) gives the Sullivan model
E/Mu which is a model for F(F, X; i), where u = ∆(γ)ũ

ei; see Theorem 3.3 and
paragraphs before Theorem 2.3 for the notations. Moreover we have a Sullivan
model of the form (E′/M ′

u′ , δ) for F(F, F ; idF ) in which E′ = ∧(V ⊗ H∗(F )) and
u′ = ∆(γ′)ũid∧V

∈ ∆(∧(V ⊗ (∧V )∗)); see Remark 3.4.
Since the model (∧VY ⊗ ∧V, d̂) is minimal, the dual sequence to the homotopy

exact sequence of F → X → Y splits into the short exact sequence 0 → VY
Q(ep)→
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VY ⊕ V
Q(ei)→ V → 0. In order to prove Theorem 1.6, it suffices to show that the

sequence

0 → VY
Q(ep)→ (VY ⊕ V )/KerQ(ẽv)

Q(ei)→ V/KerQ(ẽv) → 0
is exact.

Since F
i→ X

p→ Y is a separable fibration, Proposition 7.1 implies that i is
a homotopy monomorphism in the category of nilpotent spaces; that is, for any
nilpotent space Z and any two maps u, v : Z → F , u ' v whenever iu ' iv.
The main theorem in [31] asserts that if i is a homotopy monomorphism in based
topological spaces, then the G-sequence of (F, X) splits into short exact sequences

0 → Gn(F )
i]→ Gn(F,X; i)

j]→ GRel
n (F, X; i) → 0.

The same argument as in the proof of [31, Theorem 2.2] does work well to show
that the sequence is exact at G∗(F ) and G∗(F, X; i). Indeed, in the proof, it
is only needed that i : F → X is a homotopy monomorphism with respect to
(Sk × F )/(Sk × ∗) with k ≥ 2 in the category T OP ∗ of based topological spaces;
see [31, Lemma 2.1].

Let [M, N ]∗ denote the set of based homotopy classes between based spaces M
and N . Since F is simply-connected, it follows that (Sk × F )/(Sk × ∗) is simply
connected and hence nilpotent. Thanks to the result due to Ghorbal mentioned
above, the induced map i∗ : [(Sk × F )/(Sk × ∗), F ] → [(Sk × F )/(Sk × ∗), X] is
injective. We see that the natural map [(Sk ×F )/(Sk ×∗), F ]∗ → [(Sk ×F )/(Sk ×
∗), F ] is bijective because F is simply-connected. Therefore the induced map

i∗ : [(Sk × F )/(Sk × ∗), F ]∗ → [(Sk × F )/(Sk × ∗), X]∗
is injective so that i : F → X is a homotopy monomorphism with respect to
(Sk × F )/(Sk × ∗) with k ≥ 2 in T OP ∗. Thus, we are left to prove that Q(p̃) is a
monomorphism.

Recall the model (E/Mu, δ) for F(F, X; i) from Remark 3.4 and DGA maps
described in Section 2; see the diagram below.

VY

Q(ep)
²²

VY ⊕ V

ι

&&Q(fev) // W
Â Ä // ∧W

n

88
E/Mur

'oo Eoooo

γ

55
∧((VY ⊕ V ) ⊗ (∧V )∗)ρ

'oooo

Let δ0 be the linear part of the differential δ. Suppose that vY is in KerQ(ẽv) for
a nonzero element vY ∈ VY ⊂ VY ⊕ V . Choose a basis {vi} of VY ⊕ V so that
vY ∈ {vi}. Lemma 3.5 yields that ι(vY ) = vY ⊗ 1 is in Imδ0. Hence the element
vY ⊗ 1 appears in δ0(vi ⊗ e) as a summand of a term for some element vi ⊗ e in
(VY ⊕ V ) ⊗ (∧V )∗. Therefore d̂(vi) contains vY as a factor; see Remark 2.6. We
write

d̂(vi) =
∑

i1,..,is,j1,..,jm

vY
i1 · · · v

Y
is
· vj1 · · · vjm +

∑

j1,...,jq

v′
j1 · · · v

′
jq

,

where vY
il

∈ VY , vjl
, v′jm

∈ V . Observe that s ≥ 2 and q ≥ 2 because the given
fibration F → X → Y is separable. Without loss of generality, we assume that
vY

i1
= vY . Then the other element vY

il
(l ≥ 2) needs to be an element of Q after

tensoring some element e′ in (∧V )∗ which appears in D(s+m−1)(e) as a factor; that
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is, deg vY
il
⊗ e′ = 0 and vY

il
⊗ e′ ∈ Q in E/Mu. However vY

il
⊗ e′ = ũ

ei(v
Y
il
⊗ e′) = 0;

see (3.1). In consequence, the element vY ⊗ 1 does not appear in δ0(vi ⊗ e) as a
factor, which is a contradiction. This completes the proof. ¤

We here recall from [9, Section 15 (c)] a model for a pullback fibration. Let

Xf //

q

²²

X

p

²²
Z

f // Y

is a pullback diagram in which Y and Z are simply-connected and p is a fibration
with fibre F . Let (∧VY , d) → (∧VZ , d) be a Sullivan representative for f and

(∧W, d) (∧VY ⊗ ∧W, d̂)
πoooo (∧VY , d)oojoo

a model for the fibration p; that is, there exists a commutative diagram

APL(F ) APL(X)
AP L(i)oo APL(Y )

AP L(p)oo

(∧W,d)

'
OO

(∧VY ⊗ ∧W, d̂)

'
OO

πoooo (∧VY , d),oojoo

'
OO

in which vertical arrows are quasi-isomorphisms, j is a Sullivan model for p and π
is the natural projection.

Proposition 7.2. [9, Proposition 15.8] The pullback fibration F → Xf
q→ Z has a

model of the form (∧W,d) (∧VZ , d) ⊗(∧VY ,d) (∧VY ⊗ ∧W, d̂)oooo (∧VZ , d).oooo

Example 7.3. Let F → X
p→ Y be a fibration over a simply-connected space Y and

f : Z → Y a map. If the fibration p : X → Y is separable, then so is the pullback
fibration q : Xf → Z of p by f . This follows from Proposition 7.2.

Examples 7.4 and 7.5 described below show that there is a separable fibration
which can be obtained from a non-separable fibration via the pullback construction
by an appropriate map.

Example 7.4. Let G be a compact simply connected Lie group with a maximal torus
T and i : T → G the inclusion. Then the Borel fibration

G/T
j→ ET ×T G/T

p→ BT

is separable. To see this, we consider the fibration G/T → BT
Bi→ BG. Suppose

that H∗(BG; Q) ∼= Q[y1, ..., yl] and H∗(BT ; Q) ∼= Q[t1, ..., tl]. Put (Bi)∗(yi) =
fi(t1, ..., tl). Since deg ys ≥ 4 and deg ts = 2 for 1 ≤ s ≤ l, it follows that fi(t1, ..., tl)
is decomposable for any i. Moreover we see that the fibration Bi : BT → BG has
a model of the form

(∧(ti) ⊗ ∧(zi), d) (∧(ti) ⊗ ∧(zi) ⊗ ∧(yi), d̂)oooo (∧(yi), 0),oooo

in which d̂(zi) = −yi + fi(t1, ..., tl) for any i. The uniqueness of a minimal relative
Sullivan algebra ([9, Theorem 14.12]) implies that the fibration Bi : BT → BG is
not separable.
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The fibration G/T
j→ ET ×T G/T

p→ BT fits into the fibre square

G/T

j
²²

= // G/T

²²
ET ×T G/T

ξ //

p

²²

BT

Bi
²²

BT
Bi // BG,

where ξ : ET ×T G/T → BT is defined by sending an element [x, [g]T ] to [xg]T ;
see [20, (2.2)]. By using Proposition 7.2, we have a model for the Borel fibration
ET ×T G/T

p→ BT of the form

(∧(ti) ⊗ ∧(zi), d) (∧(t′i) ⊗ ∧(ti) ⊗ ∧(zi), d̂)oooo (∧(t′i), 0),oooo

where d̂(zi) = −fi(t′1, ..., t
′
l) + fi(t1, ..., tl) for any i. This enables us to deduce that

the fibration ET ×T G/T
p→ BT is separable. Moreover, Theorem 1.6 yields that

G∗(G/T, ET ×T G/T ; j) ⊗ Q ∼= G∗(G/T ) ⊗ Q ⊕ π∗(BT ) ⊗ Q.

Since Geven(G/T ) ⊗ Q = 0 ([8, Theorem III]), it follows that Geven(G/T, ET ×T

G/T ; j) ⊗ Q ∼= πeven(BT ) ⊗ Q and hence

Geven(G/T, ET ×T G/T ; j) ⊗ Q ∼= Q{t′∗1 , ..., t′∗l }

where {t′∗1 , ..., t′∗l } is the dual to the basis {t′1, ..., t′l} of the vector space which
generates the model for BT mentioned above. Moreover, by virtue of Proposition
2.5, we have

Godd(G/T, ET ×T G/T ; j) ⊗ Q ∼= Godd(G/T ) ⊗ Q ∼= πodd(G/T ) ⊗ Q ∼= Q{zi}.

For a more general result, see [27, Corollary 5.5].

Example 7.5. The fibration S2 i→ CP 3 p→ S4 obtained by the Hopf bundle S3 →
S7 → S4 is not separable.
(i) The sequence

(7.2) G∗(S2)
i]→ G∗(S2, CP 3; i)

p]→ π∗(S4)

is not exact. In fact, we have a model for the fibration S2 i→ CP 3 p→ S4 of the form

(∧(x2, x3), dx3 = x2
2) (∧(x2, x3, y4, y7), d̂)

πoooo (∧(y4, y7), dy7 = y2
4),oooo

where the differential d̂ is defined by d̂y7 = y2
4 and d̂x3 = x2

2 + y4. Since S2 is a
finite complex, the sequence

(7.3) G∗(S2
Q)

i]→ G∗(S2
Q, CP 3

Q; i)
p]→ π∗(S4

Q)

is regarded as that obtained tensoring Q to (7.2); see [35, Theorem 2.3]. Thus in
order to prove non-exactness of the sequence (7.2), it suffices to show that the dual
sequence to (7.3)

V → H(V ⊕ W, d̂0)/KerQ(ẽv)
Q(ei)→ W/KerQ(ẽv)
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is not exact, where V = Q{y4, y7}, W = Q{x2, x3} and d̂0(x3) = y4. Observe that
H(V ⊕ W, d̂0) ∼= Q{x2, y7}. We have a quasi-isomorphism

m : (∧(x2, y7), dy7 = x4
2)

' // (∧(x2, x3, y4, y7), d̂)

which sends x2 and y7 to x2 and y7 − y4x3 +x2
2x3, respectively. Therefore the map

π ◦ m is a Sullivan representative for the inclusion i : S2 → CP 3. The element
x2 ∈ H(V ⊕ W, d̂0)/KerQ(ẽv) maps to zero by Q(i) because ẽv(x2) = x2 ⊗ 1
coincides with the image δ0( 1

2 (x3 ⊗ x2∗)) in the model for F(S2
Q, S2

Q; id). Suppose
that (7.3) is exact. Since there is no element with degree 2 in V , it follows that
Q(ẽv)(x2) = 0 for the linear part Q(ẽv) of the model ẽv for the evaluation map
ev : F(S2

Q, CP 3
Q; i) → CP 3

Q. By virtue of Lemma 3.5, there is an element w ∈ E/Mu

such that δ0(w) = x2 ⊗ 1 = ẽv(x2), where E ∼= ∧(Q{x2, y7} ⊗ H∗(S2)) and u =
∆(γ)ũπ◦m. For dimensional reasons, there is no element with degree 1 in E/Mu,
which is a contradiction.

(ii) Let q : S2×S2 → S2×S2/S2∨S2 ∼= S4 be the projection and S2 i→ X
π→ S2×S2

the pullback by q of the fibration S2 i→ CP 3 p→ S4. By applying Proposition 7.2
to the model for the fibration S2 i→ CP 3 p→ S4 mentioned in (i), we see that π is
separable. It follows from Theorem 1.6 that

Gn(S2
Q, XQ; iQ) ∼= Gn(S2

Q) ⊕ πn(S2
Q × S2

Q)

∼=





Q ⊕ Q if n = 2
Q ⊕ Q ⊕ Q if n = 3
0 otherwise

We conclude this section with a result concerning the group GRel
∗ (F, X; i), which

is deduced by combining Theorem 1.6 with [31, Theorem 2.2].

Corollary 7.6. Under the same assumptions as in Theorem 1.6, the induced map

p∗ : GRel
n (F, X; i) → πn(Y )

is an isomorphism for n > 1.

8. The evaluation subgroup of the fundamental group

In order to prove Theorem 1.7, we first recall a filtration of a Sullivan algebra.
Let A = (∧W,d) be a Sullivan algebra and put A(−1) = A0 = Q. Let A(n) denote
the sub DGA generated by Ai for 0 ≤ i ≤ n and dAn. Define A(n, q) ⊂ A(n) to
be the sub DGA generated by A(n, q − 1) and the set {a ∈ An | da ∈ A(n, q − 1)},
where A(n, 0) = A(n − 1). Observe that A(1, 0) = Q and that dy = 0 for any
y ∈ A(1, 1). As usual, for an augmentation algebra C, let Q(C) denote the vector
space of indecomposable elements, namely, Q(C) = C/C · C, where C denotes the
augmentation ideal. The result [2, 12.7 Theorem] asserts that for any connected
nilpotent space X with a Sullivan model ∧W of finite type, there exists a natural
isomorphism

(Γq+1/Γq)π1(∧W ) ∼= HomZ
(
(Γq/Γq+1)π1(X), Q

)
,

where Γiπ1(∧W ) is the image of the induced map π1(A(1, i − 1)) → π1(A) by the
natural inclusion and (Γq+1/Γq)π1(∧W ) denotes the subquotient Γq+1π1(∧W )/Γqπ1(∧W ).
By using this result, we prove Theorem 1.7.
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Proof of Theorem 1.7. We first observe that the diagram (1.1) in the Introduction
gives rise to the diagram

(Γi/Γi+1)π1(F(U,X; f))

ev∗ ²²²²

ev∗

,,XXXXXXXXXXXXXXXXXXXX

M := ΓiG1(U,X; f)/(Γi+1π1(X) ∩ ΓiG1(U,X; f)) // // (Γi/Γi+1)π1(X).

Let (∧W,d) be a minimal model for X. When U is a finite CW complex, it follows
from [19, Theorem 3.11] that eX∗ : F(U,X; f) → F(U,XQ; eX ◦f) is a localization.
Therefore with the hypothesis (ii), we see that (E/Mu, δ) described in Section 3
is a Sullivan model for F(U,X; f). By dualizing the diagram above, we have a
commutative diagram (∗∗)i:

(Γi/Γi+1)π1(F(U,X; f))]
∼= // (Γi+1/Γi)π1(E/Mu)

M ]
OO

ev]
∗

OO

(Γi/Γi+1)π1(X)]oooo

ev]
∗

jjVVVVVVVVVVVVVVV ∼= // (Γi+1/Γi)π1(∧W )

ι
jjTTTTTTTTTTTTT

in which ι is the linear map naturally induced by the model ι for the evaluation
map ev in Theorem 3.3. Since (∧W,d) is minimal, it follows that

Γi+1π1(∧W ) = Im{Q(∧W (1, i)) → W} = Q(∧W (1, i)).

(1) We observe that the differential on elements of degree 1 is strictly quadratic for
degree reasons, since A0 = Q.

Since (Γk/Γk+1)π1(X)] 6= 0, it follows that (Γi+1/Γi)π1(∧W ) 6= 0 for any i ≤ k.
For any i < k, let {yj}j≥1 be the basis of Q(∧W (1, i)) for which y1, ..., ym are
linearly independent in the vector space Q(∧W (1, i))/Q(∧W (1, i− 1)). Then there
exists an element y(i+1) ∈ (Γi+2/Γi+1)π1(∧W ) such that

dy(i+1) = c1yi1yα1 + c2yi1yα2 + · · · + ckyi1yαk

+ck+1yik+1yαk+1 + · · · + cmyimyαm + · · · + csyisyαs + w,

where ci 6= 0, 1 ≤ i1 ≤ m, αn 6= i1 for 1 ≤ n ≤ k, αi 6= αj for i, j ≤ k with
i 6= j, i1 6= iq for k + 1 ≤ q ≤ s, yiqyαq 6= yiryαr if q 6= r and w ∈ Q(∧W (1, i− 1)) ·
Q(∧W (1, i−1)). Using the element y(i+1), we can show, as in the proof of Theorem
4.2, that ι is not a monomorphism. In fact, let (∧W,d) ½ (∧W⊗∧Z, d̂) =: B be the
Sullivan model for the given map f with which we construct the model (E/Mu, δ) for
F(U,X; f). It follows from the hypothesis (i) and the minimality of the Sullivan
model for f with (4.1) that d̂∗((yj)∗) = 0 for any j in the differential coalgebra
((∧W ⊗∧Z)∗, d̂∗). Proposition 4.5 enables us to conclude that y(i+1) is a detective
element with respect to (U,X; f). Therefore, we see that in ∧(W ⊗ B∗)/M

eu

δ(y(i+1)⊗(yα1)∗) = −c1yi1⊗1−
∑

j≥k+1,yαj
=yα1

cjyij⊗1+
∑

j≥k+1,yij
=yα1

cjyαj⊗1+v⊗1

for some element v ∈ Q(∧W (1, i − 1)) in ∧(W ⊗ B∗)/M
eu; see Lemma 4.3. Put

w = −c1yi1 −
∑

j≥k+1,yαj
=yα1

cjyij +
∑

j≥k+1,yij
=yα1

cjyαj + v.

Then the element w ⊗ 1 is zero in Γi+1π1(E/Mu). As in the proof of Theorem 4.2,
we see that ι(w) = 0. This yields that dimM ] ≤ dim(Γi/Γi+1)π∗(X)] − 1. We



THE RATIONAL GOTTLIEB GROUPS 31

have the result.
(2) Let {yq} be a basis of ∧W (1, 1) = Γ2(∧W ). Since (Γ2/Γ3)π1(X)] 6= 0, there
exists an element y ∈ (Γ3/Γ2)π1(∧W ) such that

dy = c1yi1yα1 + c2yi1yα2 + · · · + ckyi1yαk

+ck+1yik+1yαk+1 + · · · + cmyimyαm + · · · + csyisyαs ,

where ci 6= 0, αi 6= αj if i 6= j for i, j ≤ k, αl 6= i1 for 1 ≤ l ≤ k, yiqyαq 6= yiryαr

if q 6= r, and i1 6= im for m ≥ k + 1. The same argument as in the proof of
(1) yields that y is a detective element. Thus in (∧(W ⊗ B∗)/M

eu, δ), we see that
δ(y ⊗ (yi1)∗) = c1yα1 ⊗ 1 + · · · + ckyαk

⊗ 1 and

δ(y ⊗ (yα1)∗) = −c1yi1 ⊗ 1−
∑

m≥k+1,yαm=yα1

cmyim ⊗ 1 +
∑

m≥k+1,yim=yα1

cmyαm ⊗ 1.

It is immediate that the elements w1 = c1yα1 + · · · + ckyαk
and

w2 = −c1yi1 −
∑

m≥k+1,yαm=yα1

cmyim +
∑

m≥k+1,yim=yα1

cmyαm

are linearly independent in Γ2(∧W ). Moreover it follows that ι(w1) = 0 = ι(w2) in
(Γ2/Γ1)π1(E/Mu). This completes the proof. ¤
Proof of Theorem 1.9. Let S1 → Xf → Tn be the S1-bundle with the the classifying
map f represented by ρf =

∑
i<j cijtitj in H2(Tn; Z) ∼= [Tn,K(Z, 2)]. It follows

from the proof of [37, Proposition (1)] that Xf has the homotopy type of a finite
CW complex.

The short exact sequence 0 → Z → π1(Xf ) → Z⊕n → 0 derived from the
fibration S1 → Xf → Tn enables us to conclude that π1(Xf ) is finitely generated
and has no elements of finite order. Thus, G1(Xf ) is a finitely generated free abelian
group. In order to prove Theorem 1.9, it suffices to show that dimG1(Xf ) ⊗ Q =
1 + n − rankAf . To this end, we begin by constructing a minimal model for Xf .

There exists a fibration of the form Xf → Tn f→ K(Z, 2). Therefore by virtue of
[19, II Theorem 2.9], we see that Xf is nilpotent. Moreover we have a commutative
diagram

APL(Tn) APL(K(Z, 2))
AP L(f)oo

(∧(t1, ..., tn), 0)

OO

(∧(ι2), 0)
efoo

OO

(∧(t1, ..., tn) ⊗ ∧(w) ⊗ ∧(ι2), d)
φ

OO

(∧(ι2), 0)oooo

in which vertical arrows in the top square are quasi-isomorphisms, f̃ is a DGA map
defined by f̃(ι2) = ρf , d(w) = ρf − ι2 and φ(w) = 0. Observe that φ is also a quasi-
isomorphism. Thanks to [9, Theorem 15.3], the DGA (∧W, d) = (∧(t1, ..., tn) ⊗
∧(w), d) with d(w) = ρf is a minimal model for Xf .

To simplify, we write Γq+1/Γq and Γq/Γq+1 for the subquotients (Γq+1/Γq)π1(∧W )
and (Γq/Γq+1)π1(Xf ), respectively. It follows that H1(Xf ; Q) is the n-dimensional
vector space with basis {t1, t2 ..., tn}. Furthermore we have Γ2π1(∧W ) = Q{t1, ..., tn}
and Γ3π1(∧W ) = Q{t1, ..., tn, w}.

Recall the DGA (E/Mu, δ) described in Section 3, where u ∈ ∆(E) is the 0-
simplex which is induced by the 0-simplex ũ of ∆(∧(W⊗B∗)) defined by ũ(a⊗b∗) =
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(−1)α(|a|)b∗(a); see Theorem 3.3. Since Xf is a finite CW complex, the DGA
(E/Mu, δ) is a Sullivan model for F(Xf , Xf ; id). Thus we also have the same
diagram (∗∗)1 as in the proof of Theorem 1.7.

We compute the image of the element w ⊗ (tk)∗ by the differential δ in E/Mu.
From the definition of δ, we see that

δ(w ⊗ (tk)∗) =
∑

i<j

cijtitj ⊗ (tk)∗

=
(∑

k<j

ckjtktj +
∑

i<k

ciktitk +
∑

i<j;i,j 6=k

cijtitj
)
(tk∗ ⊗ 1 + 1 ⊗ tk∗)

=
∑

k<j

ckjtj ⊗ 1 −
∑

i<k

cikti ⊗ 1

=
∑

1≤i≤n;i 6=k

c′kiti ⊗ 1.

We write uk =
∑

1≤i≤n;i 6=k c′kiti. Suppose that rankAf = m. Then there exist
elements uk1 , ..., ukm which are linearly independent in Γ2(∧W ) = Q{t1, ..., tn}.

Claim 8.1. π1(Xf ) is not abelian and dim ([π1(Xf ), π1(Xf )] ∩ G1(Xf )) ⊗ Q = 1.

Claim 8.2. Ker ι = Q{uk1 , ..., ukm
}.

Thus we have dim M ] = n − dimKer ι = n − rankAf . It follows from Claim
8.1 that dimG1(Xf ) ⊗ Q = dim([π1(Xf ), π1(Xf )] ∩ G1(Xf )) ⊗ Q + n − rankAf =
1 + n − rankAf . We have the result. ¤
Proof of Claim 8.1. We first show that π1(Xf ) is not abelian. Recall from [19,
Proposition 1.10] that the localization functor is exact. Therefore the lower central
series of π1(Xf ) gives rise to a sequence of inclusions

π1(Xf )Q = Γ1Q ⊃ Γ2Q ⊃ · · · ⊃ ΓjQ ⊃ · · · .

Moreover we see that (Γi/Γi+1) ⊗ Q ∼= ΓiQ/Γi+1Q. Thus it follows that for i ≥ 3

HomQ(Γi/Γi+1 ⊗ Q, Q) ∼= HomZ(Γi/Γi+1, Q) ∼= Γi+1/Γi = 0

and hence ΓiQ = Γi+1Q = {1} for i ≥ 3. The existence of an isomorphism
between Γ2Q and (Γ2/Γ3) ⊗ Q yields that (Γ2Q)] ∼= HomZ((Γ2/Γ3) ⊗ Q, Q) ∼=
HomZ(Γ2/Γ3, Q) ∼= Γ3/Γ2 ∼= Q{w}. Thus we see that π1(X) is not abelian.

The localized monomorphism

([π1(Xf ), π1(Xf )] ∩ G1(Xf )) ⊗ Q → [π1(Xf ), π1(Xf )]Q = Γ2Q

induces the epimorphism (Γ2Q)] → ([π1(Xf ), π1(Xf )]∩G1(Xf ))⊗Q]. It is readily
seen that the dimension of the vector space [π1(Xf ), π1(Xf )] ∩ G1(Xf ) ⊗ Q is less
than or equal to 1.

Consider the lower central series of π1(Xf ) again:

π1(Xf ) = Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γs ⊃ Γs+1 = {1},

where s = nil(π1(Xf )). Then Γs is a nontrivial abelian subgroup contained in
Zπ1(Xf ), the center of π1(Xf ). The result [12, Corollary I.13] implies that Zπ1(Xf ) =
G1(Xf ) since Xf is aspherical, namely, πi(Xf ) = 0 for i > 1. Thus we have
[π1(Xf ), π1(Xf )] ∩ G1(Xf ) ⊃ Γs 6= {1}. As mentioned above, π1(Xf ) is finitely
generated and has no elements of finite order. In particular, Γs is a finitely generated
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free abelian group. This fact yields that dim([π1(Xf ), π1(Xf )]∩G1(Xf ))⊗Q ≥ 1.
We have the result. ¤
Proof of Claim 8.2. We first observe that the natural projection E → E/Mu

induces an epimorphism Q(E)1 = Q{ti ⊗ 1}1≤i≤n ⊕ Q{w ⊗ 1} → Q(E/Mu)1. The
computation of δ(w⊗ (tk)∗) in the proof of Theorem 1.9 allows us to conclude that

Q(E/Mu)1 = (Q{ti ⊗ 1}1≤i≤n/Q{ukj ⊗ 1}1≤j≤m) ⊕ Q{w ⊗ 1}.

Since δ(w ⊗ 1) is decomposable, it follows that π1(E/Mu) = Q(E/Mu)1. Moreover
we see that

π1((E/Mu)(1, 1)) = H1(Q
(
(E/Mu)(1, 1)

)
, δ0) = Q{ti ⊗1}1≤i≤n/Q{ukj ⊗1}1≤j≤m.

By definition, there exists an epimorphism π1((E/Mu)(1, 1))) → Γ2π1(E/Mu),
which is induced by the inclusion (E/Mu)(1, 1) → E/Mu. Therefore, we have
Γ2π1(E/Mu) ∼= Q{ti ⊗ 1}1≤i≤n/Q{ukj ⊗ 1}1≤j≤m. It turns out that

Ker{ι : Γ2π1(∧W ) → Γ2π1(E/Mu)} = Q{ukj}1≤j≤m.

¤
We proceed to consideration of the rational Gottlieb group in a non-aspherical

case. Let Y be the space which admits the Postnikov system of the form

...
²²

Y2

²²

g3 // K(Z, 4)×k3

Y1

²²

g2 // K(Z, 3)×k2

pt
g1 // K(π1(Y ), 2)

in which Y1 is the aspherical space defined to be the pullback of the path-loop fibra-
tion K(Z, 1)×k → PK(Z, 2)×k → K(Z, 2)×k by a map g : K(Z, 1)×n → K(Z, 2)×k.
We write g = f1 × · · · × fk with maps fi : K(Z, 1)×n → K(Z, 2) and define the
(n × n)-matrix Afi for 1 ≤ i ≤ k as in the paragraph before Theorem 1.9. Let Ag

be the (nk × n)-matrix consisting of matrices Afi . Then the same argument as in
the proof of Theorem 1.9 allows us to establish the following theorem.

Theorem 8.3. dimG1(YQ) ≤ k + n − rankAg.

Corollary 8.4. k ≤ rank G1(Y1) ≤ k + n − rankAg.

Proof. We have a T k-bundle T k i→ Y1 → Tn. Therefore the induced map i∗ :
π1(T k) → π1(Y1), which is a monomorphism, goes through the Gottlieb group
G1(Y1) ⊂ π1(Y1). The same argument as in the proof of Theorem 1.9 yields that
G1(Y1) is a finitely generated free abelian group. Thus we see that k ≤ rank G1(Y1).
By combining the fact with Theorem 8.3, we have the result since Y1 has the
homotopy type of a finite CW complex. ¤

Example 8.5. With the same notations as in the proof of Theorem 1.9, let f :
T 2 → K(Z, 2) be the map which represents the element t1t2 ∈ H2(T 2, Z). Let
K(Z, 3) → Y → Xf × S3 be the pullback fibration of the path-loop fibration
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K(Z, 3) → P → K(Z, 4) by the map g : Xf × S3 → K(Z, 4) which represents the
element t1u, where u is the generator of H3(S3; Z). We now compute the rational
Gottlieb group G1(YQ).

We observe that Y is nilpotent space and has a minimal model of the form
A = (∧(t1, t2, w, u, v), d) in which d(w) = t1t2 and d(v) = t1u. Moreover it follows
that Γ2A = Q{t1, t2} and Γ3A = Q{t1, t2, w}. The same argument as the proof of
Claim 8.1 allows us to deduce that dim[π1(YQ), π1(YQ)] ∩ G1(YQ) ⊗ Q ≤ 1. Since
Y is not aspherical, we cannot deduce the same equality as in Claim 8.1 applying
[12, Corollary I.13]. However, by virtue of Corollary 1.8, we have

dimG1(YQ) = dimG1(YQ) ⊗ Q ≤ 1 + dim H1(Y, Q) − 2 = 1.

Let (∧α, 0) be the minimal model for S1. We define a DGA map f : A → ∧α
by f(ti) = f(u) = f(v) = 0 and f(w) = α. Moreover define the algebra map
θ : A → ∧α ⊗ A by θ(w) = 1 ⊗ w + α ⊗ 1 and θ(γ) = 1 ⊗ γ for γ = t1, t2, u
and v. It is readily seen that θ is a DGA map. Then the geometrical realizations
|f | : S1

Q → YQ and |θ| : S1
Q × YQ → YQ fit into the commutative diagram

S1
Q × YQ

|θ| // YQ

S1
Q ∨ YQ.

?Â

OO

|f |∨1XQ

;;wwwwwwww

This implies that |f | ◦ e, the composition of the localization e : S1 → S1
Q and |f |, is

a nontrivial Gottlieb element in π1(YQ). We conclude that G1(YQ) = Q.
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