A FUNCTION SPACE MODEL APPROACH TO THE RATIONAL
EVALUATION SUBGROUPS

YOSHIHIRO HIRATO, KATSUHIKO KURIBAYASHI AND NOBUYUKI ODA

ABSTRACT. Let f: U — X be a map from a connected nilpotent space U to a
connected rational space X. The evaluation subgroup G« (U, X; f), which is a
generalization of the Gottlieb group of X, is investigated. The key device for
the study is an explicit Sullivan model for the connected component containing
f of the function space of maps from U to X, which is derived from the general
theory of such a model due to Brown and Szczarba [5]. In particular, we show
that non Gottlieb elements are detected by analyzing a Sullivan model for the
map f and by looking at non-triviality of higher order Whitehead products in
the homotopy group of X. The Gottlieb triviality of a fibration in the sense of
Lupton and Smith [27] is also discussed from the function space model point
of view. Moreover, we proceed to consideration of the evaluation subgroup of
the fundamental group of a nilpotent space. In consequence, the first Gottlieb
group of the total space of each S'-bundle over the n-dimensional torus is
determined explicitly in the non-rational case.

1. INTRODUCTION

Let U and X be connected based spaces and f : U — X a based map. We
denote by F(U, X; f) the connected component in the function space of free maps
from U to X that contains f. Let ev : F(U,X; f) — X be the evaluation map
which sends a map g : U — X to g(ug), where ug is the base point of U. The nth
evaluation subgroup for the triple (U, X; f), denoted G, (U, X; f), is the subgroup
of the homotopy group 7, (X) defined by

Gn(U, X5 f) = eva(mn(F (U, X5 f), ).

In the special case where U = X and f = id the identity map on X, the nth
evaluation subgroup is referred to as the nth Gottlieb group of X and written
Gn(X). In what follows, we shall write G (U, X; f) for @,>0Gn (U, X; f).

The evaluation subgroups were essentially introduced by Gottlieb [12][14] and
were investigated extensively by Woo and Kim [38] [39] and by Woo and Lee [23]
[40] [41] [42]. The lack of functoriality in Gottlieb groups makes the study of the
subject more difficult. In such a situation, the G-sequence introduced in [41] is one
of relevant tools for studying the groups G.(X) and G.(U, X; f).
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As for rational Gottlieb groups, Félix and Halperin have proved that, for any
simply-connected space X with finite rational Lusternik-Schnirelmann category m,
the graded Gottlieb group G.(X) ® Q is concentrated in odd degrees and has di-
mension at most m ([8, Theorem III]). We stress that the consideration of Gottlieb
groups appears in their investigation of rational category. Moreover, from the lec-
ture notes [30] due to Oprea, we can know relationship between Gottlieb groups
and transformation groups as well as fixed point theory. In [35], Smith has studied
the rational evaluation subgroups by relying on the approach to the study of func-
tion spaces due to Federer [7]. Interesting examples of vanishing and non-vanishing
evaluation subgroups are given in [35, §5]. Recently, Lupton and Smith [25][26]
have considered the exactness of the G-sequence by representing the evaluation
subgroups in terms of derivations in Sullivan models and in Quillen models. Espe-
cially, in [25, Example 4.1], the non-exactness of a certain G-sequence is captured
by calculation of derivations.

The objective of this paper is to investigate the evaluation subgroup G..(U, Xg; f),
where U is a nilpotent space and Xg is the localization of a nilpotent space X. We
try to consider the rational evaluation subgroup without drawing on the derivation
argument. In fact, the key device for the study is an explicit algebraic model for
the function space F(U, Xg; f), which we construct in this paper by invoking the
general theory of such a model due to Brown and Szczarba [5]; see Section 3.

We here explain our main results briefly. Theorems 1.1 and 1.2 describe sufficient
conditions for rational evaluation subgroups to be proper. Theorem 1.6 presents a
tractable condition for a fibration to be Gottlieb trivial in the sense of Lupton and
Smith [27]. Theorem 1.7 gives a non-trivial upper bound for the dimension of the
localization of some subquotient of the first evaluation subgroup. By Theorem 1.9,
one can determine the first Gottlieb group of the total space of each S'-bundle over
the n-dimensional torus in non-rational case with knowledge of the classifying map
of the bundle.

Unless otherwise explicitly stated, it is assumed that a space is well-based and
has the homotopy type of a CW complex with rational homology of finite type.
We further suppose that a map is based. We shall say that a space is rational if
the space has the homotopy type of the spatial realization of a Sullivan algebra;
see Section 2. Observe that the homotopy group 7, (X) of a rational space X is a
vector space over Q for n > 1 and that so is the fundamental group 71 (X) if the
group is abelian. These facts follow from the Sullivan-de Rham equivalence; see for
example [2, Theorems 10.1 and 12.2].

In the rest of this section, we state the results more precisely.

Suppose that X is a connected rational space. Then the function space F(U, X; f)
is also a rational space; see (2.2) and (2.3) in Section 2. The definition of the eval-
uation subgroup enables us to obtain a commutative diagram

(1.1) T (F(U, X; [))

eV
eV

Gn(U, X; ) m(X)

in the category of groups for n > 1. This is regarded as a diagram in the category
of vector spaces for n > 1. Let H be a group and let (I'y /T'2) H denote the quotient
group of H by the commutator subgroup. Put G* = Homgz(G,Q) for an abelian
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group G. Then we have a commutative diagram

(a2 (P X3 1))

=

Gn(U, X f)f < mn(X)f

in the category of vector spaces for n > 1 and for n = 1 if 71 (X) is abelian. Recall
that, for any connected nilpotent space Y with a minimal model AZ, there exists
a natural isomorphism Z" = 7, (Y)* for n > 1 and for n = 1 if 7 (Y) is an abelian
group; see [2].

Let AV and AW be minimal models for X and F(U, X; f), respectively. We
denote by Q(év) : V. — W the linear part of the Sullivan representative év : AV —

#
AW for the evaluation map. Observe that the vector space ((Fl/Fg)ﬂn (F(U, X; f)))

is a subspace of W™; see Section 8 for details. Suppose that 71(X) is an abelian
group. Then we have an isomorphism G, (U, X; f)f = V/KerQ(ev) of vector spaces.
This fact implies, for example, that G, (U, X; f) is a proper subgroup of 7,(X) if
and only if KerQ(év) is nontrivial.

In [5], Brown and Szczarba have presented an explicit form of Lannes’ division
functor in the category of commutative differential graded algebras; see also [3].
By using the functor, they have constructed an algebraic model for a connected
component of a function space. Unfortunately, the model is very complicated and
not minimal in general. However the linear part dg of the differential of the model
for F(U, X; f), which is needed to construct the minimal model, is comparatively
tractable. Moreover an explicit model ev for the evaluation map ev : F(U, X; f) —
X is derived from the consideration in [21, Section 5].

In some cases, we can find a nonzero element in Im ev N Im §y with knowledge
of the terms having the least wordlength in d(v) for an appropriate element v € V.
It turns out then that KerQ(év) # 0. The dual element in V¥ 2 7, (X) to such an
element v is said to be detective; see Section 4 for the precise definition. With this
terminology, one of our main theorems is stated as follows.

Theorem 1.1. Let f : U — X be a map from a connected nilpotent space U to
a connected rational space X whose fundamental group is abelian. Suppose that
dim ®,>0HU(U; Q) < oo or dim@;>om;(X) < oo and that there exists a detec-
tive element x in m(X) with respect to the triple (U, X; f). Then the evaluation
subgroup G (U, X; f) is a proper subgroup of mp(X) for some 1 < k < degz.

While the notion of the detective element is somewhat technical, it does work
well when exhibiting the properness of a given evaluation subgroup; see Example
4.6.

We can also detect geometrically an element which is not in the evaluation sub-
group. Before describing the result, we recall briefly the higher order Whitehead
product set defined by Porter in [32]. Let ¢, denote the generator of H,,(S™) which
is the image of the identity map by the Hurewicz map. Let T be the fat wedge of s
spheres S™i, 1 <4 < s; that is, the subspace of the product ™ x---x .S™s consisting
of all s-tuples with at least one coordinate at the base point. Let p be the generator
of Hn(x35_,S™;Z), corresponding to tp, ® -+ Q iy, € H (™) ®@---® H.(S™) via
the Kiinneth isomorphism, where N = Y n;. Since the CW pair (x?_,;58™,T) is
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(N — 1)-connected, we have a sequence
Hyy (%12 S™) =2 Hy (33 S, T) ey (11 S, T)—"— iy 1 (T)
and an element w = Oh 14, (1), where h is the Hurewicz map and 9 is the boundary
map. In what follows, we do not distinguish between a map and the homotopy class
which it represents. Choose elements z; € 7,,(X) for 1 < i < s. These elements
define the map g : Vi_;S™ — X whose restriction to each S™ is the map z;. Then
the sth order Whitehead product set [z1,...,x5] C my_1(X) (possibly empty) is
defined by
[%1,..,25] = {fe(w) | f: T — X an extension of g}.

We shall say that the set [x1, ..., 2] vanishes if it contains only zero.

As a consequence of a geometric property of higher-order Whitehead products
in rational spaces, studied in [1], we obtain the following test for non-Gottlieb
elements.

Theorem 1.2. Let U be a connected space and X a simply-connected rational
space. Let f: U — X be a map for which the induced map fy : m,(U) — m(X) is
an epimorphism. Assume that all Whitehead products of order less than r vanish
in m (U). If there exist elements x1, ..., x, in m.(X) whose rth order Whitehead
product (1, ..., x| contains a nonzero element, then xy, ¢ G.(U, X; f) for any k < r.

Remark 1.3. The result [1, Corollary 6.5] asserts that, if all Whitehead products
of order < r vanish in 7,(X) for a simply-connected rational space X, then any
rth order Whitehead product sets in 7, (X) is non-empty and consists of a single
element. Therefore the Whitehead product [z, ..., 2] in Theorem 1.2 contains only
one element.

Suppose that x; is a Gottlieb element in 7, (X) for a connected space X which
is not necessarily rational. The ordinary Whitehead product [x1,x2] is zero for
any x2 € m.(X) by [14, Proposition 2.3]. Thus Theorem 1.2 is regarded as a
generalization of this fact in the context of rational homotopy theory.

It is worthwhile to deal with relationship between detective elements and higher
order Whitehead product sets. With the aid of results in [1], we shall show that a
nonzero element in a higher order Whitehead product set is detective; see Theorem
6.1.

As described below, the sufficient conditions in Theorems 1.1 and 1.2 give crite-
rions for a map not to be cyclic.

Formaps f: U — Xandg:V — X, wewriteg L fifthemapgVf:VVvU — X
is extendable to V x U. A map f: U — X is called a cyclic map if idx L f. For
example, when a topological group G acts on a space X with base point, the orbit
map G — X at the base point is a cyclic map. As is discussed in the last paragraph
on page 730 of [14], we see that G, (U, X; f) = {[g] € mn(X) | g L f}. It is readily
seen that m.(X) = G.(U, X; f) if f is a cyclic map. Observe that if f is a cyclic
map, then so is exo f, where ex : X — Xgq is the localization map. Thus we have
the following corollary.

Corollary 1.4. Let f : U — X be a map between a connected nilpotent spaces
and ex : X — Xg the localization map. If the triple (U, Xq;ex o f) satisfies the
conditions in Theorem 1.1 or 1.2, then f is not a cyclic map.

We fix some notations and terminology in order to describe further our results.
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Let f: X — Y be a map between nilpotent spaces. Let ¢ : (AV,d) — Ap(Y)
be a minimal model for Y, where Apy,(Y) denotes the differential graded algebra of
rational polynomial forms on Y. A quasi-isomorphism m : (AVQAW, c/l\) — Apr(X)
is called a Sullivan model for f if djy = d, m|ay = Apr(f)p and there exists a
well-ordered homogeneous basis {Zq }aecz of W such that c?(l ®xq) € AVRAW,).
Here A(W,) denotes the subalgebra generated by the zg with § < a. We further
assume, unless otherwise specified, that the model is minimal in the sense that
degzs < degz, implies § < « ; see [16, 1.1 Definition] and [16, Theorems 6.1
and 6.2] for the existence and the uniqueness of a minimal Sullivan model for a
map f. The inclusion j: (AV,d)>— (AV @ AW, J) is also referred to as a Sullivan

~

model for f. Observe that the DGA (AV ® AW,d) is a Sullivan algebra; see |9,
Proposition 15.5]. For a Sullivan algebra A = (AV,d), let dy denote the linear part
of the differential d and put

T(A) = H™(V, do).

We define the ¢-homotopy space of X, denoted 7, (X), to be the vector space 7*(A)
for which A is a Sullivan model for X; see [16, Chapter 8]. Observe that 7, gives
rise to a functor from the category of connected spaces with Sullivan models to
that of graded vector spaces over Q. Moreover there exists a natural isomorphism
m(X) = 7. (X)¥ for * > 1 and for * > 1 if 71 (X) is abelian; see [2], [16]. For a
free algebra AV, let AZ!V denote the ideal generated by elements with word length
greater than or equal to [.

We describe an important result concerning a decomposition of an evaluation
subgroup. In [24], Woo and Lee show that, for any based spaces F' and Y,

where i : F' — F' x Y denotes the inclusion into the first factor. This has motivated
us to consider its generalization from the rational homotopy theory point of view.
We here introduce a class of maps.

Definition 1.5. A map p : X — Y is separable if there exists a Sullivan model

~

(AV,d) — (AV @ AW, d) for p such that
d(w) € A2V @ AW + Q& AZ2W

for any w € W. A fibration p: X — Y is said to be separable if the projection p is
separable.

We establish the following theorem.

Theorem 1.6. Let F 5 X 2 Y be a separable fibration of connected rational
spaces with dim @y>0HI(F;Q) < oo or dim@®;>omi(X) < oco. Suppose that F
is simply-connected and 71(Y) acts on H'(F;Q) nilpotently for any i. Then the
sequence

0— Gp(F) B Gn(F, X;i) 2 (V) > 0
is exact for n > 1.

Very recently, Lupton and Smith [27] have proved a similar result to Theorem

1.6. Let F % X 2 Y be a fibration of simply-connected CW complexes. In the
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remarkable result [27, Theorem 5.3], a sufficient condition for the sequence

(1.2) 0-G(F) o0 a.(FX:)e0"™ n.(Y)2Q =0

to be exact is described in terms of the classifying map of the fibration in the sense
of Stasheff [37]. It is important to mention that Theorem 1.6 follows from [27,
Theorems 4.2 and 5.3] provided the given fibration is the localization of a fibration
F — X =Y of simply-connected CW complexes of finite type with fibre F finite.
The fibration which yields the short exact sequence (1.2) is said to be Gottlieb
trivial [27]. Theorem 1.6 asserts that the Gottlieb triviality of a fibration follows
from the separability.

We turn our attention to the first evaluation subgroup of 71(X) for a nilpotent
space X. When considering the subgroup, a detective element can be found with
the knowledge of the minimal model for X, in particular, of the quadratic part of
the differential if 71 (X) is not abelian. This fact enables us to deduce Theorem 1.7
below.

Let G be a nilpotent group with the lower central series

G=T1GDOT,G> - DTG,

where, for j > 2, I';G = [G,I';_1G] stands for the subgroup of G generated by
the commutators {zyz~'y™' | z € G,y € I';_1G}. The nilpotency class of G,
denoted nil(G), is defined to be the largest integer ¢ such that I'.G # {1}. We
write (I'y/T'q41)G for the subquotient I';G /T 441G.

Theorem 1.7. Let f : U — X be a map between a connected nilpotent spaces.
Suppose that (i) my(f) : m,(X) — 7y, (U) is a monomorphism and that (i) U is a
finite CW complex or X is a rational space with dim &@;>om;(X) < 0.

(1) If (Tx /Thy1)m1(X)H # 0, then for any i < k,

dim(FiGl(U,X; f)/Tipami (X)NG1 (U, X; f)) ®Q < dim(I';/Ti1)m (X)@Q—1.
(2) If ([m(X), 71 (X)]/T3mi(X))* # 0, then
dim(Gl(UJ(; /7 (X), 7 (X)] NG (U, X; f)) ®Q < dim H,(X;Q) — 2.

We see that the subgroup I';G1 (U, X; f)/FH_lm (X)NT;G1(U, X; f) of the quo-
tient group (I';/T";41)m (X) is proper for any ¢ > 1 under the assumption in Theo-
rem 1.7.

Corollary 1.8. If G1(U, X; f) is abelian and ([7T1(X),71'1(X)]/F371'(X))ﬁ # 0, then
dim Gy (U, X; /)@ Q < dim([m (X), 71 (X)]NG1(U, X; f)) @ Q +dim H1(X; Q) — 2.

If g : S' — X is any map such that [g] € G1(U, X; f), then ¢ L f. Hence,
the result [29, Proposition 3.4 (1)] applies to an extension p : S' x U — X of
gVf:SIVU — X. Tt follows that [g]- f« () = g« ([ids1])- f«(@) = fu(@)-g.([ids1]) =
fula) - [g] in m1(X) for any « € 71 (U). Observe that G1(U, X; f) is contained in
the center of the fundamental group 71 (X) if the induced map fi. : m(U) — 71 (X)
is surjective. In particular the Gottlieb group G1(X) is abelian.

We further give a computational example (Theorem 1.9 below) whose proof
illustrates how the elaborate machinery in this paper is relevant in computing Got-
tlieb groups. Consider the S'-bundle S' — X; — T™ over the n-dimensional
torus 7™ with the classifying map f which is represented by py = >, j Cijtit;
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in H*(T™;Z) = [T™, K(Z,2)]. Here {t;}1<i<n is a basis of H'(T™;Z). Define an
(n x n)-matrix Ay by Ay = (¢j;), where ¢; = ¢;; for i < j, ¢j; = —¢j; for i > j
and c;; = 0. We regard Ay as a matrix with entries in Q. Then the rank of Ay is
denoted by rankAf. We establish the following theorem.

Theorem 1.9. Gl(Xf) o 7&(1+n—rankAy)

Since the space X is aspherical, it follows from [12, Corollary 1.13] that G1(Xy)
coincides with the center of 71 (Xy). While we have the central extension

O—>Z—>7T1(Xf)—>Z@n—>0

from the homotopy exact sequence of the fibration S' — X; — T™, in general, it
is not easy to determine the center of m1(X) by looking at the extension.

The rest of this paper is organized as follows. In Section 2, we recall the rational
model for a function space constructed by Brown and Szczarba. We present an ex-
plicit model for a connected component of a function space in Section 3. In Section
4, after introducing the notion of a detective element, we prove Theorem 1.1 by
applying the model in Section 3; see Theorem 4.2. The main goal of Section 5 is
to proving Theorem 1.2. In Section 6, we deal with the relationship between detec-
tive elements and higher order Whitehead products mentioned above. In Section
7, Theorem 1.6 is proved. We also give examples of separable and non-separable
fibrations. Section 8 is devoted to proving Theorems 1.7 and 1.9. Moreover the
first rational Gottlieb group of a non-aspherical space is computed; see Example
8.5.

We conclude this section with remarks on models for a function space. One
might expect Haefliger’s model [15] for the connected component of a function
space to work well in considering the evaluation subgroups or, more generally, the
homotopy type of F(U, X; f). However it seems that the differential of the model
is complicated in general because of the inductive argument in defining it. On
the other hand, the model due to Brown and Szczarba has the advantage that its
differential is expressed with an explicit formula; see (2.1) in Section 2. This is the
reason why we draw on the latter in our study on evaluation subgroups. We also
wish to mention that the two models above coincide before minimization, if the
function space considered is connected; see [21, Theorem 1.1].

We are convinced that both our explicit model and derivations on Sullivan models
used in [25], [26] and [27] are useful tools for the study of rational evaluation
subgroups.

2. AN ALGEBRAIC MODEL FOR A PATH COMPONENT OF A FUNCTION SPACE

In this section, we summarize how to construct the Brown and Szczarba models
for a function space and its connected component. Moreover, some fundamental
properties of the models are described.

We emphasize that detailed knowledge of the model, in particular of the notation
explained here is absolutely crucial to understanding the proofs later in the paper.

For a graded vector space V over Q, the free algebra generated by V is denoted
by AV. The degree of a homogeneous element v € V is denoted by degv or |v].
We shall use the terminology for algebraic models as used in [9]. Let (A,d4) be
a connected differential free graded algebra, say A = AV for some graded vector
space V. Let (B,dp) be a connected differential graded algebra (DGA) of finite
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type and B, denote the differential graded coalgebra defined by B, = Hom(B~?, Q)
for ¢ < 0 together with the coproduct D and the differential dp, which are dual to
the multiplication of B and to the differential dpg, respectively. Assume that B is
of finite type; that is, the vector space BY is finite dimensional for all q. Let I be
the ideal of the free algebra A(AV ® B,) generated by 1®1 — 1 and all elements of
the form
ajas @ € — Z(_l)hzlleﬂ(al ® eli)(a2 ® e;’),

where a1,a2 € AV, e € B, and D(e) = ), e; @ e//. Observe that A(A\V ® B,) is a
DGA with the differential d :=d4 ® 1 £ 1 ® dp..

Theorem 2.1. [5, Theorems 3.3 and 3.5] (i) (da ® 1+ 1®dp.)(I) C I.
(ii) The composite map

¢: ANV ®B,) — ANAV ®B,) = AN(AV®B,)/I
is an isomorphism of graded algebras.

This theorem enables us to define a differential § on A(V @ B,) by ¢~1d¢, where
d is the differential on A(AV ® B,)/I induced by d. Let D™=V . B, — B®™
be the iterated coproduct on B,. For an element v € V and a cycle e € B, if
d(v) = vy - vy, with v; € V and D™~V (e) = dj€n ® - ®ej,, then
(2.1) dv@e) = > E(vi®es) (vm®ej,),
where the sign is determined by the Koszul rule that in a graded algebra ab =
(—1)desadeebpg Tt follows from [5, Lemma 5.1] that if (AV, d) is a Sullivan algebra,
then so is (A(V ® By),0).

Let Alg] be the simplicial set consisting of non-decreasing maps to the ordered
set [¢] = {0,1,...,q}. As usual we can write

A[q]p = {(io,ﬁ, “‘7ip) l 0<ip<---< ip < Q}‘
Let AS be the category of simplicial sets. For K,L € AS, let Simpl(K, L) stand
for the set of simplicial maps from K to L. The function space F(K,L) € AS is
defined by
F(K, L), = Simpl(K x Alg], L).
Let Apy, be the simplicial commutative cochain algebra of polynomial differential
forms with coefficients in Q; see [2] and [9, section 10]. Let A be the category of

DGA’s over Q. For A, B € A, let DGA(A, B) denote the set of DGA maps from A
to B. Following Bousfield and Gugenheim [2], we define functors

A:A—AS and Q:AS— A

by A(A) = DGA(A, Apr) and by Q(K) = Simpl(K, Apy), respectively. For any
objects A and B in A, we define the function space F(A, B) € AS by

F(A,B), =DGA(A, (Apr), ® B).

The singular simplicial set is denoted by AU for any topological space U and
| K| denotes the geometric realization of a simplicial set K. We refer to the space
|A(A)| as the Sullivan realization of A. Observe that the differential graded algebra
Apr(U) of rational polynomial differential forms on U is then given by App(U) =
QAU. For any K, L € AS, we define a map of simplicial sets

a: F(K,L) — AF(K|,|L|)
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by a(f) = |f|: |K x Alg]| — |L| for f € F(K,L),. For any space U, let s : |AU| —
U denote the homotopy equivalence defined by s(o, f) = f(0); see, for example, [6,
(12.10)]. There exists a sequence of homotopy equivalences

(2.2) f(U,X)2f(IAULIAXI)%IAHIAUI,IAXI)I%\F(AU,AX)I
for any topological spaces U and X; see [5, Theorem 2.1].
Let m: AV = A = QAX be the minimal model for AX and 3: B = QAU a

quasi-isomorphism in which B is of finite type but not necessarily free as a graded
algebra. For any simplicial set K, we can define a bijection

1n: DGA(A, Q(K)) ——— Simpl(K, A(A))
by n: ¢ — f;flo)(a) = ¢(a)(o), where a € A and ¢ € K,. The map m :

A =5 QAX induces a Q-localization h : AX — A(A) via the bijection 7 if X is a
connected nilpotent space; see [2], [9, Theorem 17.12].

Remark 2.2. Suppose that U is a connected finite CW complex and X is a connected
nilpotent space. Then it follows from [19, Theorem 3.11] that the map h induces a
Q-localization

hy : F(AU,AX) ——F(AU,AA).

Let {b;} be a basis for B and {e;} its dual basis for B,. For differential graded
algebras C' and D, let DGM(C, D) denote the set of morphisms from C to D in
the category of differential graded Q-vector spaces. Define the map ¥ : DGM(A ®
B.,Apr) — DGM(A, Ap;, ® B) in AS by

V(w)(a) =Y (1" Dwa@e) @b,
where pu(n) = [(n + 1)/2], the greatest integer in (n + 1)/2. Then the map in-
duces a simplicial isomorphism ¥ : A(A(A ® B.)/I,d) — F(A, B) ([5, Corollary
3.4]). Moreover, we have a sequence consisting of the simplicial isomorphism ¥ and
homotopy equivalences

(2.3) F(AU,AA) L F(A,QAU) < F(A, B) & ANA @ B.)/I,d).

Observe that the homotopy equivalence 77 is induced by the quasi-isomorphism
QAU ® (Apr)q = QAU @ Q(Alq]) — QAU x Alg]) and the bijection n; see [4,
Theorem 1.29]. For a simplicial set K, define {x : K — A|K]| by &k (o) = t, :
A" — {0} x A™ — |K|. We have a sequence of DGA maps
~ Q(k) ~ QA
QAIAANA @ B)/I, D) — QANA ® B.)/T,d) < QANV ® B.),6)
o]
(ANV ® By),6)

in which (&) and QAC( are quasi-isomorphism and 11 (id) denotes the adjunction
map to the identity map id on the simplicial set A((A(V ®By),d)). Applying the re-
alization functor | | and the functor Apr( ) to the sequence (2.3), and by combin-
ing the resultant sequence with the above sequence, we obtain quasi-isomorphisms
which connect Apr,(F(U, X)) = QA(F(U, X)) with QAA(V ® B.), ).
A minimal model E = AW of A(V®B,) is constructed as follows: Let {a, by, ¢;},;

be a basis for B, such that dp,(ax) = by and dp,(c;) = 0. Without loss of
generality, we can assume that ¢ = 1. Choose a basis {v;};>1 for V so that
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degv; < degv;r1 and d(vi11) € AV;, where V; is the subspace spanned by the
elements vy, ...,v;. The result [5, Lemma 5.1] states that there exist free algebra
generators w;j, us; and v such that

(24) w;o = v; ® 1 and Wi = vy Q ¢j + Tyj, where Tij € /\(V;;l ® B*),

(2.5) dw;; is decomposable and in A({wg;s < i}),

(2.6) uir = v; @ ag, and dus = vik.
We then have a decomposition

AV @ By) = Mwij)ij @ NWik, Vi )ik
in the category of DGA’s. It follows that the inclusion
(2.7) v E = (Awig), 0) = (MV @ B.),9)
is a homotopy equivalence whose inverse is the projection
(2.8) p: (ANV®B,),0) — E;

see [5, Lemma 5.2] for example.

It follows from (2.4) that the vector space generated by the elements w;; is
isomorphic to V ® H,(B,) as a vector space. Thus we have £ = A(V ® H,(U)).
In consequence, we see that A(E) is homotopy equivalent to A(A(V & B,),J), and
hence to the function space F(AU, AA).

In what follows, we assume that

(2.9) dim B,>0HY(U;Q) < 0o or dim@;>om(X) ® Q < oo.

We shall describe a model for a connected component of a function space. Let K
be a simplicial set and u an element in Ky. We say that an element z € K has
a vertex u if d;, ---d;,@ = u for any 41, ..., is. Let A(FE), denote the connected
component of u € A(E)y; that is, the simplicial subset of A(FE) consisting of all
elements all of whose vertices are at u. Let M, be the ideal of E generated by the
set

{w|degw < 0} U {ow | degw = 0} U {w — u(w) | degw = 0}.

Theorem 2.3. [5, Theorem 6.1]. The ideal M, is closed under the differen-
tial 0 and the quotient map © : E — E/M, induces a homotopy equivalence
A(m) + A(E/M,) — A(E)y. Moreover (E/M,,0) is a Sullivan algebra, which

is not necessarily minimal, and is isomorphic to N(W), where W =0 forqg <1,
Wl cwt and Wi =W49 for q > 1.

By forming the quotient F/M,, one eliminates all elements of negative degree.
Moreover an element w of degree 0 becomes a cycle, identified with the scalar u(w).

We choose an element v € A(FE)g. Let ¢ : B — Q be the augmentation of B.
The sequence of simplicial sets and simplicial maps

(210)  AE/M) 22 AE)~ AE) 2L ANA® B)/BED AY)

~_ -

A(m)

~



THE RATIONAL GOTTLIEB GROUPS 11

gives rise to a commutative diagram

T #
QA(E/M,) <2T0A(E), < QA(E) 220ha (4@ B/ L2 ba ()
2Tn’1(i QA(m) Tn’l(id) Tnfl(id) :Tfl(z‘d)

It follows from the hypothesis (2.9) that E/M,, is of finite type and hence so is the
homology of E/M,,. Therefore the result [2, 10.1 Theorem] yields that the adjoint
n=1(id) : E/M, — QA(E/M,) is a quasi-isomorphism.

We can regard the map A(1® &) as the morphism F(A(j),1) : F(AU,AA) —
F(A(x),AA) of simplicial sets induced by the natural inclusion j : x — U up to
the homotopy equivalences in (2.3); see [21, Appendix]. Moreover the realization
of F(A(j),1) is nothing but the evaluation map ev : F(U,|AA|) — |AA|. Let
8o denote the linear part of the differential § of A(W) = E/M,. Write W =
CdoCP H(W, dp) with an appropriate subspace C' of W and put W = H(W, 00)-
As usual, we can construct a minimal model n : AW — E/M, = A(C @ C & W)

together with the retraction r : E/M, — A(W), which is defined by extending the
projection C' @ 6C & W — W. It is readily seen that

rap(1@e) : AV = AN(A® B.)/I — E — E/M, — A\W

is a Sullivan representative for the evaluation map ev : F(U, Xq; f) — Xg, where
Xo = |A(A)| and f is the map corresponding to the element (0,78, ¥A(p)(u)) €
|F(AU, A(A))| by the homotopy equivalence s o |af, see (2.2).

Remark 2.4. Let @ be a O-simplex in A(A(A ® B,)/I) and put u =
Since A(p)A(y) =~ id, it follows that there exists a path connecting o
la) (0,718, TA(p)(u)) with g = (s o|a|)(0,78.¥(@)). Hence we have F(U, Xq; f) =
F(U, Xo3 9)-

A(y)(w).
f=1(s

The following proposition clarifies a property of the minimal model (AW, §) for
the function space F (U, Xq; f), which is deduced from knowledge of the differential
of a minimal model for X independently of any property of a model for U.

Proposition 2.5. Suppose that linearly independent elements uy, ..., ugs in V do
not occur in any terms of the images of the differentiald : V- — AV as factors. Then
the elements u1 @1, ..., us®1 are linearly independent in W = H(W,8y) C E/M,.

Proof. Let z be a non-trivial linear combination of elements uq, ..., us. It is imme-
diate that do(z®1) = 0 since dz is decomposable. In order to prove the proposition,
it suffices to show that z ® 1 does not occur in any terms of the images of Jy as a
factor. For that purpose, we choose elements w;; (j > 0) satisfying (2.4) and (2.5)
as follows: Let {v;}; be a basis which contains the element z. We argue by induc-
tion on lower degree ¢ of the base elements v; of V. By assumption, the element

z does not occur in any term of the images of d : V. — AV. Thus we have a sub
DGA of the form

(ANvp®@esk <i,e € {am,bm,cnt,vp ®e# 2®1),0)
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of (AN(Vi—1 ® B.),0), where {am,, bm,c,} is a basis for B, mentioned above. Then
we see that

[0(v; ® ¢j)] H(ANvp @ ek <i,e € {am,bm,cn}, v @e# 2®1),0)
H(/\(wln;l < i,Wp F 2z 1) & /\(Ulmﬂ)lm;l < Z))
H(ANwipn;l < i,wp, # 2@ 1)).

It follows that there exists z;; € A(vpQe; k < i, v, ®e # 2®1) such that 6(v; ®c¢;)+
0xij € Nwin;l < i, wp, # 2@ 1). It is evident that the element w;; = v; ® ¢; + x4
satisfies the conditions (2.4) and (2.5). We will prove this proposition with the
elements w;; (j > 0) and wjo, which generate the algebra E' mentioned above.

Suppose that §(my) = z @ 1 + w for some y € E C A(A® B,)/I, where w is an
element of E/M, which does not have a term containing z ® 1 as a factor. Then
we write

1R m

w+zR1= Wé(zwiljl ---wisjs),

1,71
which is a contradiction because each mdw;,;, does not have a term containing z®1
as a summand. This completes the proof. O

Remark 2.6. Let z € V be a non-zero element and {v; }; a basis of V' which contains
z. The proof of Proposition 2.5 yields that, if 2 ® 1 € Imdy, then there exists an
element v; € {v;}; such that 6(v; ® e) has a term containing z ® 1 as a summand
for some e € B,. This implies that some term of dv; contains the element z as a
factor.

3. AN EXPLICIT MODEL FOR F(U, X; f)

In this section, we assume that U and X are a connected nilpotent space and a
connected rational space, respectively, and that the rational homologies of U and
X are of finite type. Moreover it is assumed that the condition (2.9) holds for U
and X.

Let f : U — X be a map and (AV,d) a minimal model for X. We take a

Sullivan model i : (AV,d) — (AV @ AZ,d) for f. Consider a minimal model

©: AW S AV @ AZ and a lift ¢ : AV — AW of the model i (see [9, Proposition
14.6]). We then have a diagram

AW —5 AV @ NZ 2 QAU

SET e

AV — = QAX

in which the right square is commutative and the left triangle is commutative up
to homotopy. Observe that the composition 6§ := By : AW — QAU is a minimal
model for U.

In order to construct an explicit model for F(U, X; f) using the model ¢ for the
given map f, we have to verify the finiteness of AV ® AZ.

Lemma 3.1. In the minimal Sullivan model for f mentioned above, the algebra
AV ® NZ is of finite type.

Proof. We observe that AV and AW are of Aﬁnite type. §ince C/i\o sends Z to V, it
follows that 7*(AW) =2 7*(AV @ AZ) = (V/do(Z)) @ kerdy. The minimality of AW
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implies that 7*(AW) = W. We write Z = kerdy @ T' with a subspace T for which
do : T — do(Z) is an isomorphism. This completes the proof. (I

Lemma 3.2. In the homotopy set [U, X], f = |A(@)n(B)].

Proof. Since X is regarded as the realization |AA|, we see that f = |A(q)n(0)] in
[U, X]. The naturality of the map »n allows us to conclude that A(q)n(0) = n(0q) =
n(Bi) = A(i)n(B). Observe that all equalities are of homotopy classes. O

Put B = AV ® AZ. With the notation in the previous section, define 4 €
DGM(/\V ® By, (APL)O) by

(3.1) tla®e) = (—1)“(‘“‘)6(i(a)),

where a € AV and e € B,. Then we see that ¥(a) =i € F(AV, B)g. The result [5,
Theorem 3.3] enables us to conclude that @ is a 0-simplex of A(A(AV ® B,)/I); that
is @ is a morphism of algebras from A(AV ® B,)/I into (Apr)o. By the straight-
forward calculation, we can verify that 78,V (u) = A®i)n(B) € F(AU, A(AV))o.
Moreover it follows from Lemma 3.2 that (s o |a])(0,A())n(B)) = |A@E)N(B)| =
f € FU,|A(AV)]). Recall the inclusion « : (E,d) — (A(V ® B,),d) which is a
homotopy equivalence; see (2.7). We establish the following theorem.

Theorem 3.3. Under the hypothesis (2.9), the differential graded algebra E /M,
is a Sullivan model for the function space F(U,X; f), where u = A(y)a. Moreover
the map

L (AV,d) — (B/M,0)
defined by 1(v) = v ® 1 is a model for the evaluation map ev : F(U,X; f) — X.

Proof. The result follows from Theorem 2.3, the ensuing discussion and Remark
2.4. O

For any O-simplex u € A(FE)p, a model of the connected component of the
function space F(|JA(AV)],|AU|) containing the map |78 PA(p)u| : |A(AV)] —
|AU|, which corresponds to u, is given in [5]; see (2.3) and (2.10) for notations.
We emphasize that Theorem 3.3 gives not only an explicit model for the connected
component F (U, X; f) containing a given map f, but also a rational model for the
evaluation map in terms of the Brown-Szczarba model.

By using the models in Theorem 3.3 for the function space F(U, X; f) and for
the evaluation map, we will prove Theorem 1.1 in the next section.

Remark 3.4. We choose the Sullivan representative q : AV — AW for f instead of
the Sullivan model i. Observe that AV and AW are of finite type because U and
X are nilpotent. By the same argument as above, we can construct a model of the
form E/M,, for F(U, X; f) by choosing AW as a model for U instead of AV ® AZ.
In this case, the O-simplex u € A(A(AV ® B.)/I), which corresponds to f under
homotopy equivalences in (2.2) and (2.3), is defined by

tg(a@e) = (=1)*1Ve(q(a)).
It turns out that Theorem 3.3 remains valid if B = AW and the O-simplex u is
replaced by A(7y)u,.

It seems that this model for computing the evaluation subgroup G.(U,X; f)
works well when a Sullivan representative of f is comparatively tractable.
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The following lemma is useful for determining whether an element of the rational
homotopy group of a space is in an evaluation subgroup; see Example 3.6 below.

Lemma 3.5. Let v : AV — E/M, = AW be the model for ev in Theorem 3.3
or Remark 3.4 and n : A\W — E/M, the minimal model with the retraction r
described before Remark 2.4, where W = H*(W, 00). Put év =r o and let Q(év)
be the linear part of év. Then Q(év)(v) = 0 for an element v € V if and only if
t(v) is in Im{¢ : W — E/M,} modulo decomposable elements, where 6 denotes the
differential on E/M,,.

r

/\

E/M, = \W

\/

Proof. Observe that the retraction r is defined by extending the projection C®6C'®
H*(W,8) — W. Let ©’ : AW — W = AW /(W - W) be the projection. Suppose
that, for an element v € V, Q(év)(v) = 0. Since v ® 1 € Ker &g, it follows that
v®1 € dC®W modulo decomposable elements. Therefore we see that v® 1 € §C
modulo decomposable elements since Q(ev)(v) = 7'r(v ® 1).

If 5(a) = v® 1 for some a € C @ JC & W; that is, §(a) = v ® 1 modulo
decomposable elements, then there exists an element o € C such that 6(a/) = v®1.
We have Q(év)(v) = 0. O

Ezample 3.6. Let k be an positive integer. We define a DGA (4, d) by A =
AVi, = A(v,wy) and d(wy,) = v¥1. Let ¢ : Ay — A; be a DGA map, where k > [.
Then it is readily seen that q(v) = cv for some ¢ € Q and q(wg) = cFHloF~lw;.
Consider the Sullivan model (E/M,,d) for F(|A(A;)],|A(Ax)|; |Aq|) described in
Remark 3.4. Recall that u(w) = w in E/M,, for all w of degree 0. Since v @ v, =

) =
(v @ vy,) = (=)D, (q(v)) and v @ (v™), = 0 for m > 1, we see that
O(wr ® (v°)s) = d(wg) ® (0°)s — wi @ du((0°)4)
= oM 'Q(D(k)(v*))s (by (2.1))

= (Corugen) () eery
1

(_1)s,u(\v|)cs < k‘;’ ) (’U ®Q 1*)k+1—s,

where s < k+ 1. Observe that s!(v®), = (v.)® in the Hopf algebra Ai = /\(an).
In particular, we have 6(wy ® (v*),) = (—=1)F#*Dck(k + 1)v @ 1,. Let X}, be the
spatial realization |AAg| of Ay and put f = |Ag|. As is mentioned before Remark
2.4, the Sullivan model (E/M,,§) has a minimal model (AW, §). Recall that

G (X1, Xi; [)F = Vi /Ker Q(ev),

where év : A, — AW is the Sullivan representative of the evaluation map ev :
F(X;, Xg; f) — Xi as in Lemma 3.5. By virtue of Proposition 2.5, we see that wy
is not in Ker Q(év). Moreover the computation above and Lemma 3.5 allow us to
conclude that v is in Ker Q(év) if ¢ # 0. Thus we have G, (X, Xi; f) = G (Xp) if
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q# 0 and G, (X, Xi; f) = m(Xk) if ¢ = 0. This computation also implies that the
Gottlieb group G.(X}) is a proper subgroup of m.(Xy) if ¢ # 0. Especially, we see
that G;(CP™) ® Q = m(CP") ® Q if and only if [ # 2 and that Go(CP") @ Q = 0.
Observe that G, (X) ® Q = G.(Xg) for a simply connected finite CW complex X;
see [22, Corollary 2.5] and [35, Corollary 2.5].

We here describe a result which follows immediately from Proposition 2.5 and
Lemma 3.5. Recall that a simply connected space is X elliptic if dim H*(X; Q) < oo
and dim 7, (X) ® Q < oo; see [9, §32].

Theorem 3.7. (cf. [35, Theorem 4.1]) Let U be a connected nilpotent space and
X a rationally nontrivial simply-connected space with only finitely many rational
homotopy groups. Then for any f : U — Xgq, G.(U,Xq; f) # 0. In particular,
G.(Xq) # 0 if X is rationally nontrivial and elliptic.

Proof. Let (AV,d) be a minimal model for X. We choose a nonzero element v €
V = 7. (X)¥ so that 7;(X) = 0 for s > degv. It is evident that v does not occur in
any term of the differential d as a factor. It follows from Proposition 2.5 that ¢(v) =
v®1#0in W. Lemma 3.5 yields that Q(ev)(v) # 0. Therefore v is a non-zero
element in V/Ker Q(év) = G.(U, Xg; f)*. Observe that mx(Xq) = Gn (U, Xg; f),
where N = degv. O

Remark 3.8. Let U be a finite connected CW complex and X a connected nilpotent
CW complex of finite type. Then a Q-localization h : X — Xg induces a map
hy : F(U,X; f) — F(U, Xq; hf), which is a Q-localization, for any map f: U — X
see Remark 2.2. Therefore we have

eV (M (F(U, X f))) @ Q = ev, @ (o (F(U, X; f)) @ Q) = evs (mi (F(U, Xq; hf))).

Theorem 3.7 therefore implies the result [35, Theorem 4.1], which was proved by
analyzing the construction of the Federer spectral sequence. Smith [36] was also
aware of such a generalization.

4. A DETECTIVE ELEMENT AND ITS APPLICATIONS

Let f : U — X be a map from a connected nilpotent space U to a connected
rational space X. We begin by defining detective elements in the -homotopy
space my,(X) with respect to the triple (U, X;f). Consider a minimal Sullivan
model i : (AV,d) — (/\V®/\Z,c/l\) = (B,E) for the given map f : U — X. By
definition, the free algebra (AV ® AZ,d ) satisfies the condition that

(4.1) d(z) € N2V @ AZ + AV @ AZ2Z
for any z € Z.

Definition 4.1. An element v € 77112 (X) for some k is detective with respect to the
triple (U, X; f) if the following conditions (P1) and (P2) hold for an appropriate
ordered basis {u;}ier for V such that degu; < degu;+1 and d(u;+1) € AV; for
1e’l.

(P1): We write

d(v) = Z qiy-1,.Uy U, W,
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where L is a subset of Z", q,..;, are nonzero rational numbers and w € A=V,

r

Then there exists an r-tuple (i1, ...,4,) € L such that an element

i, =gy g, U e uy) €AV @AZ

s

for some 75 does not occur in any image of the differential d as a term. This
condition means that (dh, (o, ),) = 0 for any h € AV ® AZ. Here (o, ), denotes
the dual element to o;, and { , ) : AV @ AZ @ (A\V ® AZ)* — Q is the pairing.

(P2): Suppose that (P1) holds. Let S, be the set of basis elements u;; that appear
in some term wuy, - -, with (I1,...,l,) € L as a factor and let (iy,...,i,) be the
r-tuple mentioned in (Pq). Then for any u; € S, and k with 1 <k <r and k # s,

u(uy ® (wiy,)+) = wyp(u; @ (ui,)+)
if degu; ® (u;, )« = 0, where uw : A(V®B,) — Q, p: A(V®B,) — E and
v: E — AV ® B.) are DGA maps described in Sections 2 and 3 (see (2.7), (2.8)
and (3.1)).

Suppose that m,(X) is a graded abelian group. We say that an element z in
7.(X) is detective with respect to (U, X; f) if the dual element z* in 7, (X)*# = 7, (X)
is detective.

Minimal Sullivan models for a given map are unique up to isomorphism; see [9,
Theorem 14.12]. This implies that the definition of a detective element does not
depend on the choice of the minimal model i for f.

Let z € 7.(X) be a detective element. We denote by I(z) the subset of integers
consisting of the degrees of the u;, in Definition 4.1. By definition, it is evident
that k < degz for any k € I(x). Moreover, we see that, for any k € I(x), k < degx
if X is simply-connected.

The notion of a detective element for a given map f : U — X is quite subtle. As
is seen below, the algebraic conditions (P1) and (P2) can be derived from suitable
geometrical properties of X, U and the map f; see Proposition 4.5 and the proof
of Theorem 6.1.

The following result yields Theorem 1.1.

Theorem 4.2. Let f : U — X be a map from a nilpotent connected space U to
a connected rational space X whose fundamental group is abelian. Assume that
the condition (2.9) holds and that there exists a detective element x in m.(X) with

respect to (U, X; ). Then the evaluation subgroup Gy (U, X; f) is a proper subgroup
of m(X) for all k € I(x).

Before proving Theorem 4.2, we prove a lemma.

Lemma 4.3. Suppose that v is a detective element in m,(X) and {u;}iez is a
basis for V which satisfies the conditions (P1) and (P2). Let My be the ideal of
ANV ® B.) generated by the set

{w]degw <0} U{dw | degw =0 or —1}
U{uj ® (uik)* - ﬂ(u] ® (ulk)*) | uj € S,k # S,degU]‘ ® (uik)* = 0}
Then Mz is closed under differentation and p(Mz) C M,; see (2.8).

Proof. We first observe that 6% (u; ®(ui, )«) = W (u;®(u;, )+) = 0if deg u;® (s, )« =
0. Thus we have 6(Mz) C Mz. In order to prove Lemma 4.3, it suffices to show
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that, if degu; ® (u;, )« = 0, then
pluj @ (uiy )« — u(u; @ (uiy)«)) = puy @ (uy)x) — up(uy @ (g, )«).
We see that
pulu; @ (ug,)«) = ulu; ® (ug,)s)p(1)
= u(u; @ (uiy,)«)
= uyp(u; @ (uiy)«)-

The last equality follows from the condition (P3). Since u = @y by definition, we
have the result. O

Proof of Theorem 4.2. We take a minimal Sullivan model i : A = (AV,d) — B =
(AV @ NZ, 8) for f. Consider the DGA A(A ® B.)/I described in Section 3. Let
v be the dual element to x. By assumption, the conditions (P1) and (P2) hold for
v. Without loss of generality, we can assume that (c?ﬂ, (iy -+ ;. )x) = 0 for any

B € AV ® AZ. Thus we see that c?*((uiz -++1; )x) = 0. Lemma 4.3 allows us to
obtain the commutative diagram

E AV ® By)

E/M, ~— ANV @ B,) /My

in the category of DGA’s, where 7 is the natural projection and p is a DGA map
induced by p.

Choose the element of the form v @ (u;, - - - u;,. )« in A(A® By)/I = AV ® B,).
From (2.1), we see that

Omp(v @ (Wiy -+ ui, )x) = TPO(V @ (U -+~ Ui, )s)
= (Y @, ® (Ui )
(l1,...,lr)€EL

+w @ (uiy - ui,)s)

= qéllr (uil ® ]'*) + Zq‘;l’ig-“ir (u]1 ® 1*) + 77
J1
where vy is a decomposable element, u;, # uj, for any ji, ¢; ., = mg;,..;, and
q;-”-zmir = NG}, iy, fOr appropriate nonzero rational numbers m and n. It follows
from Lemma 3.5 that Q(ev)(q;, ..., wi, + >_;, @4y, %j ) = 0. We have the result.
]
We here give a sufficient condition for (P2).

Lemma 4.4. Let (AV,d) be a minimal model for X and {v;};cz an ordered basis
for' V' such that degv; < degv;+1 and d(viy1) € AV;. Suppose that the induced map
o (f) : W;(X) — 7rfp(U) between the W¥-homotopy spaces is a monomorphism for i
less than or equal to some integer k. Then for any element v; ® e € V @ B, with
degv; ® e =0,

u(v; ® e) = uyp(v; ® e),
if degv; < k.
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Proposition 4.5. Let v be an element of 7, (X) which satisfies the condition (Py).
If the induced map 7,(f) : 7 (X) — ﬂf.p(U) is a monomorphism fori < degv, then
the condition (P2) holds.

Proof. Under the notation of the condition (Pz), we see that degu; < dega. The
result follows from Lemma 4.4. O

Proof of Lemma 4.4. We write B = C & dC & H for which d : C — dC is an
isomorphism and dH = 0. Let {b},db},c}r; be a basis for B which satisfies
the condition that bj € C and ¢; € H. Let {bx}k, {ar}r and {c;}; be dual

bases of {b} }, {Jb;}k and {c]};, respectively. Thus {bx,ar,c;}; is a basis for
B, =C,® (dC), ® H, = d,(dC), ® (dC), @ H,. Observe that d,aj, = by.

We will prove Lemma 4.4 by induction on i € Z. Suppose that u(v; ® e) =
uyp(v; ® e) for any element v; ® e € V ® B, with degy; ® e = 0 and [ < i. We
prove now that @(v; ® e) = uyp(v; ® e) when degv; ® e = 0, first for e = by, then
for e = ay, and finally for e = ¢;.

Consider an element of the form v; ® by, of degree zero. Since (—1)%ilv; @ b, =
0(v; ® ag) — dv; @ ag, it follows that

(=) 30y @ br) = 6U(v; ® ag) — w(dv; @ ax) = —u(dv; ® ay).
On the other hand,
(=) p(o; © bi) = wyp((vi ® ax)) — wyp(dv; @ ar) = —a(dv; @ ar,)
by the induction hypothesis. This yields that @(v; ® bg) = uyp(v; ® by).

We write db), = cv; + ¢, where v; and ¢ are linearly independent. Thus ay =
(db},)« = c(vi)s + . Assume that u(v; ® ag) # 0. The definition of @ implies
that 0 # (v;, ax) = (vi,c(v;)« + ¢«) = c. Moreover do(b),) € V. These facts enable
us to deduce that 7, (f) : ﬂl;)il(X) — Wl;)i‘(U) is not a monomorphism, which is a
contradiction. We conclude that w(v; ® ar) = 0 = uyp(v; @ ag).

Consider an element v; ® ¢; with degv; ® ¢; = 0. Using the generator w;; of
A(V ® By) described in Section 2, we write v; ® cj = W;; — Tyj, where x;; is an
element in A(V;_1 ® B,). Since yp(w;;) = w;j, it follows that

ﬁ(’l}i [029] Cj) = ﬂ(w”) - 'E(xzj)
= uyp(wij) — uyp(zi;)
= uyp(vi ®¢)).
It turns out that u(v; ® ) = Uyp(v; ® e) for any element v; ® e € V ® B, with
degree zero.

The first step of the induction is obtained by the same argument as above; that
is, u(v; ® e) = wyp(v; ® e) if degv, ® e = 0. This completes the proof. O

Ezample 4.6. Let SU(3) — P 2 $3x.S3 be the principal bundle with the classifying

map S% x 83 5 §% x §3/8% v §3 = §6 L, BSU(3), where 7 is the projection and

Jj is a generator of m6(BSU(3)) ® Q. Then the bundle has a model of the form
(A(z3,25),0) <— (A(u,v) @ A(zs, z5),d) =<—<(A(u,v),0)

in which degz; = i, degu = degv = 3, d(u) = d(v) = d(z3) = 0 and d(z5) = uv;
see [9, Example 4, page 220]. Let ¢ : S x S — 83 denote the projection on the
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second factor. We obtain the bundle

SU@B) x $* L P& g3
which admits a model (A(x3,25,u),0) <"— (A(u,v) @ A(x3,25),d) <—<(A(v),0)
with d(z5) = uv. Observe that the projection 7 is a Sullivan representative for the
inclusion ¢. The map 7 has a Sullivan model of the form

~

VE (/\(u,v) &® /\(1‘3,.’1?5),d)>—> (/\(U’U) ® /\(:1:3,$5) ® /\(w)7c/l\) =: (A,d),

in which the differential d is defined by c?(w) = v. To see this, we define a morphism
of DGA’s ¢ : (A,d) — (A(x3,25,1),0) by p(w) = p(v) = 0, p(u) = u and (z;) =
x; for i = 3,5. It is readily seen that ¢ is a quasi-isomorphism with m = @ o j. This
implies that j is a Sullivan model for the map 3.

By using the Sullivan model j, we see that the dual element x5, € 75(FPg) is
detective with respect to the triple ((SU(3) x S®), Py;epoi). In fact, d(z5) = uv
and the element u does not occur in any image of d as a term. Thus the condition
(P1) holds. Moreover we can choose the set of generators {w;;} of E as in Section
2 extending linearly independent elements v ® u., © ® u, and w ® u,. Therefore
U(z @ us) = uyp(z ® uy) for z = v,u and w and hence the condition (P2) holds.

Theorem 1.1 yields that G.((SU(3) x S3), Pg;ep o) is a proper subgroup of
7.«(Pg) and hence the map ¢ is not cyclic by Corollary 1.4. It turns out that there
is no action on P of the group SU(3) x S? for which i is an orbit map.

~

Remark 4.7. In Example 4.6 since d(w) = v, it follows that 7, (j) : =) (P) —
ﬂ;‘z(S U(3) x $3) is not a monomorphism. Thus Proposition 4.5 is not applicable to
show that z is detective because deg x5 = 5.

We close this section with another application of a detective element which is
related to characterization of Hopf spaces.

We see that G, (X) C G,(U,X; f) C mp(X) for any map f : U — X by [14,
Proposition 1.2]. Moreover, G,(X) = m,(X) if X is a Hopf space by [14, Proposition
2.2]. It follows that G.(U, X; f) = m.(X) for any map f : U — X if X is a Hopf
space.

The converse holds in some special cases. For example, it is shown by Haslam
in [18] that if X is a simply-connected finite CW complex with G.(Xg) = m.(Xq),
then Xg is a Hopf space. We describe a necessary and sufficient condition for a
rational space to be a Hopf space in terms of an evaluation subgroup. To this end,
we need a definition.

A map f:U — X is said to have a rational section if a minimal Sullivan model
m: AV — AV ® AZ for [ admits a left inverse; that is, there exists a DGA map
p: AV ®&ANZ — AV such that pom = 1,y. Suppose that U is connected and X
is simply-connected. Then we observe that f: U — X has a rational section if the
map f has a right homotopy inverse g : X — U.

Theorem 4.8. Let U, X and f : U — X be as in Theorem 4.2. Suppose further
that f : U — X has a rational section. Then X is a Hopf space if and only if
G (U, X; f) = mu(X).

Proof. Tt suffices to prove the “if” part. Let m : (AV,d) — (AV ® /\Z,&\) be a
minimal Sullivan model for f. By assumption, the map m admits a left inverse
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p: (AV® /\Z,E) — (AV,d). Let {Z;}cs be a basis for Z. We can regard the set
{#;} et consisting of elements z; = Z; —mpZz; as another basis of Z. It is immediate
that pz; = 0.

Assume that X is not a Hopf space, so that the differential d of the model
(AV,d) is not strictly zero. We shall prove that the lowest-degree non-cycle v in V'
is detective.

Let {u;} be an ordered basis of V' such that degu; < degwu;+1 and d(u;11) € AV;.
Write dv = ) qiy . i, Ui, -+ - Ui, + w, where w € AZ"T1V and the Qi, ...i, are Nonzero
rational numbers. Letting v be the element m(u;, - - - u;_), suppose that (dh,v) # 0
for some h € AV ® AZ. If h is in the image of m, then dh = 0 since degh < degw.
Thus it follows that h is in the ideal J of AV ® AZ generated by {z;};c.;. We write

Jh:su—i—an—i—(I),

where s is a nonzero rational number, n; € AV and ® € J. We assume further that
v and 7n;’s are linearly independent. Then it is readily seen that pdh = dph = 0.
Therefore, we have 0 = p(sv+Y_ np+®) = sv+>_ n, which is a contradiction. We
can conclude that (Jh, vix) = 0. It follows from Proposition 4.5 that the condition
(P2) holds. This implies that the dual element of v is detective with respect to
(U, X; f). By virtue of Theorem 1.1, we have the result. O

Remark 4.9. Suppose that a based map f : U — X has a right homotopy inverse in
the category of based spaces. Then we see that G.(U, X; f) = G.(X). In fact, if g :
X — U is aright homotopy inverse of f, then the induced map f* : F(X, X;idx) —
F(U, X; f) has the left homotopy inverse g* : F(U, X; f) — F(X, X;idx); that is,
g* o f* is homotopic to the identity map on F(X, X) the function space of all
continuous maps from X to itself. Thus we have the following digram.

(97)«

W*(.}—(X,X)7fOg))@*ﬂ*(f(X,X%Zd)ﬁ)ﬂ*(.}-(U,X’f),f)

eV

7 (X)

in which three inner triangles and the outer triangle are commutative. Here each
ev; denotes the evaluation map. The commutativity of the diagram enables us
to conclude that G,(X) = Im evo, = Im evs, = G.(U,X; f). If moreover X is
a finite simpy-connected CW complex, then Theorem 4.8 follows from Haslam’s
result. We stress that such a finiteness condition on X, the simply-conectedness
and the existence of a geometrical section of the map f are not required in Theorem
4.8.

Recall that X is a G-space if G,,(X) = m,(X) for any n > 1. In [33], Siegel has
constructed a non simply-connected space which is a G-space but not a Hopf space.
By generalizing the construction, we here give a non simply-connected homogeneous
space M which is a rational Hopf space; that is, the localization Mg is a Hopf space,
but not a Hopf space itself.

Let G be a compact simply-connected Lie group and 7" an [-dimensional torus
subgroup of G. Let ¢ : T'— G be the inclusion. Define a embedding j : T — G x T
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by
j(e’igl . eigl):(L((eimlel . eimlel)) einlel . ei’nlel)
where myq,...,m;, ny,...,n; are non-zero integers and my is prime to ng for any
1<k<I.
By applying Theorem 4.8, we have the following proposition.

Proposition 4.10. The homogeneous space M := G x T/j(T) is a non simply-
connected G-space and a rational Hopf space.

Proof. Since the induced map j, : 7, (T) — m,(G x T) is injective for all n > 1,
it follows from [33, Theorem 2.3] that M is a G-space. Observe that m (M) is
a nontrivial abelian group and that the localization e : M — Mg induces an
monomorphism e, : G,(M) ® Q — G, (Mgp); see [30, Theorem 4.1]. We see that
Gn(Mg) = mp(Mg) for any n because G,,(M) = m, (M) for any n. Theorem 4.8
yields that Mg is a Hopf space. ([l

Proposition 4.11. Suppqse that, for a prime number p, the integral homology of
G is p-torsion free and % + 1 < p. Assume further that at least one of the
integers ny, ...,n; is divisible by p. Then M is not a Hopf space.

Proof. Consider the fibration of the form M — BT B B(G x T'). This gives rise
to the Eilenberg-Moore spectral sequence {E,., d,} converging to H*(M;Z/p) as an
algebra with

By = (H*(BT;Z/p),Z/p)

Tory ez /pyoH (BTZ/p)

as a bigraded algebra. Observe that the H*(BG;Z/p) ® H*(BT;Z/p)-action on
H*(BT;Z/p) is given by the composite map

H*(BG;Z/p) ® H*(BT;Z/p) ® H*(BT;Z/p)
i(Bj)*@ﬂ
H*(BT;Z/p) ® H*(BT; Z/p) —— H*(BT;Z/p),

where ¢ denotes the cup product of H*(BT;Z/p). Since H,(G) is p-torsion free, the
cohomology H*(BG;Z/p) is isomorphic to a polynomial algebra, say, Z/p[z1, ..., ).
We can write H*(BT;Z/p) = Z/plt1, ..., t;] for which degt, = 2forany 1 < k <. It
follows from the definition of the embedding j that (Bj)*(tx) = nity for 1 < k <.
Without loss of generality, we assume that n is divisible by p. This implies that t;
is one of the generators of the algebra Eg " in ES 2 The result [28, 8.2. Theorem]
enables us to conclude that the spectral sequence { E,., d,.} collapses at the Fa-term.
The edge homomorphism

By — EY' = Ey" € H(M; Z/p)

is a morphism of algebras in general; see [34, Proposition 4.2]. Hence Eg’* is
regarded as a subalgebra of H*(M;Z/p). Since M is a manifold of dimension
dim G, we can choose the least integer s such that t§ = 0 in H*(M;Z/p). It follows
that 2(s — 1) < dim G and hence s < % + 1 < p by assumption.

Suppose that M is a Hopf space with a product h: M x M — M. We have

which is a contradiction. O
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Remark 4.12. The homogeneous space of the form SO(3) x S*/j(S') constructed
with an appropriate embedding j : S* — SO(3) x S! in [33, 2.4 Example] satisfies
the conditions in Proposition 4.11 for p = 3. In fact H.(SO(3)) is 3-torsion free
and dim SO(3) = 3.

5. NON GOTTLIEB ELEMENTS DETECTED BY WHITEHEAD PRODUCTS

The following result is the key to proving Theorem 1.2.

Theorem 5.1. Let f: U — X be a map between connected spaces U and X which
are not necessarily rational. If for elements g1, ..., gn—1 in m(U), the (n—1)th order
Whitehead product [g1, ..., gn—1] contains zero, then so does [fi(g1), s fs(Gn-1), 2]
for any x € G.(U, X; f).

Remark 5.2. With the same notation as above, suppose that [gi,, Gis, -, g, ] = {0}
for any subset {gi,, ..., i, } Of {91,y gn—1} With i} <ig < -+ <ipand k <n — 1.
Then [g1, ..., gn—1] is non-empty. This follows from [32, Theorem (2.7)]; see also the
comment after [32, Theorem (2.7)].

Proof of Theorem 5.1. The usual argument on composing a Gottlieb element with
an element in the homotopy group is applicable to our case; see, for example, [13]
[9, Proposition 28.7]. We put k; = degg; and k, = degx. Let T,, denote the fat
wedge, which is a subspace of P, = St x-..xS%=_ Since [g1, ..., gn_1] is non-empty
and contains zero, it follows from [32, Theorem (2.4)] that the map g1 V-V gn—1
extends to amap ¢ : P,_; — U. The element fVz : UV S* — X has an extension
Y : U x §*» — X because z € G, (U, X; f). Therefore we see that the composition
Yo(px1): P, — X is an extension of the map (fVz)o(g1V---Vgy_1V1) =
Folg) VeV fulga1) V . O

Let o be a permutation of the set {1,...,r} of r integers. We define a map
o @ X7_1 8" — x]_, 8™ ® by permuting the coordinate by o. For the gener-
ators p € H,(x7_,S™) and p/ € H,(x[_;S8™ @) mentioned in Introduction, we
see that (—1)5?)y/ = o.(u). Here (o) is the integer defined by the formula
UL Up = (—1)5(")u0(1) “*+Ug(ry in the graded commutative free algebra gener-
ated by elements wq,...,u, with degu; = degz;. The definition of the higher
order Whitehead product enables us to conclude that, if * € [z1,...,z,], then
(1) € [To(1)s s To(ry]. Thus in order to prove Theorem 1.2, it suffices to
show that [z1,...,x—1,2,] = {0} for any z1,..., 2,1 in m(X) if 2. € G.(U, X; f)
under the assumption in the theorem.

Proof of Theorem 1.2. We first consider the Whitehead products in X. It follows
from the assumption on the Whitehead products in U and [32, Theorem (2.1)(d)]
that all Whitehead products of order < r in X contain zero. By applying [1,
Corollary 6.5] repeatedly, we see that all of those actually vanish; see Remark 1.3.

Let x1, ..., z, be elements in 7, (X). Suppose that z, € G.(U, X; f). By assump-
tion, we can choose elements g; € m.(U) (1 <4 <r —1) so that f.(g;) = ;. Theo-
rem 5.1 allows us to conclude that [21, ..., z,] contains zero since [¢1, ..., gr—1] = {0}.
By applying [1, Corollary 6.5] again, we see that [z1,...,2,] = {0}. This completes
the proof. (I

By using Theorem 5.1 in the case n = 2, we can recover the result [35, Theorem

4.2] concerning the vanishing of an evaluation subgroup. The proof of the following
proposition is left to the reader.
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Proposition 5.3. (cf. [35, Theorem 4.2]) Let U and X be connected based spaces
and f : U — X a based map. If there exist nonzero elements x; in m.(U) such that
Ni(Ker adf.(z;)) = 0, then G, (U, X; f) = 0. Here adf.(z;) : me(X) — m(X) is
the homomorphism defined by adf.(x;)(z) = [f«(24), 2]

We end this section with some results on rational higher order Whitehead prod-
ucts.

Proposition 5.4. Assume thatn >3, m > 2 and m; > 2 for all1 < i < n. Let
z; be an element of 7y, (Sg') fori=1,2,...,n. Then

(1) If m is odd, then [z1,...,xy] is non-empty and [z1,...,z,] = {0}.

(2) If m is even and [x1, ..., 2,] is non-empty, then [x1,...,2,] contains zero.

Proof. 1f m is odd, then Sg' is a Hopf space. Hence we have the result (1) by [32,
Theorem (2.4)]. Suppose that m is even. For dimensional reasons, it suffices to
consider the case where degz; = m and degxy +degzo+---+degz, —1 =2m—1.
It is readily seen that each x; = 0 for j > 1. Since 0 € Gi(S(SL) for any i, by
applying Theorem 5.1 repeatedly to the case where f = id : Sz — Sg', we have
[1,...,2n] 2 0. O

Corollary 5.5. Let X be a rational space. If n > 3 and m is odd, then for any
element x € 7,,(X), the nth order Whitehead product [x, x, ..., x] is well-defined and
contains zero.

Proof. Let ju, : S™ — Sg' be the rationalization map. We see that x = g o jn,
where zg denotes the Q-localization of x. Proposition 5.4 and [32, Theorem (2.1)
(d)] imply that

{0} :xQO[]m7Jmu 7]m] C [.’Eonm7xQij,"' ,.’I,'onm] = [il?,il',"' 7'T]'
([l

Corollary 5.6. Assume thatn >3 and m; > m > 2. If z; : S™ — 8™ (i =
1,2,---,n), then [x1,---,2,] is of finite order if it is well-defined.

Proof. Let jn, : S™ — Sg' be the rationalization map. For dimensional reasons, it
follows from Proposition 5.4 that j,o[z1, - ,Tn] C [jmox1, -, jmox,] = {0}. O

6. A GEOMETRIC INTERPRETATION OF A DETECTIVE ELEMENT
In this section, we prove the following theorem.

Theorem 6.1. Let U and X be simply-connected rational spaces and let f be as
in Theorem 1.2. Assume that all Whitehead products of order less than r vanish
in m.(U). Then a nonzero element x in [x1, ..., x,] for some elements x;, if any, is
detective with respect to (U, X; f). Moreover, degx; € I(x) for any i.

We begin by recalling the result in [1] concerning rational higher order Whitehead
products. Fix positive integers nq,...,n,. Then we define a function K from the
set M (r,Q) of r x r-matrices to Q by

K((alj)) = Z (71)6(0)(110'(1) © o Qro(r)-
ceEY,
Here 3, denotes the symmetric group and the integer €(o) is characterized by the
formula uy - - - u, = (fl)s(g)ug(l) “Ug(yy for elements uy, ..., u, with degu; = n; in
a graded commutative algebra.
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Let (AV,d) be the minimal model for a simply-connected space X. We fix a
basis {u;} of V and elements x; € 7,,(X). Define a function K : AZ"V — Q as
follows: For an element u € AZ"V, we write

U= E Qiy iy Wiy UG, W,

11 < <ipe
where w € AZ"V and ¢;,..;, € Q. Then K is defined by

IN((u) = Z qil...i,,,K(Ail...ir),

i <<

where A;, .., is the r x r matrix whose (p, ¢)-entry is the Sullivan pairing (u;,, z).

-

Theorem 6.2. ([1, Theorem 5.4]) Let X be a simply-connected rational space with
a minimal model (AV,d). Suppose that the higher order Whitehead product set
[1,...,xr] C Tn_1(X) is non-empty and that v € V is an element of degree N — 1
with dv € AZ"V. Then, for each x € [x1, ..., 7,],

(v,2) = (~1)°K(d(v)),
where e =)

i<j nin;.

We are ready to prove the main theorem in this section.

Proof of Theorem 6.1. Let i : (AV,d) — (AV ® AZ,d ) be the minimal model for
f. Since the induced map f, : 7. (U) — m.(X) is surjective, it follows that the map
AV — H(AV @ NZ, c/l\o) induced by i is injective, where dg is the linear part of d.
This implies that (AV ® AZ, c?) is a minimal model for U ([17, 4.12 Proposition]).

We choose a nonzero element x € [x1, ...,z,]. Since all Whitehead products of
order < r vanish in 7, (X), it follows from [1, Proposition 6.4] that d(z*) is in
AZ"V. With a basis {u;} of V, we write d(z*) = Y, o <; Giyoiy Uiy -~ Ui, + W,
where w € AZ"HV and ¢;,..;, are nonzero in Q. Suppose that there exists an
element x; such that degz; # degu;, for any j;. Then all the numbers (uj,,z;) in
ith column of the matrix A, _; are zero for any ji,..., j,. From Theorem 6.2, we
have 1 = (z*,z) = (=1)K(d(z*)) = 0, which is a contradiction. Thus we see that
for any x; there exists an element u;, with degree equal to degx;, which occurs in
a term of d(z*) as a factor. Without loss of generality, we can assume that

d@*) = D Qi iy U
11 <<ty

modulo AZ"'V with degu;, = dega; for some ;. It follows from [1, Propo-
sition 6.4] that dh € AZ"(V @& Z) for any h € AV ® AZ = A(V @ Z) and hence
(h, c/l;(ul2 Cee UG ey = <c/l\h, (wiy -+ -, )«) = 0. This fact yields that cﬁ(um ey e =
0. Proposition 4.5 allows us to conclude that the element z is detective with respect
to (U, X; f). By definition, we see that dega; € I(x). This completes the proof.

O

7. PROOF OF THEOREM 1.6 AND EXAMPLES

We begin with the G-sequence introduced by Woo and Lee in [41]. Let X be
a space with basepoint xg and U a subspace of X. Let ¢ : U — X denote the
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inclusion map. Then the evaluation map ev : (F(U, X;1), F(U,U;idy)) — (X, U)
at xg gives rise to the homomorphism

evys : T (F(U, X54), F(U,U; idy)) — 7 (X, U).
The image of evy, is denoted by GEY(U, X;i). The G-sequence

= GulU) 5 Go(U, X3) % GRAU, X3) 2 Gea (U) —
is given as a subsequence of the homotopy exact sequence

We observe that the G-sequence is not exact in general; see [23] and [25] for this fact.
Note that G, (U, X;i) and GR(U, X ;i) are denoted by G.(X,U) and GE{(X,U),
respectively in [41]. If F L XBYisa fibration, then we have a commutative
diagram

Gn(F) 2 G (F. X:1) — 2 GR(F, X3 4) > (X, F)

Dy ~
k\ \L -

T (Y)

for any n > 2. The exactness at G, (F, X;i) of the G-sequence is therefore equiva-
lent to that of the sequence

(7.1) Gn(F) 2 Go(F, X:4) 2 ma (V).

After proving Theorem 1.6, we will illustrate non-exactness of the sequence (7.1);
see Example 7.5.
In order to prove Theorem 1.6, we need the following result due to Ghorbal [11].

Proposition 7.1. [10, Proposition 3.5] Let f : X — Y be a map of rational
spaces that admits a minimal model of the form v : (NV @ W),d) — (AW,d)
such that (V) = 0, y(w) = w forw € W, d(V) C AZ2V @ AW and d(W) C
AW +AZ2VQAW. Then f is a homotopy monomorphism in the nilpotent category;
that is, the induced map of homotopy sets fy : [A, X] — [A, Y] is injective whenever
A is a nilpotent space.

Proof of Theorem 1.6. By assumptlon the prOJeCtIOH p admits a Sullivan model
7 (AWy,d) — (AVy ® AV,d) such that d(v) € AZ2Vy @ AV + Q ® AZ2V for
any v € V. From [16, Theorem 20.3], we see that the DGA (AV,d) = Q Q(AYy,d)

(AVy @ AV, c?) is a minimal model for the fibre F'. Moreover it follows that the
projection P A(Vy @ V) — AV is a Sullivan representative of i : F—X. By virtue
of Remark 3.4, the 0-simplex @z € A(A((Vy ®V)®(AV),)) gives the Sullivan model
E /M, which is a model for F(F,X;i), where u = A(y)u;; see Theorem 3.3 and
paragraphs before Theorem 2.3 for the notations. Moreover we have a Sullivan
model of the form (E'/M],,6) for F(F, F;idg) in which E' = A(V ® H,(F)) and
u' = A g, € ANV @ (AV).)); see Remark 3.4.

Since the model (AVy ® AV, c/i\) is minimal, the dual sequence to the homotopy

exact sequence of F© — X — Y splits into the short exact sequence 0 — Vy @
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VwaoV W V' — 0. In order to prove Theorem 1.6, it suffices to show that the

sequence

0— W AP (Vy ® V) /KerQ(ev) 2 V/KerQ(év) — 0
is exact. 4

Since F - X % Y is a separable fibration, Proposition 7.1 implies that i is
a homotopy monomorphism in the category of nilpotent spaces; that is, for any
nilpotent space Z and any two maps u,v : Z — F, u ~ v whenever iu ~ jv.
The main theorem in [31] asserts that if ¢ is a homotopy monomorphism in based
topological spaces, then the G-sequence of (F, X) splits into short exact sequences

0 — Gn(F) 2 Gp(F, X;i) 25 GRY(F, X ;i) — 0.
The same argument as in the proof of [31, Theorem 2.2] does work well to show
that the sequence is exact at G.(F) and G.(F,X;i). Indeed, in the proof, it
is only needed that i : FF — X is a homotopy monomorphism with respect to
(Sk x F)/(S* x *) with k& > 2 in the category 7OP, of based topological spaces;
see [31, Lemma 2.1].

Let [M, N]. denote the set of based homotopy classes between based spaces M
and N. Since F is simply-connected, it follows that (S* x F)/(S* x %) is simply
connected and hence nilpotent. Thanks to the result due to Ghorbal mentioned
above, the induced map 4, : [(S* x F)/(S* x ), F] — [(S* x F)/(S* x ), X] is
injective. We see that the natural map [(S* x F)/(S* x %), F], — [(S* x F)/(S* x
x), F'] is bijective because F is simply-connected. Therefore the induced map

iy [(S® x F)/(S* x %), F], — [(S* x F)/(S8* x %), X].

is injective so that ¢ : FF — X is a homotopy monomorphism with respect to
(Sk x F)/(S* x %) with k > 2 in TOP,. Thus, we are left to prove that Q(p) is a
monomorphism.

Recall the model (E/M,,d) for F(F,X;i) from Remark 3.4 and DGA maps
described in Section 2; see the diagram below.

Vy .
oy ——_
Qev) __ — ~
WweVv W AW < E/My <— E=<— AN(Wwa V)@ (AV).)
N7 \p.w.ﬁ
n il

Let dy be the linear part of the differential 6. Suppose that v¥ is in KerQ(ev) for
a nonzero element v¥ € V3 C V3 @ V. Choose a basis {v;} of V3 @ V so that

vy € {v;}. Lemma 3.5 yields that t(vY) = v¥ ® 1 is in Imdy. Hence the element

vY ® 1 appears in dp(v; ® €) as a summand of a term for some element v; ® e in

~

(Vy @ V) @ (AV).. Therefore d(v;) contains v¥ as a factor; see Remark 2.6. We

write
ey _ 2 : Y Yy .. ) 2 : / /
d(UZ) — Uil e Uis . U]l P ’ijn _|_ Uj1 ce. qu’
Ulses,J1500m Jiseedq

where v}l/ € Wy, vjl,v;m € V. Observe that s > 2 and ¢ > 2 because the given

fibration F' — X — Y is separable. Without loss of generality, we assume that

v} = vY. Then the other element v} (I > 2) needs to be an element of Q after

tensoring some element ¢’ in (AV'), which appears in D>*+™=1)(e) as a factor; that
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is, degv} @€ =0 and v} ®€' € Q in E/M,. However v} @ ¢/ = (v} ®¢€') = 0;
see (3.1). In consequence, the element v¥ ® 1 does not appear in §o(v; ® €) as a
factor, which is a contradiction. This completes the proof. ([l

We here recall from [9, Section 15 (c)] a model for a pullback fibration. Let
Xf — X

qi \Lp
Z*f>Y

is a pullback diagram in which Y and Z are simply-connected and p is a fibration
with fibre F. Let (AVy,d) — (AVz,d) be a Sullivan representative for f and

(AW, d) <" (AVy @ AW, d) <——<(AVy, d)
a model for the fibration p; that is, there exists a commutative diagram

Apr(3) Apr(p)
APL(F) < APL(X) (717 APL(Y)

Tg = | Tg
(AW, d) <" (AVy @ AW, d) <——<(AVy,d),

in which vertical arrows are quasi-isomorphisms, j is a Sullivan model for p and 7
is the natural projection.

Proposition 7.2. [9, Proposition 15.8] The pullback fibration F' — X 4 Z has a
model of the form (AW,d) <— (AVz,d) @avy.a) (AVy @ AW, d) <——=(AVz,d).

Ezample 7.3. Let F — X 2 Y be a fibration over a simply-connected space Y and
f:Z —Y amap. If the fibration p : X — Y is separable, then so is the pullback
fibration ¢ : Xy — Z of p by f. This follows from Proposition 7.2.

Examples 7.4 and 7.5 described below show that there is a separable fibration
which can be obtained from a non-separable fibration via the pullback construction
by an appropriate map.

Ezxample 7.4. Let G be a compact simply connected Lie group with a maximal torus
T and i : T — G the inclusion. Then the Borel fibration

G/T % Er x7 G/T % BT

is separable. To see this, we consider the fibration G/T — BT 5 Ba. Suppose
that H*(BG;Q) = Q[y1,...,y) and H*(BT;Q) = Q[t1,...,t]. Put (Bi)*(y;) =
fi(ty, ..., t;). Since degys > 4 and degt, = 2 for 1 < s <, it follows that f;(¢1,...,%;)
is decomposable for any i. Moreover we see that the fibration Bi : BT — BG has
a model of the form

(M) ® A z),d) =<— (A(t:) ® A(z1) @ Aws), d) =<——= (A1), 0),

~

in which d(z;) = —y; + fi(t1, ..., t;) for any i. The uniqueness of a minimal relative
Sullivan algebra ([9, Theorem 14.12]) implies that the fibration Bi : BT — BG is
not separable.
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The fibration G/T L Br xr G/T 2 BT fits into the fibre square
G/T ——G/T

| l

Er xr G/T —> BT

T

BT —2*~ BG,

where £ : Ep xp G/T — BT is defined by sending an element [z, [g]7] to [zg]r;
see [20, (2.2)]. By using Proposition 7.2, we have a model for the Borel fibration
Er xr G/T L, BT of the form

o~

(A(t:) © A(zi),d) =<— (A(t) ® A(t:) © Azi),d) <—=(A(£),0),

~

where d(z;) = —f;(t}, ..., t]) + fi(t1,...,t;) for any 7. This enables us to deduce that
the fibration Er xr G/T 2L, BT is separable. Moreover, Theorem 1.6 yields that
G.(G/T,BEr x7 G/T;j)@Q =2 G.(G/T) 2 Q& 7. (BT) ® Q.
Since Geyen(G/T) ® Q = 0 ([8, Theorem III]), it follows that Geyen(G/T, ET X1
G/T;j) ® Q X Teven (BT) ® Q and hence
Geven(G/T, Er x1 G/T;j) @ Q = Q{ty", ..., t;"}

where {t*,...,t;"} is the dual to the basis {t},...,t;} of the vector space which
generates the model for BT mentioned above. Moreover, by virtue of Proposition
2.5, we have

Goad(G/T,Ep x1 G/T;j) ® Q = Goad(G/T) ® Q = moqa(G/T) ® Q = Qfz;}.

For a more general result, see [27, Corollary 5.5].

Ezample 7.5. The fibration 52 L cP? 2 S4 obtained by the Hopf bundle $% —
S7 — S* is not separable.

(i) The sequence

(7.2) G.(5%) % G.(S2,CP% i) 2, (SY)

is not exact. In fact, we have a model for the fibration S - CP3 2 §4 of the form

(/\(1'2,1'3), d.ng = I’%) <L (/\(552755372/471/7%8) H(/\(y47y7)? dy7 = yZ)a

where the differential d is defined by c/l\y7 = y7 and C/i\l‘g = 23 + y4. Since S? is a
finite complex, the sequence
(7.3) G.(S2) 5 G.(S2,CP3;4) ™ . (S2)

is regarded as that obtained tensoring Q to (7.2); see [35, Theorem 2.3]. Thus in
order to prove non-exactness of the sequence (7.2), it suffices to show that the dual
sequence to (7.3)

V— H(V & W,d)/KerQ(p) 29 W/KerQ(év)
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is not exact, where V.= Q{y4,y7}, W = Q{z2, 23} and 62\0(133) = y4. Observe that
H(V & W,dy) = Q{x2,y7}. We have a quasi-isomorphism

m s (N, yn). dyr = 78) == (w2, 23,94, y7). d)

which sends x5 and y; to o and y7 — y4x3 + r373, respectively. Therefore the map
7 om is a Sullivan representative for the inclusion i : $2 — CP3. The element
x2 € HV & VV,EO)/KerQ(é%) maps to zero by Q(i) because év(xs) = 3 ® 1
coincides with the image do(3(z3 ® 22.)) in the model for ]-"(Sé, Sé; id). Suppose
that (7.3) is exact. Since there is no element with degree 2 in V, it follows that
Q(év)(x2) = 0 for the linear part Q(év) of the model év for the evaluation map
ev : .7-'(5(5, (CP(S; i) — (CP&. By virtue of Lemma 3.5, there is an element w € E/M,,
such that dp(w) = 22 ® 1 = év(z2), where E 2 A(Q{z2,y7} ® H.(S?)) and u =
A(Y)Uzom. For dimensional reasons, there is no element with degree 1 in E/M,,
which is a contradiction.

(ii) Let g : S%2x 5% — §2x 5?/5%v 5% = §4 be the projection and S? L X582k 82
the pullback by ¢ of the fibration §2 - CP3 % §4. By applying Proposition 7.2
to the model for the fibration S > CP? % S* mentioned in (i), we see that 7 is

separable. It follows from Theorem 1.6 that
Gn(Sé,XQ;iQ) = Gn(S(é) EBWn(Sé X Sé)

QaoQ fn=2
= QeQeQ iftn=3
0 otherwise

We conclude this section with a result concerning the group G®!(F, X; i), which
is deduced by combining Theorem 1.6 with [31, Theorem 2.2].

Corollary 7.6. Under the same assumptions as in Theorem 1.6, the induced map
Py s GRNE X;4) — m,(Y)

is an isomorphism for n > 1.

8. THE EVALUATION SUBGROUP OF THE FUNDAMENTAL GROUP

In order to prove Theorem 1.7, we first recall a filtration of a Sullivan algebra.
Let A= (AW, d) be a Sullivan algebra and put A(—1) = A° = Q. Let A(n) denote
the sub DGA generated by A® for 0 < i < n and dA". Define A(n,q) C A(n) to
be the sub DGA generated by A(n,q — 1) and the set {a € A™ | da € A(n,q— 1)},
where A(n,0) = A(n — 1). Observe that A(1,0) = Q and that dy = 0 for any
y € A(1,1). As usual, for an augmentation algebra C, let Q(C) denote the vector
space of indecomposable elements, namely, Q(C) = C/C - C, where C denotes the
augmentation ideal. The result [2, 12.7 Theorem] asserts that for any connected
nilpotent space X with a Sullivan model AW of finite type, there exists a natural
isomorphism

(Tt T9 7 (AW) = Homg (Tg/Tg41)m1(X), Q),
where Izt (AW) is the image of the induced map 7!(A(1,i — 1)) — 7(A) by the

natural inclusion and (I'9*! /T'?) 7! (AW) denotes the subquotient T 7l (AW) /T4t (AW).
By using this result, we prove Theorem 1.7.
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Proof of Theorem 1.7. We first observe that the diagram (1.1) in the Introduction
gives rise to the diagram

(Li/Tip1)m (F(U, X5 f))

eV
eV

M = FZGl(U, X, f)/(FZ+17T1(X) N FZGl(U, X, f))>—> (Fz/Ferl)ﬂ—l(X)
Let (AW, d) be a minimal model for X. When U is a finite CW complex, it follows
from [19, Theorem 3.11] that ex. : F(U, X; f) — F(U, Xg;ex o f) is a localization.
Therefore with the hypothesis (ii), we see that (E/M,,d) described in Section 3
is a Sullivan model for F(U, X; f). By dualizing the diagram above, we have a
commutative diagram (s:);:

(Ti/Tip1)m (F(U, X5 f)) jjH(W“/T’) HE/M,)

(Ti/Ti)m (X)F —— (DT (AW)

in which 7 is the linear map naturally induced by the model ¢ for the evaluation
map ev in Theorem 3.3. Since (AW, d) is minimal, it follows that

Dl (AW) = Im{Q(AW (1,1)) — W} = Q(AW(1,4)).

(1) We observe that the differential on elements of degree 1 is strictly quadratic for
degree reasons, since A% = Q.

Since (Fk/FkH)m( ) £ 0, it follows that (T*F!/T) 7w (AW) # 0 for any i < k.
For any i < k, let {y;};>1 be the basis of Q(AW(1,4)) for which yi,...,yn, are
linearly independent in the vector space Q(AW(1,1))/Q(AW (1,4 —1)). Then there
exists an element y(+1 € (D2 /717 (AW) such that

dy" = 1yiYa, + C2Yi Yo+ F Rl Yan
+Ck+1Yip 1 Yarry T T i Yo, T+ Cs¥i,Ya, T W,
where ¢; # 0,1 < i3 <m, o # 41 for 1 < n <k, oy # «j for 4,5 < k with
i # j, i F g for k+1<q <8, Yi Yo, # Yi,Ya, if ¢ # 7 and we QAW (1,i—1))-
Q(AW(1,i—1)). Using the element y(**1), we can show, as in the proof of Theorem
4.2, that 7 is not a monomorphism. In fact, let (AW, d) — (AWQAZ, c?) =: B bethe
Sullivan model for the given map f with which we construct the model (E/M,,, ) for
F(U,X; f). Tt follows from the hypothesis (i) and the minimality of the Sullivan
model for f with (4.1) that 3*((yj)*) = 0 for any j in the differential coalgebra

(AW R AZ),, C/l\*) Proposition 4.5 enables us to conclude that y**1 is a detective
element with respect to (U, X; f). Therefore, we see that in A(W ® B,)/Mg

5(y(i+1)®(ya1)*) = —c1y;, ®1— Z ¢yi, @1+ Z CjYo,; ®1+v®1
JZk+1,Ya;=Yya, J2k+1,yi;=Ya,
for some element v € Q(AW(1,i — 1)) in A(W ® B,)/My; see Lemma 4.3. Put
w = —C1Yi, — Z CiYi; + Z CjYa,; + 0.
j2k+1vyaj =Yaq jZkJrl,yij =Yoaq

Then the element w ® 1 is zero in "7 (E/M,). As in the proof of Theorem 4.2,
we see that 7(w) = 0. This yields that dim M* < dim(T;/T;11)m (X)* — 1. We
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have the result.
(2) Let {y,} be a basis of AW (1,1) = I'’2(AW). Since (I's/T's)m1(X)* # 0, there
exists an element y € (I'3/T?)7! (AW) such that

dy = C1Yi Yoy + C2¥i Yo, T -+ CkYi Yoy,
FCht1Yip1Yaryr Tt m¥in Yo, T+ CsYiYa,,

where ¢; # 0, a; # ay if @ # j for 4,5 < k, ay # i1 for 1 <1 <k, ¥i Yo, # Vi Ya,
if ¢ # r, and 4y # 4, for m > k + 1. The same argument as in the proof of
(1) yields that y is a detective element. Thus in (A(W ® B.)/Mz,0), we see that
0(y @ (Yiy)«) = 1Yoy @ L+ -+ + kYo, ® 1 and

5y @ (Yo )w) = —c19s, ©1 = > Cm¥in @14+ Y CnYa, ®L

m2k+1>yam,:ya1 m2k+1,yim:ya1

It is immediate that the elements w1 = c1Ya, + - + CkYa, and

Wwo = —C1Yiy — Z CmYi,, T Z CmYa,,

mZle‘l;yanL =Yo; mZk‘-‘rLlﬁ,n Yo,

are linearly independent in T2(AW). Moreover it follows that 7(w;) = 0 = 7(ws) in
(I'?/TYHY7r!(E/M,). This completes the proof. O

Proof of Theorem 1.9. Let S* — X — T™ be the S*-bundle with the the classifying
map f represented by py = >, ., cijtit; in H?(T™;Z) = [T", K(Z,2)]. Tt follows
from the proof of [37, Proposition (1)] that X; has the homotopy type of a finite
CW complex.

The short exact sequence 0 — Z — m(Xf) — Z%" — 0 derived from the
fibration S' — Xy — T™ enables us to conclude that 7 (Xy) is finitely generated
and has no elements of finite order. Thus, G1(X) is a finitely generated free abelian
group. In order to prove Theorem 1.9, it suffices to show that dimG1(X;) ® Q =
1+ n —rankAy. To this end, we begin by constructing a minimal model for X;.

There exists a fibration of the form Xy — T™ 4, K(Z,2). Therefore by virtue of
[19, IT Theorem 2.9], we see that X is nilpotent. Moreover we have a commutative
diagram

Apr(f
APL(Tn) ) APL(K(sz))

i - )
(At oo t), 0) =———— (A(12),0)
o} I
(A1 tn) © A(w) ® A(L2), d) =<—=<(A(t2),0)
in which vertical arrows in the top square are quasi-isomorphisms, fis a DGA map
defined by f(t2) = py, d(w) = py — 2 and ¢(w) = 0. Observe that ¢ is also a quasi-
isomorphism. Thanks to [9, Theorem 15.3], the DGA (AW,d) = (A(t1,...,t,) ®
A(w), d) with d(w) = py is a minimal model for X;.

To simplify, we write '9™! /T'? and 'y /Ty 41 for the subquotients (D! /T'7) 7w (AW)
and (I'y/Tg41)m1 (X ), respectively. It follows that H' (X ;; Q) is the n-dimensional
vector space with basis {t1, s ..., t, }. Furthermore we have I?7}(AW) = Q{t1, ..., tn}
and D3t (AW) = Q{t1, ..., tn, w}.

Recall the DGA (E/M,, ) described in Section 3, where u € A(E) is the 0-
simplex which is induced by the 0-simplex @ of A(A(W ® B,)) defined by u(a®b.) =
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(—1)2UaDp, (a); see Theorem 3.3. Since X; is a finite CW complex, the DGA
(E/M,,0) is a Sullivan model for F(X¢, Xs;id). Thus we also have the same
diagram (#*); as in the proof of Theorem 1.7.

We compute the image of the element w ® (x). by the differential § in E/M,,.
From the definition of §, we see that

6(w @ (tk)+) D citit; @ (tr)-

i<j
= (Z ijtktj + Z Ciktitk + Z Cijtitj) (tk* (9 1 + 1 (9 tk*)
k<j i<k 1<Js1,j#k
= chjtj ®1-— Zcikti ®1
k<j i<k
= > ol
1<i<n;i#k

We write wr = D1 <;<p.izk Chiti- Suppose that rankAy = m. Then there exist
elements wuy,, ..., uy, which are linearly independent in T?(AW) = Q{t1, ..., tn }-

Claim 8.1. m1(X) is not abelian and dim ([ (Xf), m (X)) N G1(X;)) @ Q = 1.
Claim 8.2. Ker 7 = Q{ug,, ..., ug,, }-

Thus we have dim M? = n — dimKer 7 = n — rankA;. It follows from Claim
8.1 that d1mG1(Xf) ®Q = dim([ﬂ'l(Xf),ﬂ'l(Xf)] N Gl(Xf)) ®Q+n —rankAy =
1+ n —rankA;. We have the result. O

Proof of Claim 8.1. We first show that 71 (X) is not abelian. Recall from [19,
Proposition 1.10] that the localization functor is exact. Therefore the lower central
series of m1 (X ) gives rise to a sequence of inclusions

Wl(X'f)erlQ DFQQ DI DFJ‘Q Do
Moreover we see that (I';/T;41) ® Q = I'ig/T'i410. Thus it follows that for ¢ > 3
Homg(I';/Ti41 ® Q, Q) = Homy(I'; /T4, Q) 2 T /T =0

and hence I',g = T'iy19 = {1} for ¢ > 3. The existence of an isomorphism
between T'yg and (T'2/T3) ® Q yields that (Teg)? = Homgz((T'2/T'3) ® Q,Q) =
Homgz(I'y/T'3,Q) = T'3/T? = Q{w}. Thus we see that 71 (X) is not abelian.

The localized monomorphism

([ (X7), (X )] N G1(Xp)) © Q — [mi(Xy), m1(Xf)]g = Tag
induces the epimorphism (I'ag)¥ — ([m1(X ), 71(Xf)] N G1(X¢)) ® QF. Tt is readily
seen that the dimension of the vector space [m1(Xy), 71 (X ;)] NG1(Xf) ® Q is less

than or equal to 1.
Consider the lower central series of m1(Xy) again:

Wl(Xf):FlDFQD...DFSDFS+1:{1},

where s = nil(m(Xf)). Then I'y is a nontrivial abelian subgroup contained in
Zm1(Xy), the center of w1 (X¢). The result [12, Corollary 1.13] implies that Zm (Xf) =
G1(Xy) since X is aspherical, namely, m;(X;) = 0 for ¢ > 1. Thus we have
[m1(Xf), m(Xp)]NG1(Xy) DT # {1}. As mentioned above, m (Xy) is finitely
generated and has no elements of finite order. In particular, I'; is a finitely generated
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free abelian group. This fact yields that dim([m(X), m1(Xf)]NG1(Xf)) @ Q > 1.
We have the result. O

Proof of Claim 8.2. We first observe that the natural projection E — E/M,

induces an epimorphism Q(E)! = Q{t; ® 1}1<i<n ® Q{w ® 1} — Q(E/M,,)*. The

computation of §(w ® (t)«) in the proof of Theorem 1.9 allows us to conclude that
QE/M,)" = (Q{t; ® 1h<icn/Qfur, ® 1}1<j<m) ® Q{w ® 1}

Since d(w ® 1) is decomposable, it follows that 7*(E/M,) = Q(E/M,)*. Moreover
we see that

T ((B/M,)(1,1)) = HY(Q((E/M,)(1,1)),80) = Q{t;: @ 1}1<i<n/Qfur, © 1}1<jcm.
By definition, there exists an epimorphism 7'((E/M,)(1,1))) — I?z'(E/M,),
which is induced by the inclusion (E/M,)(1,1) — E/M,. Therefore, we have
2l (E/M,) = Q{t; @ 1}1<i<n/Q{ur, @ 1}1<j<m. It turns out that

Ker{z : D271 (AW) — '’z (E/M,)} = Qfur, }1<j<m.
|

We proceed to consideration of the rational Gottlieb group in a non-aspherical
case. Let Y be the space which admits the Postnikov system of the form

Yy —L5 K(Z,4)%ks

|

Y, —Z> K(z,3)%k

pt — K(m(Y),2)

in which Y is the aspherical space defined to be the pullback of the path-loop fibra-
tion K(Z,1)** — PK(Z,2)** — K(Z,2)** by amap g : K(Z,1)*" — K(Z,2)*k.
We write ¢ = f1 X -+ X f with maps f; : K(Z,1)*" — K(Z,2) and define the
(n x n)-matrix Ay, for 1 <7 < k as in the paragraph before Theorem 1.9. Let A4,
be the (nk x n)-matrix consisting of matrices Ay,. Then the same argument as in
the proof of Theorem 1.9 allows us to establish the following theorem.

Theorem 8.3. dimG1(Yy) < k+n —rankA,.

Corollary 8.4. k <rank G1(Y1) < k+n —rankA4,.

Proof. We have a TF-bundle 7% - Y; — T™. Therefore the induced map i, :
71 (T*) — m1(Y1), which is a monomorphism, goes through the Gottlieb group
G1(Y1) C m1(Y7). The same argument as in the proof of Theorem 1.9 yields that
G1(Y7) is a finitely generated free abelian group. Thus we see that k¥ < rank G (Y7).
By combining the fact with Theorem 8.3, we have the result since Y; has the
homotopy type of a finite CW complex. ([l

FEzample 8.5. With the same notations as in the proof of Theorem 1.9, let f :
T? — K(Z,2) be the map which represents the element tit, € H?(T?,Z). Let
K(Z,3) - Y — X; x 5% be the pullback fibration of the path-loop fibration
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K(Z,3) — P — K(Z,4) by the map g : Xy x S® — K(Z,4) which represents the
element tu, where u is the generator of H?(5%;7Z). We now compute the rational
Gottlieb group G1(Yp).

We observe that Y is nilpotent space and has a minimal model of the form
A = (A(t1,t2, w,u,v),d) in which d(w) = t;t2 and d(v) = t;u. Moreover it follows
that T?A = Q{t1,t2} and I'*A = Q{t1,t2,w}. The same argument as the proof of
Claim 8.1 allows us to deduce that dim[m;(Ygp),m1 (Yo)] N G1(Yg) ® Q < 1. Since
Y is not aspherical, we cannot deduce the same equality as in Claim 8.1 applying
[12, Corollary 1.13]. However, by virtue of Corollary 1.8, we have

dim G1(Yp) =dimG1(Yp) ®Q <1+dim H(Y,Q) -2 =1.

Let (Ac,0) be the minimal model for S*. We define a DGA map f : A — A«
by f(ti) = f(u) = f(v) = 0 and f(w) = a. Moreover define the algebra map
0:A—>Na@Abybw) =1w+a®land §(y) = 1 Qv for v = t1,ta,u
and v. It is readily seen that 6 is a DGA map. Then the geometrical realizations
|f|: 8§ — Yo and |0] : S§ x Yo — Y fit into the commutative diagram

SéXYQLYQ

] A

SV Yo

This implies that | f|oe, the composition of the localization e : S — S§, and |f], is
a nontrivial Gottlieb element in 1 (Yg). We conclude that G1(Yp) = Q.
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